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ABSTRACT Trait inference from mixed-species assemblages is a central problem in
microbial ecology. Frequently, sequencing information from an environment is avail-
able, but phenotypic measurements from individual community members are not.
With the increasing availability of molecular data for microbial communities, bioinfor-
matic approaches that map metagenome to (meta)phenotype are needed. Recently,
we developed a tool, gRodon, that enables the prediction of the maximum growth
rate of an organism from genomic data on the basis of codon usage patterns. Our
work and that of other groups suggest that such predictors can be applied to
mixed-species communities in order to derive estimates of the average community-
wide maximum growth rate. Here, we present an improved maximum growth rate
predictor designed for metagenomes that corrects a persistent GC bias in the origi-
nal gRodon model for metagenomic prediction. We benchmark this predictor with
simulated metagenomic data sets to show that it has superior performance on
mixed-species communities relative to earlier models. We go on to provide guidance
on data preprocessing and show that calling genes from assembled contigs rather
than directly from reads dramatically improves performance. Finally, we apply our
predictor to large-scale metagenomic data sets from marine and human micro-
biomes to illustrate how community-wide growth prediction can be a powerful
approach for hypothesis generation. Altogether, we provide an updated tool with
clear guidelines for users about the uses and pitfalls of metagenomic prediction of
the average community-wide maximal growth rate.

IMPORTANCE Microbes dominate nearly every known habitat, and therefore tools to
survey the structure and function of natural microbial communities are much needed.
Metagenomics, in which the DNA content of an entire community of organisms is
sequenced all at once, allows us to probe the genetic diversity contained in a habitat.
Yet, mapping metagenomic information to the actual traits of community members is a
difficult and largely unsolved problem. Here, we present and validate a tool that allows
users to predict the average maximum growth rate of a microbial community directly
from metagenomic data. Maximum growth rate is a fundamental characteristic of micro-
bial species that can give us a great deal of insight into their ecological role, and by
applying our community-level predictor to large-scale metagenomic data sets from ma-
rine and human-associated microbiomes, we show how community-wide growth predic-
tion can be a powerful approach for hypothesis generation.
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Afundamental goal of microbial ecology is to characterize the variation of complex mi-
crobial traits across time and space and to understand the drivers of that variation

(1–4). Many of our best tools for understanding natural microbial communities are molecular
and rely on our ability to leverage environmental DNA or RNA sequences to produce
insights about community composition (e.g., references 5 and 6). Thus, a major bioinformatic
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challenge for microbial ecologists is that of inferring the traits of an organism or organisms
on the basis of nucleotide sequences alone (e.g., references 7 to 12).

One trait that has proven to be amenable to such genomic inference is the maxi-
mum growth rate of an organism, which can be predicted from various signatures of
optimization for rapid translation (13–21). Specifically, organisms capable of fast
growth have clear differences in their codon usage patterns relative to organisms
which can grow only slowly (13, 21, 22). In particular, because the production of many
ribosomes is a universal requirement for rapid growth (23), one can look for codon
optimization for rapid translation in the genes encoding ribosomal proteins on a ge-
nome as a particularly reliable indicator of maximum growth rate across phyla and
even domains of life (13, 24) (and across major metabolic divides; e.g., see Fig. S1 in
the supplemental material). Tools have been developed that can predict the maximum
growth rate of an organism on the basis of its genome sequence (13, 21), and limited
benchmarking on natural and experimentally generated data sets suggests that these
methods can also be applied at the community level to metagenomes describing a
mixture of organisms to predict a community-wide average maximum growth rate (13,
21, 25). Prediction of the average community-wide maximum growth rate from codon
usage statistics is often performed as part of bioinformatics analysis pipelines, to assess
how the growth potential of communities varies across environmental gradients (e.g.,
reference 9). Yet, the performance of these methods on mixed communities has not
been well characterized, and it is unclear when we should expect such approaches to
work well and/or fail.

Here, we benchmark the performance of our recently developed predictor of maxi-
mal growth rate, gRodon (21), on mixed communities of microbes in order to better
understand the limitations of this tool. We implement additional bias corrections to
the method that greatly improve performance. We go on to provide guidance on data
preprocessing and show that calling genes from assembled contigs rather than directly
from reads dramatically improves performance. Altogether, we provide an updated
tool with clear guidelines for users on when metagenomic prediction of the average
community-wide maximal growth rate should be possible. Finally, we apply gRodon to
two large-scale metagenomic data sets from habitats of particular interest: (i) the
global oceans (26) and (ii) the human body (8, 27). In doing so, we show that commu-
nity-level maximum growth rate predictions can yield real ecological insights by (i)
demonstrating a dramatic decrease in the maximum growth rate of marine commun-
ities with depth after 100 m and (ii) demonstrating clear differences in growth poten-
tial of the human microbiome across body sites.

RESULTS AND DISCUSSION
Implementing a correction for GC content and consistency into metagenome

mode. The original gRodon paper (21) showed that gRodon’s default “full” mode for
predicting growth rates from individual genomes was not affected by genomic GC
content. In contrast, we found that when applied to pairs of concatenated genomes
(see Fig. S2 in the supplemental material; simulating two-species communities with
even abundances), gRodon v1’s “metagenome mode” (MMv1), which applies a simpler
codon usage model than “full” mode (21), had a persistent GC bias in which pairs with
intermediate GC ranges (;50%) were predicted to be associated with shorter doubling
times than pairs with more extreme genomic GC contents (Fig. S2).

At the same time, we found that when predicting the average minimum doubling
time of a mixed community of microbes, MMv1 performed best when the organisms in
the community shared a common set of preferred codons (Fig. S3). This pattern stems
from a key assumption of gRodon that microbes in the same community have codon
preferences more similar to those of one another than to those of microbes from differ-
ent communities. This assumption is based on studies showing that this is indeed the
case for many systems (28), where microbes in the same environment tend to have
biases toward similar sets of codons in their genomes. It is important that this similarity
assumption is met for MMv1 to perform well, because our codon-based growth
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predictor compares the bias in codons used by some prespecified set of highly
expressed genes (generally taken to be the ribosomal proteins) to a background
estimate of codon usage bias (CUB) in the rest of the genes found in a metagenomic
sample. If the organisms in a sample do not share a set of codon biases, then the back-
ground estimate of bias will be underestimated, leading us to overestimate the codon
usage bias of our set of highly expressed genes and underestimate the average dou-
bling time of the community (Fig. S3). We measure the similarity of codon usage across
highly expressed genes in a genome or metagenome using “consistency” as a metric
(21), which describes how far on average these genes are from each other in terms of
codon usage. Because consistency is defined in a somewhat counterintuitive way
(higher consistency means more dissimilar codon usage), but also to avoid changing
definitions between papers, we represent consistency here as W, where larger values
of W mean that the ribosomal proteins in a sample have more dissimilar codon usages
from one another.

Based in part on developments from an earlier software, growthpred (13), we made
three changes to the model used by MMv1: (i) we calculated codon usage bias on a per-
gene level, which required an alternative randomization-based approach to calculate the
expected codon frequency (see Materials and Methods); (ii) we applied a normalization of
codon usage from growthpred that the authors found was helpful in correcting for any GC
bias in their predictor (see Materials and Methods); and (iii) we explicitly included GC con-
tent as a term in our growth model. Together, these developments effectively corrected
the GC andW biases apparent in MMv1 (Fig. S2c and Fig. S3c). In fact, these two biases are
closely related, since samples with very skewed GC content also have similar codon usage
patterns among their constituents (low W), potentially explaining the source of the GC
bias in MMv1 (Fig. 1).

On further examination, we found that under certain conditions MMv1 actually outper-
formed our new bias-corrected metagenome mode (MMBC) on mixed communities
(Fig. S4). This occurred when organisms in a sample had very similar codon preferences
(W , 0.6). Which model performed best appeared to be dependent on a trade-off inher-
ent to the per-gene calculation of CUB in MMBC. When calculating CUB on a single gene,
there is a very limited amount of sequence information available with which to calculate
the expected background codon frequencies, leading to a high variance in our per-gene
estimates of CUB. On the other hand, MMv1 uses the entire metagenome to calculate
background codon frequencies, leading to predictions with much lower variance but that
were strongly biased for communities where organisms did not share codon preferences
(W . 0.6). In cases where organisms did share codon preferences (W , 0.6), then MMv1
had both low bias and lower variance than MMBC. Since it is straightforward to calculate
W for any metagenomic sample, this means that one can decide whether to use MMv1 or
MMBC in order to get the best result. We implemented a new mode in the open-source
gRodon tool, metagenome mode v2 (MMv2), which automatically switches between
MMv1 and MMBC based on aW threshold of 0.6 (Fig. S4).

Finally, we considered the possibility that our MMv2 model was overfit to the train-
ing data, which would limit our ability to apply the predictor to new data sets. These
models have relatively few parameters overall (Table S1). Yet, overfitting is a particu-
larly salient concern when training models on species data, because species do not
represent independent data points (29, 30). In addition to random cross-validation, we
implemented a blocked cross-validation approach to control for phylogeny in our error
estimates (21, 29). Together, random and blocked cross-validation indicated MMv2 had
an equal or better ability to extrapolate across folds than MMv1 and did not appear to
be overfit (Fig. S5). Importantly, these single-genome error estimates do not necessarily
tell the whole story of a model’s ability to predict the average maximum growth rate
of a mixed-species community (see below) but rather provide a lower bound for pre-
diction error when applied to such communities.

gRodon’s metagenome mode v2 outperforms other models on synthetic com-
munities. In order to benchmark gRodon’s ability to predict the average maximal
growth rates of mixed-species communities, we generated several community-level
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data sets (Table 1). To start, we generated three sets of 10,000 “genome mixtures”
drawn from three sources: (i) a set of RefSeq (31, 32) genomes dereplicated at the ge-
nus level (one genome chosen per genus), (ii) a reference catalog of genomes from iso-
lates from the human gut that covers about 70% of these communities (33), (iii) a set
of single-cell amplified genomes (SAGs) collected from the ocean surface in an
unbiased manner (34). We distinguish “genome mixtures” from true synthetic metage-
nomes in that our mixtures are simply the concatenated set of coding sequences from
the constituent genomes, whereas a “true” synthetic metagenome is produced via the

FIG 1 Samples with highly skewed GC content have low W and low prediction error with MMv1. (a and b) More extreme GC values (far from 0.5)
correspond to low W values (,0.6). (c) The graph shows how well each predictor converges to “itself” for various levels of GC skew for genome pairs. That
is, if we predict the maximum growth rate of each genome in a mixture using that model and take the average, how well does the prediction on the
mixed community estimate that value? Observe that MMv1 performs comparably to (or better than) MMBC and MMv2 only when GC content is highly
skewed, corresponding to a low W. MSE, mean squared error.
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generation of synthetic reads from genomic references (we perform such an analysis
later on). In this way, we focus the current analysis on issues of prediction on mixed
communities only and do not consider possible complications arising from the
sequencing or assembly process. Additionally, our concatenation approach allows us
to generate very large benchmarking data sets very efficiently (30,000 total generated
mixtures). We presently consider mixtures where all organisms are present in equal
proportions, though see below for an analysis of mixtures with various species
abundances.

In order to benchmark MMv2 against the earlier MMv1 and growthpred predictors,
we compared the prediction of each method run on the entire mixture to the average
prediction of gRodon’s “full mode” on the individual genomes in the mixture. This can
be taken as an estimate of the actual error of prediction (since gRodon’s full mode is,
to our knowledge, the currently best-performing single-genome predictor of maximum
growth rate available [21]). Unfortunately, benchmarking against empirically measured
growth rates is not currently feasible as the maximum growth rates associated with
the genomes used here are either not known or not compiled in any easily accessible
way. Any available sets of genome-growth rate pairs have been used to train gRodon
and would be inappropriate to use as a benchmark (however, see Fig. S6 for the results
of such benchmarking, which also indicate good performance of MMv2).

In general, MMv2 shows improved performance over the earlier MMv1 and
growthpred predictors in accurately capturing the average maximal growth rate of a
mixture of genomes (Fig. 2a to c). In particular, MMv2 greatly outperforms MMv1 when
W is .0.6 (Fig. S7; high W indicates dissimilar codon usage patterns among organisms
in a sample). With one exception, MMv2 predictions are not affected by GC content,
while MMv1 predictions show a strong dependency on GC across all data sets (Fig. 2d
to f). The one notable exception is that in the case of simulated marine communities,
MMv2 predicts slower maximal growth for low-GC genome mixtures. This appears to
be the product of a real biological pattern, as it is a well-studied phenomenon that
slow-growing marine oligotrophs have streamlined genomes with low GC content
(possibly as an adaptation to nutrient limitation [35]). MMv2 had a slight performance
boost in samples where W was ,0.6 due to the bias-variance trade-off between MMv1
and MMBC discussed above (Fig. S8).

All growth prediction models (all gRodon and growthpred modes) similarly imple-
ment optimal growth temperature as an optional linear predictor, which may have
important impacts on maximum growth rate estimates (13, 21). We also included tem-
perature as an optional predictor for MMv2, and simulations that incorporate

TABLE 1 Simulated community-level data used to benchmark gRodon MMv2a

Genome source Simulation type
Temp
simulated

Rel. abund.
simulated

No. of
simulations Figure(s)b

RefSeq Genome mixture N N 1.00E104 1, S2, S3, S4, S5, S8,
S9, S17, S18

RefSeq Genome mixture Y N 1.00E104 S10
RefSeq Genome mixture N Y 1.00E104 2
Marine surface Genome mixture N N 1.00E104 1, S8, S9, S17, S18
Marine surface Genome mixture Y N 1.00E104 S12
Marine surface Genome mixture N Y 1.00E104 2
Human gut Genome mixture N N 1.00E104 1, S8, S9, S17, S18
Human gut Genome mixture Y N 1.00E104 S11
Human gut Genome mixture N Y 1.00E104 2
Human gut Synthetic metagenome—reads N N 1.00E102 3, S16, S20
Human gut Synthetic metagenome—assemblies N N 1.00E102 3, S16, S20
gRodon training data Genome mixture N N 1.00E103 S7
Mycobacterium (GTDB207) Genome mixture N N 1.00E103 S19
Vibrio (GTDB207) Genome mixture N N 1.00E103 S19
aSynthetic metagenomes (reads generated from source genomes following a realistic error model) were analyzed both at the read level and after assembly at the contig
level as two separate sets of community data. Abbreviations: Y, yes; N, no; Rel. abund., relative abundance.

bExternal links for Fig. S10 through S20 may be found where each of those figures is cited in the text.
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FIG 2 Metagenome mode v2 (MMv2) outperforms MMv1 and corrects its apparent GC bias. (a to c) For each set of
source genomes we calculated the MSE against the prediction for individual genomes using gRodon’s “full mode,” which
gives us the best available baseline for “actual” maximal growth rates for each mixture (21). Analysis of variance (ANOVA)
for each sample source shown, with pairwise significance values relative to MMv2 obtained from a Wilcoxon signed-rank
test. (d to f) Predicted doubling times from MMv2 (pink) are generally insensitive to the GC content of a sample (see text
for discussion of ocean surface mixtures), whereas MMv1’s (blue) predictions are strongly affected by GC content. ****,
P # 0.0001; ns, not significant.
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temperature variation suggest that including temperature as a variable is important for
data sets taken from a wide range of temperature conditions (Fig. S9; see also Fig. S10
at https://doi.org/10.6084/m9.figshare.20440596.v1 and Fig. S11 at https://doi.org/10
.6084/m9.figshare.20440356.v1).

Finally, for samples where W is .0.6, MMv2 had longer run times than MMv1, though
both methods were able to predict growth rates in a matter of minutes or less (Fig. S12 at
https://doi.org/10.6084/m9.figshare.20440383.v1). On a single core on a 2.0-GHz AMD
EPYC 7702P processor, on a representative set of metagenomes from the human micro-
biome (8, 27), MMv2 could predict the average community-wide maximum growth rate in
1.9 min on average, with a maximum run time of 5.9 min for a single metagenome. In con-
trast, MMv1 could predict the average community-wide maximum growth rate in 14 s on
average, with a maximum run time of 52 s for a single metagenome. This difference in run
times is a consequence of how MMv2 calculates the background codon usage for each
gene individually (see Materials and Methods). Still, even for data sets with thousands of
metagenomes, running MMv2 should be feasible in reasonable time frames.

gRodon’s abundance correction improves performance. One of the key innova-
tions of MMv1 was that gRodon is able to take coverage information into account when
calculating the average maximal growth rate of a community in order to effectively weight
community members by their relative abundances. In order to determine whether this
abundance correction actually improved predictor performance, we again simulated three
sets of 10,000 genome mixtures each as described above (simulated from assembled
genes of each genome), this time also drawing genome abundances from a lognormal dis-
tribution for each mixture which were then assigned to each gene accordingly. We used
these simulated abundances in order to calculate the “actual” average maximal growth
rate used as a benchmark and then compared our predictions when we either provided
gRodon with the relative abundances for each genome or did not. We found that MMv2
had improved predictions when relative abundance information was included (Fig. 3). It
appears that improvements were seen primarily in mixtures in which organisms have simi-
lar codon usage patterns (W, 0.6; Fig. 3b, d, and f).

Some assembly is required: gRodon’s performance on synthetic metagenomes.
So far, the benchmarking analyses we have described do not account for complications
that could arise from the sequencing or assembly process. In order to better simulate a re-
alistic data set, we generated sequencing reads from genome mixtures (36), focusing on
organisms found in the human gut (33), in order to generate 100 synthetic gut metage-
nomes. We then tested MMv2’s performance on (i) the genome mixtures used to generate
these synthetic metagenomes, (ii) the set of genes called from contigs assembled from the
synthetic metagenomes, and (iii) genes called directly from reads from the synthetic meta-
genomes. For the third analysis, we used gRodon’s “fragments” option, which filters out
genes shorter than 40 codons long (gRodon typically filters genes shorter than 80 codons
long based on guidance from the authors of the CUB statistic used by the program [19,
21, 37]). This short-filter option was necessary to accommodate the short length of the syn-
thetic reads (125 bp) and gives us an idea whether or not it is wise to skip the assembly
process altogether for short-read data sets.

We found that MMv2 performed equally well on assembled metagenomes as the origi-
nal genome mixtures but that performance suffered greatly when MMv2 was applied to
genes called directly from reads (Fig. 4). We suspected that this drop in performance was
due to the short length of the genes when called directly from reads, which makes it diffi-
cult to confidently estimate CUB. Looking at individual genomes, we found that when
genes were concatenated to progressively shorter lengths, the variance of their estimated
CUB increased greatly, and for very short lengths (typically ,120 bp) the CUB was under-
estimated (Fig. S13 at https://doi.org/10.6084/m9.figshare.20440374.v1). This effect was
stronger for ribosomal proteins in fast-growing organisms, including for genes longer than
120 bp (Fig. S14 at https://doi.org/10.6084/m9.figshare.20440395.v1). This suggests that
minimum doubling times would be overestimated for genomes or metagenomes with
many short genes (i.e., genes inferred from reads), which is consistent with our results on
synthetic gut metagenomes (Fig. 4). We also observed that using genes called from reads
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from our synthetic metagenomes led to a direct reduction in the estimated CUB of the
ribosomal proteins in a sample relative to estimates derived from genes called from
assembled contigs (Fig. S15 at https://doi.org/10.6084/m9.figshare.20440389.v1). This anal-
ysis suggests that assembly is a necessary step for growth prediction and that short genes

FIG 3 Abundance-weighted growth predictions with MMv2 are more accurate than predictions that do not
account for abundance. (a, c, and e) Doubling time predictions that are weighted for the relative
abundance of an organism are more accurate than unweighted predictions. (b, d, and f) The advantages of
abundance weighting are seen primarily in mixtures in which organisms have similar codon usage patterns
(W , 0.6). Pairwise significance values from a Wilcoxon signed-rank test. ***, P # 0.001; ****, P # 0.0001;
ns, not significant.
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should be excluded when making such predictions (as done in gRodon’s default settings).
While growth prediction from short reads (,240 bp) is a desirable feature for future devel-
opment, it is not recommended using the existing gRodon model.

Interestingly, the assembly process itself did not seem to affect gRodon’s prediction
performance, with MMv2 performing just as well on synthetic metagenomic assem-
blies from simulated reads as on mixtures of the original genes used to generate those
reads. One might expect that when applied to assemblies, gRodon’s performance
would suffer marginally due to poor assembly of rare community members, but
because those community members contribute so little to the average maximum

FIG 4 For short-read data sets, assembly is required for confident maximum growth rate predictions. Doubling time predictions on genome mixtures and
synthetic metagenomic assemblies from simulated reads and directly on the simulated reads of synthetic metagenomes for the same sets of organisms
were compared. Predictions using genes inferred directly from reads had much higher error rates than predictions on the assembled contigs or genome
mixtures, which were not statistically distinguishable. Analysis of variance (ANOVA) across sample types shown, with pairwise significance values relative to
genome mixture obtained from a Wilcoxon signed-rank test. ****, P # 0.0001; ns, not significant.
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growth rate calculation (their contribution being inversely related to their relative
abundance), the assembly process seems to have little effect. It is possible that in a
hyperdiverse community where even abundant organisms assemble very poorly these
results would be different. Nevertheless, by subsampling our genome mixtures, as well
as deeply sequenced metagenomes gathered from diverse habitats, we found that
even if only a small fraction of the total genes in a community are sampled (around 5%
of all genes, and capturing at least 30 to 50 unique ribosomal proteins), MMv2 will pro-
vide reliable community-level predictions (Fig. S16 at https://doi.org/10.6084/m9
.figshare.20440398.v1 and Fig. S17 at https://doi.org/10.6084/m9.figshare.20440386.v1;
also see unweighted predictions with no correction for relative abundance in Fig. S18
at https://doi.org/10.6084/m9.figshare.20440380.v1 and Fig. S19 at https://doi.org/10
.6084/m9.figshare.20440392.v1). While the actual cutoff for accurate prediction will
vary across communities (the 30- to 50-gene cutoff is apparently appropriate for those
with a lognormal species abundance distribution; more may be required for more uni-
form abundance distributions), these simulations suggest that gRodon can be applied
to relatively shallow metagenomes.

Growth prediction on large metagenomic data sets from the global oceans and
the human gut. We ran MMv2 on two large metagenomic data sets to get a sense of
how the model would perform on real data: (i) the BioGEOTRACES data set, which con-
sists of 610 globally distributed marine metagenomes (26), and (ii) the Human
Microbiome Project (HMP) Illumina WGS Assemblies (HMASM) data set, which consists
of 749 metagenomes sampled from a large number of individuals and body sites (8,
27). These data sets describe dramatically different microbial communities living in dra-
matically different environments, with marine systems typically being dominated by
slower-growing organisms living under oligotrophic conditions and the human micro-
biome generally being composed of much-faster-growing organisms living under nu-
trient-rich conditions (9, 13, 21).

First, we found that our simulated genome mixtures used for benchmarking did a
reasonably good job of recapitulating natural distributions of W (i.e., codon similarity
patterns across organisms) from the same environments. That is, the distribution of W
seen in our “Marine Surface” mixtures overlapped well with the distribution of W seen
in the BioGEOTRACES metagenomes (though the distributions were still statistically
distinguishable; Kolmogorov-Smirnov test, P = 1.17 � 1027 [Fig. 5a]). Similarly, our
“Human Gut” mixtures had a W distribution that overlapped the stool samples in the
HMASM data set (statistically indistinguishable means; Kolmogorov-Smirnov test,
P = 0.056 [Fig. 6a]). In both cases, the W distribution of environmental mixtures and
actual metagenomes was shifted toward much lower values than those seen in the
“RefSeq” mixtures. This implies that environment-specific genome mixtures do a much
better job of replicating at least one feature of natural communities than do sets of
genomes drawn at random from genomic databases.

Second, we found that MMv2 allowed us to make specific hypotheses about variation
in community-wide average maximum growth rates in marine and human systems.
Among the BioGEOTRACES samples, we noted a distinct decrease in the community-wide
maximum growth rate with depth after 100 m, consistent with predictions from other
groups and with decreasing energy inputs to ocean systems with decreasing light (Fig. 5b)
(9). Among the HMASM samples, we found differences in the community-wide maximum
growth rate across body sites, with the oral microbiome of the tongue and cheek having
the fastest maximum growth and the gut and tooth plaque having the slowest (Fig. 6b).
These likely have to do with differences in the kinds of substrates available across environ-
ments, where more complex carbon sources are broken down in the gut relative to the
mouth (e.g., reference 38). Finally, we found clear differences in the average community-
wide maximal growth rates across environments (mean BioGEOTRACES doubling time of
11.1 h and mean HMASM doubling time of 1.6 h; Wilcoxon rank sum test, P, 2.2 � 10216

[Fig. 5c and Fig. 6c]), with 92% of HMASM samples having a higher community-wide maxi-
mal growth rate than the highest seen in a BioGEOTRACES sample. Importantly, many of
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these ecological patterns may have been masked if we applied MMv1, which in general
was strongly biased toward higher inferred maximum growth rates (Fig. 5c and Fig. 6c).

Conclusions. We developed gRodon MMv2, an improved predictor of the commu-
nity-wide average maximum growth rate for mixed-species metagenomes, and imple-
mented this predictor in an open-source R package. We provide extensive benchmarking
to demonstrate that MMv2 outperforms previous growth models and to provide

FIG 5 Natural marine communities as a test case for MMv2. (a) The distribution of W across organisms among BioGEOTRACES samples taken from a depth
of ,100 m largely overlaps the W distribution from our “Ocean Surface” mixtures, but not our “RefSeq” mixtures. W is a measure of codon usage
dissimilarity across highly expressed genes in a sample, and low values of W indicate high similarity (see Results and Discussion). (b) MMv2 applied to the
BioGEOTRACES samples recovers a pattern of increasing average minimum doubling time of marine communities with depth after 100 m. (c) Relative to
MMv2, MMv1 predictions are strongly biased toward shorter doubling times for BioGEOTRACES samples.
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guidance on when our predictor’s performance will suffer. For example, we showed that
weighting predictions by species abundances improved overall performance and that as-
sembly was a necessary step for reliable prediction on short-read data sets. The develop-
ment of predictors that work well on unassembled short-read data is an active area of
development and would greatly expand the utility of our tool. We emphasize that MMv2
shows improvement only for community-level prediction from mixed-species commun-
ities and that for individual genomes users should still use gRodon’s “full” mode (21),

FIG 6 Natural human-associated communities as a test case for MMv2. (a) The distribution of W across HMASM samples taken from a human stool largely
overlaps the W distribution from our “Human Gut” mixtures but not our “RefSeq” mixtures. W is a measure of codon usage dissimilarity across highly
expressed genes in a sample, and low values of W indicate high similarity (see Results and Discussion). (b) MMv2 applied to the HMASM samples recovers
differences in growth rates across human body sites (sites with .100 samples). Analysis of variance across sites shown, with pairwise significance values
relative to stool obtained from a Wilcoxon signed-rank sum test. (c) Relative to MMv2, MMv1 predictions are strongly biased toward shorter doubling
times for HMASM samples. ***, P # 0.001; ****, P # 0.0001; ns, not significant.
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which is the best method available for those data types. In the rare case where reference
genomes are available for all species present in a metagenome, applying gRodon to the
reference database and using coverage to estimate relative abundances in order to cal-
culate the weighted average maximum growth rate, rather than applying metagenome
mode directly, is likely to give the best results. Nevertheless, the ability of MMv2 to
resolve cross-species differences, even across closely related organisms (Fig. S20 at
https://doi.org/10.6084/m9.figshare.20440371.v1), appears to be robust.

By applying MMv2 to large-scale metagenomic data sets, we are able to derive insights
about the variation of the community-wide average maximum growth rate across marine
and human-associated environments. For example, we saw clear decreases in the commu-
nity-wide maximum average growth rate with depth, in agreement with other studies (9).
At the same time, we saw strong differentiation among body sites in their average maxi-
mal growth rates, potentially related to the availability of different growth substrates
across sites. Together, these results demonstrate the broad utility of our tool and its poten-
tial to enable rapid hypothesis generation from metagenomic data sets.

Finally, we note that our benchmarking approach of comparing single-genome infer-
ences to community-level inferences is inherently limited in that the “ground truth” is an
inference rather than a data point in itself (however, see Fig. S6). Nevertheless, we found
that community-level predictions can clearly recapitulate individual-level predictions with-
out having to extract individual genomes from the community. As more extensive curated
trait data sets become available, alternative benchmarking approaches for mixed-species
communities may become feasible, and there is a critical need for such databases.

MATERIALS ANDMETHODS
Code for all analyses presented can be found at: https://github.com/jlw-ecoevo/gRodon2-benchmarking.

The R package gRodon with MMv2 implemented can be found at https://github.com/jlw-ecoevo/gRodon2.
Sequence handling in R was performed using the Biostrings package (39). Data visualization was per-

formed using ggplot2 and ggpubr (40, 41).
Data. Out of the set of RefSeq annotated assemblies (31) incorporated in the original EGGO database

(21), we randomly sampled one genome per genus (following the NCBI taxonomy [42]) to generate a set of
nonredundant genomes spanning 2,976 genera. These comprised our “RefSeq” genome set. Genomes of
human gut isolates were obtained from the Zou et al. (33) set of 1,520 sequenced cultured isolates. Marine
SAGs were obtained from the Pachiadaki et al. (34) GORG-Tropics database of 12,715 organisms. All genomes
were screened, and genomes with,10 annotated ribosomal proteins were removed.

Genomes for mycobacteria and Vibrio species were taken from the set of all GTDB207 representative
genomes assigned to these genera (43).

Metabolic oxygen use data for each species in the training data set were obtained from the work of
Madin et al. (44).

Raw reads, assemblies, and temperature metadata for the BioGEOTRACES data set were obtained
from the work of Biller et al. (26). We then ran EukRep v0.6.6 on these assemblies to classify contigs as
eukaryotic or prokaryotic and retained only prokaryotic contigs (using settings -m strict –tie prok [45]).
Raw reads and assemblies for the HSASM data set (8) were obtained from https://www.hmpdacc.org/
hmp/HMASM/#data, and sample temperature was assumed to be 37°C. Assemblies were annotated with
prokka (using options –norrna –notrna –metagenome –centre X –compliant [46]). For reads, adapters
and low-quality reads were trimmed using fastp v0.21.0 (47), and then cleaned reads were mapped to
inferred genes using bwa mem v0.7.12 (default settings [48]) and coverage was quantified using bamcov
v0.1.1 (available at https://github.com/fbreitwieser/bamcov).

Genome mixtures. To simulate a genome mixture, we randomly sampled 10 genomes from the rel-
evant set of genomes and concatenated annotated coding sequences from these genomes into a single
fasta file for that mixture. This was repeated 10,000 times for each data source. Maximum growth rates
were inferred for all source genomes using gRodon’s “full” prediction mode to derive ground truth
against which to benchmark predictions on the genome mixtures.

To simulate relative abundances, the individual abundance of each genome in a mixture was drawn
from a lognormal distribution. These relative abundances were then used to weight the calculation of aver-
age community-wide maximum growth rate for the gRodon “full” mode benchmark and were additionally
passed as gene relative abundances to gRodon when running MMv2 in abundance-corrected mode.

We generated optimal growth temperatures for genome mixtures using the following two-step pro-
cedure. First, for each genome mixture a sample temperature between 0 and 60°C was drawn from a
uniform distribution. Then, the simulated optimal growth temperature of each species in the mixture
was taken as the sum of this sample-wide value and a draw from a normal distribution with mean zero
and standard deviation of 10. These organism-level temperatures were used to predict the individual
growth rates of genomes (for the benchmark), and the sample temperature was used to predict the
community-level growth rate. This approach was used to account for possible variation in an organism’s
optimal growth temperature (OGT) relative to the conditions under which it may be found.
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Training data mixtures were generated from the genomes matching species in the Madin et al. (44)
training set that were used to train gRodon (21).

Synthetic metagenomes. Synthetic reads were generated from genome mixtures using inSilicoSeq
(36). We (using options –n_reads 100M –model hiseq –coverage lognormal) generated synthetic metage-
nomes with a Hi-Seq sequencing error model and 100 � 2 million 125-bp paired reads. Adapters and low-
quality reads were trimmed using fastp v0.21.0, and then either reads were assembled with MEGAHIT v1.2.9
(default parameters [49]) and genes were annotated with prokka (using options –norrna –notrna –metage-
nome –centre X –compliant [46]) or genes were called directly from reads using FragGeneScanRs (using
option –training-file illumina_5 [50, 51]). For assemblies, cleaned reads were mapped to inferred genes using
bwa mem v0.7.12 (default settings [48]), and coverage was quantified using bamcov v0.1.1 (available at
https://github.com/fbreitwieser/bamcov). We annotated genes called directly from reads as ribosomal pro-
teins using blastn (E value cutoff of 1025 and a 99% identity [52]) and the ribosomal protein database from
growthpred (13). The sets of genes predicted directly from reads were very large (160 million genes on aver-
age), so that we subsampled 1% of genes per sample for gRodon prediction (increasing this to 10% did not
change our result; see Fig. S21 at https://doi.org/10.6084/m9.figshare.20440377.v1).

Subsampled synthetic communities and metagenomes. Subsampled community-level data were
generated via sampling genes from genome mixtures or metagenomes with probabilities proportional
to their relative abundances—simulated relative abundances in the case of mixtures, coverage in the
case of metagenomes—without replacement.

Bias-corrected growth model. See Table S1 in the supplemental material for a list of models used
in this paper.

The original gRodon MMv1 model was fit as:

Ulðdoubling timeÞ ; CUBHE (1)

where Ul is the Box-Cox transformation with parameter l , fitted using the MASS package (53), and
CUBHE is the median CUB of the highly expressed genes (taken to be the set of ribosomal proteins) rela-
tive to the average codon usage patterns across the genome, calculated as the Measure Independent of
Length and Composition (MILC) statistic (19) using the coRdon package (37). See the work of Weissman
et al. (21) for more discussion of the model fitting process.

The bias-corrected model was fit as:

Ulðdoubling timeÞ; iCUBAll 2 iCUBHE

iCUBAll
1 j0:52 GCj (2)

using a normalization approach implemented in the original growthpred software by Vieira-Silva and
Rocha (13). GC is the genome- or metagenome-wide GC content. Here, iCUB refers to the average CUB
calculated using a per-gene background to estimate the expected codon frequencies rather than the
whole genomic background. That is to say, the MILC statistic of a gene is normally calculated by compar-
ing observed codon frequencies to a null expectation estimated from genome-wide frequencies. Here,
we calculate the expected codon frequency based on the gene itself, controlling for nucleotide frequen-
cies. This is done by repeatedly shuffling the gene sequence to produce a set of simulated genes on
which the expected frequencies are calculated (by default, 100 such “null” genes are simulated for each
sequence). Because this process is slow, we sample 100 genes from the genomic background (not in the
highly expressed set) for which these per-gene estimates are made to calculate iCUBAll. This model was
fit using the Madin et al. (44) training set used to train the original gRodon model.

Finally, MMv2 applies either the MMv1 or bias-corrected model based on a W threshold of 0.6, with
values lower than 0.6 leading to the application of the MMv1 model and values larger than that thresh-
old leading to the application of the bias-corrected model. W is calculated as the mean CUB of the ribo-
somal proteins using the set of ribosomal proteins to calculate the background expectation of codon
frequencies. This essentially measures how distant the ribosomal proteins are from each other in codon
usage space and thus is an indicator of whether or not organisms in a metagenomic sample share the
same codon biases (see the work of Weissman et al. [21], whereW is defined as “consistency”).

For comparisons, growthpred v1.0.8 was run from a docker image from the work of Long et al. (25)
(https://hub.docker.com/r/shengwei/growthpred) in metagenome mode (-m) using the same set of ribo-
somal proteins as those for gRodon in all cases.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 2.2 MB.
FIG S2, TIF file, 1 MB.
FIG S3, TIF file, 1 MB.
FIG S4, TIF file, 2.8 MB.
FIG S5, TIF file, 1.8 MB.
FIG S6, TIF file, 3.1 MB.
FIG S7, TIF file, 1.4 MB.
FIG S8, TIF file, 1.8 MB.
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