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Abstract: SCYL1 is a pseudokinase and plays roles in cell division and gene transcription, nu-
clear/cytoplasmic shuttling of tRNA, protein glycosylation, and Golgi morphology. However, the
role of SCYL1 in human breast cancer progression remains largely unknown. In this study, we
determined expression of SCYL1 in breast cancer by searching the Cancer Genome Atlas (TCGA) and
Tumor Immunoassay Resource (TIMER) databases. Meanwhile, we collected breast tumor tissue
samples from 247 cases and detected expression of SCYL1 in the tumors using the tissue microarray
assay (TMA). Association of SCYL1 with prognosis of breast cancer was determined based on the
PrognoScan database. The results have shown that SCYL1 is overexpressed in breast cancer, and the
expression of SCYL1 is associated with poor clinical outcomes of breast cancer patients. Furthermore,
knockdown of SCYL1 by shRNAs significantly inhibited the proliferation and migration of breast
cancer cells. Taken together, our data suggest that SCYL1 is a biomarker for poor prognosis of
breast cancer, has a promoting role in breast cancer progression, and is a potential target for breast
cancer therapy.
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1. Introduction

Breast cancer (BC) has surpassed lung cancer as the most commonly diagnosed cancer,
with an estimated 2.3 million new cases worldwide in 2020, and it has become the No. 1
“killer” disease in women [1,2]. In the past few decades, surgery and chemo-radiotherapy
were the mainstay of treatments for well-confined primary breast tumors [3,4]. However,
the efficiency of the treatment was often poor, and post-surgery tumor recurrence and
remote metastasis were frequently seen [5–7]. Metastasis is responsible for the vast majority
of patient deaths in breast cancer and is a great challenge for breast cancer therapy [8]. Cur-
rently, molecular targeted therapy has attracted considerable attention; various biomarkers
of breast cancer, such as HER-2, CA153, Ki-67, have been identified [9,10]. It still has
paramount urgency to establish new biomarkers and therapeutic options, especially in
metastatic breast cancer, to improve the survival and prognosis of breast cancer patients.

SCYL1 (SCY1-like pseudokinase 1), also known as NTKL or TEIF, is a catalytically
inactive protein kinase belonging to the SCY1-like family, which is highly evolutionarily
conserved among eukaryotes and widely expressed [11,12]. It has been demonstrated that
the SCYL1 structure mainly contains three domains: an N-terminal pseudokinase domain
serving as modulation of active kinases or assembly of signaling pathways, a centrally
located seven HEAT repeats domain for Homo-oligomerization and tRNA binding, and a
C-terminal segment containing one or more coiled-coil domains for protein-protein interac-
tion [13,14]. Mutations in SCYL1 are associated with CALFAN syndrome, characterized by
low γ-glutamyltransferase cholestasis, acute liver failure, and neurodegeneration [15–17].
SCYL1 physically interacts with γ-COP and ARF4 and is involved in intracellular traffick-
ing [18]. SCYL1 functions in cell division and gene transcription, nuclear/cytoplasmic
shuttling of tRNA, protein glycosylation, and Golgi morphology [19–22].
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Currently, little is known about the role of SCYL1 in cancer progression and metastasis.
Early study has showed that centrosomal localization of SCYL1 is associated with centro-
some amplification and telomere dysfunction, suggesting SCYL1 is likely to play a role in
cancer development [12,23]. SCYL1 was reported to mediate cell cycle progression and
cell motility to promote hepatocellular carcinoma tumorigenicity [24]. It has been shown
that SCYL1 cooperates with TEX14 and PLK1 to constitute the oncogenic signaling STP
axis, which promotes triple-negative breast cancer through downregulation of the tumor
suppressor REST [25]. However, another study found that SCYL1 does not regulate REST
expression and turnover [26]. Thus, the role of SCYL1 in breast cancer remains unclear.

In this report, we used bioinformatics analysis of data from public datasets to identify
SCYL1 expression differences in tumors and normal samples. We also examined the
expression of SCYL1 in 247 breast cancer tissues with immunohistochemical (IHC) staining.
Then, the PrognoScan database was employed to assess the prognostic significance of
SCYL1 in breast cancer. Moreover, we performed in vitro experiments to evaluate the
effects of SCYL1 on breast cancer cell proliferation and migration. Therefore, this study
aims to investigate whether SCYL1 is abnormally expressed in breast cancer and affects the
behavior of breast cancer cells, in order to evaluate the value of SCYL1 in the prognosis of
this disease.

2. Materials and Methods
2.1. Reagengts

Antibodies for SCYL1 (A6735) and Actin (A5441) were purchased from Abconal
Technology (Wuhan, China) and Sigma-Aldrich (St. Louis, MO, USA), separately. Anti-
Mouse (31,430) and anti-Rabbit (31,460) HRP-conjugated secondary antibodies were from
ThermoFisher Scientific (Waltham, MA, USA). The shRNA oligos for SCYL1 were produced
by Sangon Biotech Company (Shanghai, China). Transwell chambers (3422) were purchased
from Corning Inc (Corning, NY, USA). Puromycin was purchased from Biotopped (Beijing,
China). The DAB kit for IHC was from Zhongshan Jinqiao Biotechnology (Beijing, China).
The SABC-POD kit and Mayor’s hematoxylin were purchased from Boster Biological
Technology (Wuhan, China). Human breast cancer cell lines MDA-MB-231 and MCF-7
were obtained from ATCC (Manassas, VA, USA).

2.2. Gene Expression Analysis

We applied the “Gene-DE” module of TIMER2.0 (http://timer.cistrome.org/, accessed
on 25 April 2022) to obtain the differential expression data of SCYL1 between the primary
tumor and the normal samples in different tumor types from TCGA (The Cancer Genome
Atlas) databases. The statistical significance evaluated using the Wilcoxon test is annotated
by the number of stars (p-value < 0.05).

The raw data of gene expression in breast cancer and corresponding clinical informa-
tion were downloaded from the TCGA website (https://portal.gdc.cancer.gov/, accessed
on 21 April 2022), including 942 breast cancer specimens and 95 normal breast specimens.
Gene expression and clinical data were decompressed and merged into a matrix file by
Perl software, and differentially expressed analysis of SCYL1 was performed using the
R/Limma package.

2.3. The Prognostic Value of SCYL1 Analysis

We analyzed the correlation between SCYL1 expression and prognosis of BC patients
based on the PrognoScan platform (http://gibk21.bse.kyutech.ac.jp/PrognoScan/index.
html, accessed on 18 May 2022) [27]. The cohort GSE1456-GPL97 was used to explore the
prognostic value of SCYL1, such as overall survival (OS), disease-specific survival (DSS)
and relapse free survival (RFS). Patients with BC were classified into high expression and
low expression groups based on the optional cut-off value of SCYL1.

http://timer.cistrome.org/
https://portal.gdc.cancer.gov/
http://gibk21.bse.kyutech.ac.jp/PrognoScan/index.html
http://gibk21.bse.kyutech.ac.jp/PrognoScan/index.html
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2.4. Human Tissue Specimens and Patient Information

To make the BC tissue microarrays, we collected 106 triple-negative breast cancer
(TNBC) and 141 non-triple-negative breast cancer (NTNBC) samples from the Department
of Breast Surgery, Affiliated People’s Hospital, Jiangsu University. We used these tissue
samples with informed consent and the Hospital Institutional Review Board approval. In
the meantime, we got their corresponding paired adjacent normal tissues (80 to TNBC,
93 to NTNBC) as the control.

2.5. Immunohistochemistry (IHC) Staining

The staining procedures were previously described [28,29]. The antibody specific
for investigation of the level of SCYL1 expression in the tumor was described above.
The scoring criteria: the total scores of IHC staining were calculated based on staining
percentage scores (classified as 1 (1–25%), 2 (26–50%), 3 (51–75%), 4 (76–100%)) and staining
intensity scores (scored as 1: light-yellow, 2: yellow, 3: brownish-yellow, 4: dark brown).
IHC-score ≥ 4 was interpreted as positive.

2.6. Knockdown of SCYL1 by the shRNA

The breast cancer cell lines MDA-MB231 and MCF-7 cells were cultured in DMEM
with 10% fetal bovine serum, 100 units/mL penicillin and streptomycin at 37 ◦C with 5%
CO2. The SCYL1 shRNAs (1#:GCTACACCAGATCGTGAAAGC, 2#:CGCCTTCGAGTTCG-
GCAATGC) were sub-cloned into the lentiviral shRNA expression vector PLKO.1 (Ad-
dgene) via AgeI/EcoRI sites.

Establishment of stable cell line expressing interest shRNA was performed as de-
scribed previously [30]. Briefly, lentiviral particles were packaged in HEK293T cells. Viral
supernatants were added to MDA-MB-231 and MCF-7 cells for 24 h, and stably transduced
populations were screened by administration of 2 µg/mL puromycin. Immunoblotting
analysis was preformed to detect the expression of SCYL1 by using an anti-SCYL1 antibody.

2.7. Cell Lysates Preparation and Immunoblotting

The BC cells were washed once with ice-cold PBS and extracted using ice-cold Mam-
malian cell lysis buffer supplemented with proteinase inhibitors aprotinin and leupeptin
(Biotopped, Beijing, China). Proteins were denatured and separated on 8% NuPAGE Bis-
Tris SDS gels. Following electrophoresis, separated proteins were transferred onto PVDF
membranes (Millipore, MA, USA) and sealed with 1% BSA. Then, the antibody was sequen-
tially hatched with membranes and finally detected by Western Lightning immunoblot Kit
(Beyotime, Nantong, China).

2.8. Cell Proliferation Assay

3–5 × 104 BC cells were cultured in 12-well plates for indicated times. Then, cells
were counted at days 2, 3 and 4 using a hemocytometer under the phase microscope. The
increased cell number since seeded was used to assess cell proliferative activity. Each cell
counting was performed at least 3 times.

2.9. Cell Migration Assays

For the analysis of the migration ability of cells, a wound healing assay and the
transwell assay were conducted. (1) For the wound-healing assay, 2–5 × 105 cells were
plated in a 12-well plate. When the BC cells were grown to nearly confluent cell monolayers,
the scratch wound was created with a sterile pipette tip in the cell monolayer. After
scratching, the wound was photographed under a phase microscope at 0 and 24 h. (2) For
the transwell migration assay, the BC cells were made into cell suspension in the serum-
free medium and inoculated into the upper chamber. A 10% FBS-containing DMEM
medium without cells was placed into the bottom chamber as a chemoattractant. The
migrated cells that adhered to the bottom surface of the membrane were fixed with 4%
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paraformaldehyde for 30min, stained with crystal violet (Beyotime, Nantong, China) for
10 min, and photographed.

2.10. Statistical Analysis

More than two independent assays were completed for each analysis. Data are dis-
played as mean ± standard deviation (SD). Statistical difference was analyzed using
Student’s t test or one-way ANOVA. p value less than 0.05 was considered statistically
significant. *: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001.

3. Results
3.1. Expression of SCYL1 mRNA Is Increased in Breast Cancer Patients Than Normal Controls

In order to explore the discrepancies of SCYL1 expression in human cancers, the
SCYL1 expression in different tumors and normal tissues of multiple cancer types were
analyzed using the RNA-seq data in TCGA database through the TIMER2.0. The results
revealed that SCYL1 expression was significantly upregulated in BLCA (bladder urothelial
carcinoma), BRCA (breast invasive carcinoma), CHOL (cholangiocarcinoma), COAD (colon
adenocarcinoma), ESCA (esophageal carcinoma), HNSC (head and neck squamous cell
carcinoma), KICH (kidney chromophobe), KIRC (kidney renal clear cell carcinoma), LIHC
(liver hepatocellular carcinoma), LUAD (lung adenocarcinoma), LUSC (lung squamous
cell carcinoma), PRAD (prostate adenocarcinoma), STAD (stomach adenocarcinoma), and
UCEC (uterine corpus endometrial carcinoma). Nevertheless, SCYL1 expression was
significantly reduced in GBM (glioblastoma multiforme) and PCPG (pheochromocytoma
and paraganglioma) than in normal controls (Figure 1A).
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Particularly, the SCYL1 expression in patients with BRAC breast cancer was detected
in TCGA database. As shown in Figure 1B, the expression of SCYL1 in breast cancer was
significantly increased compared with that of the paracancer normal tissues. The paired
differential analysis showed that SCYL1 expression in BRAC tissues was higher than that
in corresponding paired non-cancerous adjacent tissues (Figure 1C). These results suggest
that SCYL1 may play a role in the progression of breast cancer.

3.2. SCYL1 Is Abundantly Expressed in Breast Cancer Tumor Tissues

To further understand the role of SCYL1 in breast cancer development, IHC staining
was performed using a tissue microarray assay (TMA) consisting of 247 breast cancer
samples. As shown in Figure 2A, the average IHC staining score of SCYL1 in the breast
cancer tumor tissues is 3.77 ± 3.21, compared to the score of normal tissues at 1.93 ± 57.75,
indicating that expression of SCYL1 in the breast cancer tumors is significantly higher
than in their adjacent normal tissues (p < 0.0001). According to the TMA assay, the results
showed that 154/247 breast cancer patients (62.3%) were strongly stained with anti-SCYL1
(the right 4 panels, Figure 2B), and 93 tumor samples (37.7%) had weak or no staining
(the left 4 panels, Figure 2B). These IHC results confirmed that SCYL1 is upregulated in
breast cancer.
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3.3. Overexpression of SCYL1 Is Associated with a Poorer Prognosis in Breast Cancer

Both the bioinformatics results and IHC staining results of our in-house cases sug-
gested SCYL1 is significantly higher expressed in patients with breast cancer. Subsequently,
we investigated whether SCYL1 expression was correlated with prognosis in breast can-
cer patients. The impact of SCYL1 expression to survival data was evaluated using the
PrognoScan database, we found high expression of SCYL1 was associated with worsened
prognoses in breast cancer patients as measured by overall survival (OS), disease special
survival (DSS), and relapse free survival (RFS) (Figure 3). Thus, these data clearly demon-
strated that SCYL1 may be applied as a valuable biomarker for poor prognosis and might
have an important role in the progression of breast cancer.
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3.4. Downregulation of SCYL1 Inhibits Breast Cancer Cell Proliferation

To further characterize the biological functions of SCYL1 in the progression of breast
cancer, lentiviral-mediated shRNAs were used to silence endogenous SCYL1expression
in breast cancer cell lines, including MDA-MB-231 and MCF-7. A shRNA sequence with
no targeting effect served as the negative control, and the efficiency of knockdown was
confirmed by immunoblotting analyses (Figure 4A,B and Supplement Figure S1). The
cell viability was analyzed by cell counting assay after downregulation of SCYL1, both
MDA-MB-231 and MCF-7 cells showed a significant decrease in cell numbers (Figure 4C,D).
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These results revealed that knockdown of SCYL1 significantly inhibited cell proliferation in
breast cancer.
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was depleted by lentiviral vector-loaded SCYL1 shRNA for 48 h and detected by immunoblotting with
anti-SCYL1 from the cell lysates. The effect of SCYL1 knockdown on cell proliferation was quantified
by counting the cell number under a phase microscope with a hemocytometer. The data used for
quantification were from three independent experiments. (A,B) SCYL1 expression at protein levels in
MDA-MB-231 and MCF-7 cells. (C,D) The effect of SCYL1 knockdown on MDA-MB-231 and MCF-7
cell proliferation. *: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001; ****: p-value < 0.0001.

3.5. Downregulation of SCYL1 Inhibits Breast Cancer Cell Migration

Next, we carried out the transwell migration assay to determine the effect of SCYL1
knockdown on breast cancer cell migration in both shSCYL1 cell lines. As shown in
Figure 5A,B, the migration ability of MDA-MB-231 and MCF-7 cells in the shSCYL1 group
decreased by different level, compared with the control group. Consistently, wound
healing assays showed that wound closure speed of MSA-MB-231 and MCF-7 cells were
significantly reduced after knockdown of SCYL1 (Figure 5C,D). Based on these results, we
inferred that silencing endogenous SCYL1 expression can suppress the migration of breast
cancer cell lines MDA-MB-231 and MCF-7.
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4. Discussion

In this study, we first observed the expression of SCYL1 is elevated at mRNA levels
in 14 types of tumor tissues, suggesting that SCYL1 might be an important pro-oncogenic
protein in these tumor types. Through mining TCGA datasets data, hyperexpression of
SCYL1 was observed in breast cancer tissues compared with adjacent normal tissues. IHC
staining of 247 BC tumor samples has shown that SCYL1 was overexpressed in 62.3% of BC
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tumors. More importantly, investigation of the impact of SCYL1 on BC using PrognoScan
analyses revealed that increased SCYL1 levels significantly correlated with a short OS, DSS,
and RFS. These findings supported that high SCYL1 expression may effectively predict
breast cancer prognosis.

Dysregulation of gene expression may lead to tumor initiation and progression [31].
We used the lentiviral shRNA plasmid vector that knockdown SCYL1 to study the role of
SCYL1 in breast cancer cell lines. Downregulation of SCYL1 in breast cancer cells severely
inhibits cell proliferation. The transwell migration and wound healing assays showed that
downregulation of SCYL1 in breast cancer cells impaired their abilities in migration. These
results demonstrated that SCYL1 has a role in promoting breast cancer cell proliferation
and migration, the two cellular processes in cancer progression [32].

An important process thought to be regulated by SCYL1 is vesicular transport of
Golgi apparatus [18,22,33]. Specifically, the Golgi apparatus was shown to be enlarged
and fragmented, with an increased volume in SCYL1 knockdown cells [21]. The role of
Golgi apparatus in tumorigenesis has been brought to attention in recent years. Accu-
mulating evidence has shown that Golgi acts as a hub for signaling molecules in cancer
progression [34–36], which is involved in numerous cellular processes, such as cancer cell
dissociation, cell-matrix adhesion, tumor angiogenesis, migration, and invasion [37–39].
Our studies clearly indicate that SCYL1 functions in progression of breast cancer; it is possi-
ble that SCYL1 promotes tumorigenesis of breast cancer via regulating vesicle trafficking
and structure of Golgi.

Up to now, studies on the role of SCYL1 in breast cancer progression are still rare.
Karlin et al. demonstrated SCYL1 as one of the components of the oncogenic STP axis,
which was a driver of triple-negative breast cancer by suppressing REST protein levels via
degradation [25]. Contrary to that data, a recent study found RNAi–mediated knockdown
of SCYL1 in MDA-MB-231 cells did not alter REST steady-state level and turnover; thus,
SCYL1 is dispensable for the down-regulation of REST [26], suggesting in some cases
the function of SCYL1 in tumor progression may not be dependent on degradation of
REST. In our studies, the major role of SCYL1 seems promoting BC tumor cell proliferation
and migration, whether SCYL1 promotes BC through degradation of the REST warrants
further investigations.

In conclusion, our findings indicate that SCYL1 is overexpressed in breast cancer and
expression of SCYL1 is associated with poor prognosis of breast cancer. In addition, knock-
down of SCYL1 dramatically inhibits proliferation and migration of breast cancer cells,
suggesting a promoting role of SCYL1 in breast cancer progression. Further study is needed
to better understand the mechanisms by which SCYL1 regulates breast cancer progression.
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