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Abstract: Caries prevention is essential for oral hygiene. A fully automated procedure that reduces
human labor and human error is needed. This paper presents a fully automated method that segments
tooth regions of interest from a panoramic radiograph to diagnose caries. A patient’s panoramic
oral radiograph, which can be taken at any dental facility, is first segmented into several segments
of individual teeth. Then, informative features are extracted from the teeth using a pre-trained
deep learning network such as VGG, Resnet, or Xception. Each extracted feature is learned by a
classification model such as random forest, k-nearest neighbor, or support vector machine. The
prediction of each classifier model is considered as an individual opinion that contributes to the final
diagnosis, which is decided by a majority voting method. The proposed method achieved an accuracy
of 93.58%, a sensitivity of 93.91%, and a specificity of 93.33%, making it promising for widespread
implementation. The proposed method, which outperforms existing methods in terms of reliability,
and can facilitate dental diagnosis and reduce the need for tedious procedures.

Keywords: caries screening; dental radiographs; ensemble; deep learning

1. Introduction

Dental health is important because of the correlation between oral health problems
and illnesses such as cardiovascular disease and diabetes. Oral health has a significant
impact on their overall health and quality of life. Oral health problems such as mouth
and face discomfort, oral and throat cancer, oral infection and sores, periodontal (gum)
diseases, tooth decay, and tooth loss impede a person’s ability to bite, chew, and speak and
affect psychological health. In 2016, the World Health Organization (WHO) projected that
over 3.5 billion individuals were impacted by oral disorders and expected this number to
continue to rise [1].

Dental caries form when acids produced by bacteria in the mouth erode dentin, causing
damage to tooth structure or attachment, which can make gums bleed. They are the most
common chronic oral disease in adults, affecting around 60% of adults over the age of 50.
Dental health is part of oral health [2], including the state of oral tissues as well as factors
that can affect oral health. Dental plaque is initially a soft, thin film. Soft plaque turns into
hard plaque, which cannot be easily removed by brushing, via mineralization with calcium,
phosphate, and other minerals [3]. Over time, caries cause holes, destroy the tooth, and
increase the risk of further damage, including tooth loss (Figure 1).

Medical imaging technology, such as that based on X-rays and other forms of radiation,
is used for diagnosis and treatment. Multimodal medical imaging technologies allow more
than one form of radiation to be used at the same time to obtain an image that is more
accurate and complete. Such technologies help doctors determine the best course of action
for their patients. They also help reduce pain and speed up the diagnosis process. A concern
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of patients is radiation exposure. However, the radiation emitted is generally very low-level
and is not likely to cause any long-term health problems.

Entropy 2022, 24, 1358 2 of 12 
 

 

 

Figure 1. Caries in teeth. 

Medical imaging technology, such as that based on X-rays and other forms of radia-

tion, is used for diagnosis and treatment. Multimodal medical imaging technologies allow 

more than one form of radiation to be used at the same time to obtain an image that is 

more accurate and complete. Such technologies help doctors determine the best course of 

action for their patients. They also help reduce pain and speed up the diagnosis process. 

A concern of patients is radiation exposure. However, the radiation emitted is generally 

very low-level and is not likely to cause any long-term health problems. 

Advancements in medical imaging technology enable the rapid gathering and anal-

ysis of a large amount of data. Computer-aid diagnoses (CADs) can assist physicians to 

interpret 2D and 3D images [4]. 3D imaging provides more detail and is thus useful for 

complex cases. A deep-learning-based method can segment the mandible from core beam 

computed tomography images [5]. 2D imaging provides essential information for diag-

nosing problems such as cancer, diabetes, and caries [6,7]. Several studies [8–10] have ad-

vocated the use of photoacoustic images, wavelength images, or ultrasound imaging for 

caries detection. Other studies [10,11] have proposed an approach that employs an RGB 

oral endoscope image. However, most systems cannot observe the detailed anatomy of a 

tooth, especially the root, and hence cannot be used to diagnose caries. Dental radiog-

raphy is a simple and affordable imaging method that can be performed in most dental 

offices and hospitals; other imaging techniques, such as CT radiography and near-infrared 

ranging, are more costly and thus less commonly used [12]. Dental radiography images 

are thus preferable for the early detection of caries based on computer-aid diagnosis. 

2. Literature Review 

Caries detection based on radiography uses panoramic radiographs, periapical im-

ages, bitewing images, or occlusal images. Panoramic radiographs, which are the most 

complex, present the health condition of all teeth and provide a benefit of medical history 

in a whole oral image, whereas the other types of images show only a few teeth in a spe-

cific region. Periapical, bitewing, and occlusal images provide similar information. There-

fore, panoramic radiographs are more informative and preferred for caries detection  

Li et al. [13] used support vector machine (SVM) and a backpropagation neural net-

work (BPNN) to identify tooth decay. The autocorrelation coefficient and the gray level 
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Advancements in medical imaging technology enable the rapid gathering and anal-
ysis of a large amount of data. Computer-aid diagnoses (CADs) can assist physicians
to interpret 2D and 3D images [4]. 3D imaging provides more detail and is thus useful
for complex cases. A deep-learning-based method can segment the mandible from core
beam computed tomography images [5]. 2D imaging provides essential information for
diagnosing problems such as cancer, diabetes, and caries [6,7]. Several studies [8–10] have
advocated the use of photoacoustic images, wavelength images, or ultrasound imaging for
caries detection. Other studies [10,11] have proposed an approach that employs an RGB
oral endoscope image. However, most systems cannot observe the detailed anatomy of a
tooth, especially the root, and hence cannot be used to diagnose caries. Dental radiography
is a simple and affordable imaging method that can be performed in most dental offices and
hospitals; other imaging techniques, such as CT radiography and near-infrared ranging,
are more costly and thus less commonly used [12]. Dental radiography images are thus
preferable for the early detection of caries based on computer-aid diagnosis.

2. Literature Review

Caries detection based on radiography uses panoramic radiographs, periapical images,
bitewing images, or occlusal images. Panoramic radiographs, which are the most complex,
present the health condition of all teeth and provide a benefit of medical history in a
whole oral image, whereas the other types of images show only a few teeth in a specific
region. Periapical, bitewing, and occlusal images provide similar information. Therefore,
panoramic radiographs are more informative and preferred for caries detection

Li et al. [13] used support vector machine (SVM) and a backpropagation neural
network (BPNN) to identify tooth decay. The autocorrelation coefficient and the gray level
co-occurrence matrix are used separately in their method for feature extraction. SVM and
BPNN models are then used separately for classification. On a testing set, SVM had an
accuracy of 79% and BPNN had an accuracy of 75%. These accuracies are insufficient for
practical applications. Their study did not describe the dataset and thus the validity of
their research is unknown.
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Yu et al. [14] attempted to improve the backpropagation neural network layer and
autocorrelation coefficient matrix feature extraction. Their approach was evaluated using
80 private dental radiographs. An accuracy of 94% was obtained; however, as the number
of network layers increases, the system becomes more computationally expensive. The
sensitivity, specificity, precision, and F-measure were not reported. The small testing data
(35 photographs) and lack of cross-validation are shortcomings of their study.

Patil et al. [15] developed a dragonfly-specific intelligent system. The feature set is
extracted using multi-linear principal component analysis (MPCA). After the characteristics
are loaded into a neural network classifier, the classifier is trained using the adaptive
dragonfly algorithm as an optimization strategy. 120 private dental photographs were used
to assess the MPCA model non-linear programming with the adaptive dragonfly algorithm
(MNP-ADA) with three test scenarios. Each test case consisted of a total of 40 photographs,
28 and 12 of which were utilized for training and testing, respectively. Other classifiers and
feature sets, such as linear discriminant analysis (LDA) [16], principal component analysis
(PCA) [17], and independent component analysis (ICA) [18], as well as fruit fly (FF) [19]
and grey-wolf optimization (GWO) [20], were employed for comparison. The MNP-ADA
model achieved an accuracy of 90%, a sensitivity of 94.67%, and a specificity of 63.33%. This
low specificity indicates that patients without caries were incorrectly labeled as patients
with caries. The high precision but limited specificity may raise questions about the data
balance between photographs with and without caries.

Singh et al. [21] proposed an automated caries detection method based on Radon
transform (RT) and discrete cosine transform (DCT). To capture low-frequency information,
RT is performed on X-ray images for each degree. 2D DCT is then applied to the RT images
to extract frequency characteristics (DCT coefficients). These characteristics are transformed
into a 1D coefficient vector in a zigzag way. Principal component analysis is then applied
to this vector to retrieve features. Using decision tree, k-nearest neighbor, random Forest,
naive Bayes, sequential minimum optimization, radial basis function, decision stumps, and
AdaBoost classifiers, the smallest number of features are then combined. The best result
was achieved with random forest, with an accuracy of 86%, a sensitivity of 91%, and a
specificity of 80%.

Le et al. [22] proposed a framework for diagnosing dental problems, called the Dental
Diagnosis System (DDS), that uses panoramic radiographs. It is based on a hybrid approach
that combines segmentation, classification, and decision-making. For the segmentation task,
it used the best method for dental image segmentation, which based on semi-supervised
fuzzy clustering. For the classification task, a graph-based algorithm called affinity prop-
agation clustering was developed. To select a disease from a group of diseases found
in the segments, a decision-making method was developed. DDS was designed based
on actual dental cases in Hanoi Medical University, Vietnam, which included 87 dental
photographs of cases with five prevalent diseases, namely root fracture, wisdom teeth,
tooth decay, missing teeth, and periodontal bone resorption. The accuracy of DDS is 92.74%,
which is higher than those of systems based on fuzzy inference (89.67%), fuzzy k-nearest
neighbor (80.0%), prim spanning tree (58.46%), Kruskal spanning tree (58.46%), and affinity
propagation clustering (90.01%). Their dataset consisted of various types of images, which
may have led to unreliable results.

Most previous researches have an undependable method which is low performance
or cannot fully automated diagnosis. In the present study, we comprehensively evaluate
panoramic radiographs and develop a fully automated and dependable caries screening
approach.

3. Material and Method
3.1. Dataset

We received a dataset from dentists at Shinjuku East Dental Office. The dataset consists
of unprocessed radiographs of 95 individuals. These radiographs were automatically
processed to generate 533 tooth regions in the tooth region proposal stage. Images are
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from real patient cases from the hospital. The patients were 18 years old or older and
provided consent. It is important to highlight that caries is more severe in adults (over
18 years old) since their teeth are no longer milk teeth but rather permanent teeth, which
cannot be restored to their previous state. The University Committee at Tokai evaluated the
publishing and usage rights of the images in the dataset based on ethical considerations.
Figure 2 shows an example image from the dataset. It includes the mouth and a portion of
the patient’s jaw bone.
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3.2. Method

The proposed method, shown in Figure 3, consists of tooth segmentation, tooth feature
descriptor, and caries prediction processes. In the first stage, a YOLO model is applied for
tooth region proposal. Then, the proposal region is segmented from the image and fed
into the feature descriptor. Several pre-trained networks, namely VGG16 [23], VGG19 [23],
Resnet18 [24], Resnet50 [24], Resnet101 [24], Xception [25], and Densenet201 [26], are used
as feature descriptors to extract informative features. Next, the features are used to train an
SVM [27] classifier. Finally, a majority voting method is applied using the model features
to produce the final optimal result.

3.2.1. Tooth Region Segmentation

As mentioned, caries detection methods that directly use images received from the
dentist have been developed. The images are usually either unprocessed or periapical
images, which makes using them expensive in terms of human labor and cost. In the
present research, an automatic region proposal method is used to reduce cost and improve
diagnosis.

First, we create an image’s region of interest. To prevent encroachment on the teeth, we
choose a region in the center of the image with a preliminary ratio compared to the original
image of 1:1.4. The images are scaled to fit the Yolov3 model’s input size. The YOLOv3
model is used to suggest a tooth region, with Squeeze Net as the network’s base [28–30]. We
increase the number of detection heads and concatenate the output of each detection head
with a suitable layer to generate better results. However, we must consider the model’s
size to avoid overfitting and decrease complexity. Three detection heads are utilized in
this detection model. A detailed illustration of the tooth segmentation process is shown in
Figure 4. The fine-tuned parameters are given in Table 1.
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Table 1. Parameter of Yolo model.

Parameter Value

Mini batch size 32
Number of anchor box 11

Iteration 1000
Initial learning rate 0.001

L2regularization 0.0005

3.2.2. Deep Pre-Trained Network as Feature Descriptors

In this work, a convolutional neural network with pre-trained weights is employed as
a feature descriptor to extract deep activated features. To determine the best descriptor of
pre-trained networks, the seven most popular networks, namely VGG16, VGG19, Resnet18,
Resnet50, Resnet101, Xception, and Densenet, were used. Technically, the network processes
RGB pictures, whereas the radiographs are grayscale; hence, we multiplied the grayscale
channel to replace the image’s missing channels. Table 2 shows the depth, parameters, size,
and input size for each pre-trained model. Among the network models, Densenet has the
most layers (201), and VGG16 has the fewest layers (23).

Table 2. Description of pre-trained model.

Network Name Depth Size (MB) Parameter (×106) Input Size

VGG16 23 528 138.4 227 × 227 × 3
VGG19 26 549 143.7 224 × 224 × 3

Resnet18 18 45 11.5 224 × 224 × 3
Resnet50 50 98 25.6 224 × 224 × 3
Resnet101 101 171 44.7 224 × 224 × 3
Xception 126 88 22.9 224 × 224 × 3

Densenet201 201 77 88.9 299 × 299 × 3

3.2.3. Classification

The extracted feature set from each feature descriptor in the preceding stage is used
to train an SVM classifier to predict caries [31]. The SVM model seeks to identify the
ideal hyperplane for describing the difference between data (caries and non-caries in this
scenario. The Gaussian radial basis function is used in the classifier to reduce the number
of training points. For data D = {(xi, yi ), i = 1 . . . N} and yi ∈ {−1, 1}, the SVM model
and mapping function of the Gaussian kernel can be described as follows:

min
ω,b, ξ

1
2
||W||2 + C ∑

i
ξ2

i subject to yi

(
WTXi + b

)
≥ 1− ξi, ξi ≥ 0, ∀i (1)

where C > 0 is the selected parameter and ξ is a set of slack variables.

K (X, Y) = e
||X−Y||2

A (2)

where K is the kernel function and A is a constant.
We also applied the feature set to k-nearest neighbor [32,33] and random forest [34–37]

classifiers for comparison with support vector machine.

3.2.4. Majority Voting

The predictions of each feature and the SVM predictor are considered as individual
opinions that depend on different contributions of accuracy performance. To produce a
final prediction, voting is conducted among the predictors. The final diagnosis is made
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based on majority voting and compared to each individual prediction. The computation of
the final prediction based on the actual prediction probability of each individual opinion is
conducted as follows:

P(y = j|x) =
exp

[
∑N

n=1 P̂n(y = j|x)
]

exp[∑L
l=1 ∑N

n=1 P̂n(y = j
∣∣∣x) (3)

where N is the number of predictors, n is the predictor number, L is the number of classes,
and P is probability.

4. Measures and Result Assessment
4.1. Measures

The performance of the proposed method was evaluated in terms of accuracy (ACC),
sensitivity (SEN), and specificity (SPEC). In addition, the positive predictive value (PPV),
negative predictive value (NPV), F1-score, and processing time are presented. The detailed
calculation of each measure is as follows:

ACC =
TP + TN

TP + FP + TN + FN
(4)

SEN =
TP

TP + FN
(5)

SPEC =
TN

TN + FP
(6)

PPV =
TP

TP + FP
(7)

NPV =
TN

TN + FN
(8)

F1− score =
2TP

2TP + FP + FN
(9)

where true positive (TP) indicates the number of caries images correctly classified as caries,
true negative (TN) indicates the number of non-caries images correctly classified as non-
caries, false positive (FT) indicates the number of non-caries images incorrectly classified as
caries, and false negative (FN) indicates the number of caries images incorrectly classified
as non-caries.

4.2. Result Evaluation

An analysis of majority voting for several pre-trained neural networks and a classifier
was conducted. The results are shown in Table 3. Overall, SVM has the best performance
for every feature descriptor and in the final vote. An increase in the depth of a network
increased accuracy. For SVM, the accuracy, sensitivity, and specificity with Densenet were
90.57%, 95.65%, and 86.67%, respectively, which is predictable due to the depth of the
network. VGG16 had the lowest accuracy, sensitivity, and specificity (79.25%, 73.91%,
and 83.33%, respectively). The majority voting made use of each feature descriptor and
increased performance to 92.45% for accuracy, 95.65% for sensitivity, and 90% for specificity
using an SVM classifier. Even though there might be some circumstances which random
forest have a better sensitive, other measuring elements are not compatible.

To develop and evaluate an effective caries detection system, the training and testing
sets were randomly divided for cross-validation. The k-fold cross-validation was used to
evaluate the proposed method’s robustness. The results demonstrate that the proposed
method reliably adapts to unknown samples and covers the whole problem space. Ad-
ditionally, k-fold cross-validation was used to avoid overfitting the proposed method to
our testing data. It was applied to the method that best represents the issue, which is the
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SVM. The difference in accuracy between folds is around 6% (lowest accuracy: 90.57%,
highest accuracy: 96.23%). All average values of accuracy, sensitivity, and specificity are
higher than 93%, which indicates that our method is stable and reliable. We also computed
the receiver operating characteristic (ROC) curves and area under the curves (AUC). The
ROC curves, which describe the data for each fold and the average value, are presented in
Table 4 and Figure 5.

Table 3. Performance assessments of different models.

Classifier Measure VGG16 VGG19 Resnet18 Resnet50 Resnet101 Xception Densenet Voting

Random Forest

Accuracy 0.4717 0.4528 0.5472 0.4528 0.3774 0.4906 0.4528 0.4528
Sensitivity 0.9565 1.0000 0.8696 1.0000 0.8261 1.0000 1.0000 1.0000
Specificity 0.1000 0.0333 0.3000 0.0333 0.0333 0.1000 0.0333 0.0333

PPV 0.4490 0.4423 0.4878 0.4423 0.3958 0.4600 0.4423 0.4423
NPV 0.7500 1.0000 0.7500 1.0000 0.2000 1.0000 1.0000 1.0000

F1-score 0.4400 0.4423 0.4545 0.4423 0.3654 0.4600 0.4423 0.4423

K-nearest
Neighbor

Accuracy 0.7925 0.6981 0.7547 0.7736 0.8679 0.7736 0.6415 0.8491
Sensitivity 0.6957 0.6087 0.6957 0.6087 0.6957 0.6087 0.4783 0.6957
Specificity 0.8667 0.7667 0.8000 0.9000 1.0000 0.9000 0.7667 0.9667

PPV 0.8000 0.6667 0.7273 0.8235 1.0000 0.8235 0.6111 0.9412
NPV 0.7879 0.7188 0.7742 0.7500 0.8108 0.7500 0.6571 0.8056

F1-score 0.5926 0.4667 0.5517 0.5385 0.6957 0.5385 0.3667 0.6667

Support Vector
Machine

Accuracy 0.7925 0.8868 0.8302 0.8679 0.8868 0.8491 0.9057 0.9245
Sensitivity 0.7391 0.9130 0.8261 0.8696 0.8261 0.7391 0.9565 0.9565
Specificity 0.8333 0.8667 0.8333 0.8667 0.9333 0.9333 0.8667 0.9000

PPV 0.7727 0.8400 0.7917 0.8333 0.9048 0.8947 0.8462 0.8800
NPV 0.8065 0.9286 0.8621 0.8966 0.8750 0.8235 0.9630 0.9643

F1-score 0.6071 0.7778 0.6786 0.7407 0.7600 0.6800 0.8148 0.8462

Highest values are presented in bold.

Table 4. Support vector machine on k-fold cross validation.

Measure Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Mean

Accuracy 0.9623 0.9245 0.9245 0.9057 0.9623 0.9358
Sensitivity 0.9565 0.9565 0.9565 0.9130 0.9130 0.9391
Specificity 0.9667 0.9000 0.9000 0.9000 1.0000 0.9333

PPV 0.9565 0.8800 0.8800 0.8750 1.0000 0.9183
NPV 0.9667 0.9643 0.9643 0.9310 0.9375 0.9528

F1-score 0.9565 0.9166 0.9166 0.8936 0.9545 0.9276
AUC 0.9609 0.9174 0.9333 0.9290 0.9768 0.9346

To compare the complexity of the method for various feature descriptors, we computed
the execution time of each process in MATLAB2020a running in a Windows 10 environment
on a computer with an Intel i7 CPU and a GeForce GTX 2060 GPU, 32 GB RAM. Table 5
shows the execution time for each function in seconds. The operation for the Densenet
feature descriptor is the most time-consuming. It took 113.7 seconds to finish, which is
at least 10 times longer than any other operation. In comparison, the fastest process on
Resnet18 took only 4.33 seconds. Without considering the training process, the proposed
method can be widely used because of its high processing speed.
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Finally, we compare the proposed method with state-of-the-art methods. A short
description of each existing method and its dataset is given below. Existing methods use
distinct datasets, whose size and complexity affect performance. Therefore, this comparison
is preliminary. The specifications of the state-of-the-art methods are given in Table 6.
Although the method in [15] achieved a promising 90% accuracy, its low specificity of
63.33% is insufficient. In addition, the methods in [14,15] primarily use periapical images,
which are often basic and require human effort to produce the final result. In contrast, the
method in [21] has a general outcome that is not particular to the state of carious teeth.
Despite a promising accuracy of 92.47%, the method in [22] is hampered by its use of mixed
data, which leads to unknown validity. In addition, the sensitivity and specificity of this
method were not reported. The table indicates that the proposed method has an accuracy
of 95.38% and outperforms most existing methods. In addition, we present a full technique
evaluation in a comprehensive dataset.

Table 5. Execution time for each function.

Function Name Time(s)

Load data 0.78
VGG16 + SVM training 10.35
VGG19 + SVM training 10.89
Resnet18 + SVM training 4.33
Resnet50 + SVM training 6.20
Resnet101 + SVM training 8.21
Xception + SVM training 10.53
Densenet + SVM training 113.7
Voting and Prediction 0.40

Total 165.39
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Table 6. Comparison to previous state-of-the-art.

References Method Samples ACC% SEN% SPEC%

[14,15] Auto-correlation coefficients matrix
Neural network 120 periapical images 73.33 77.67 53.33

[15]

Multi-linear principal component analysis
Non-linear programming with adaptive
dragonfly algorithm
Neural network

120 periapical images 90.00 94.67 63.33

[21]

Radon transformation
Discrete Cosine transformation
Principal component analysis
Random forest

93 panoramic images 86.00 91.00 80.00

[22] Semi-supervised fuzzy clustering
Graph-based clustering

87 mixed panoramic and
periapical images 92.47 - -

Proposed
method

Deep activated features
Geometric features
SVM classification

95 panoramic images
(533 tooth region images) 93.58 93.91 93.33

5. Conclusions

This study proposed a method for segmentation and caries diagnosis for caries screen-
ing. Most existing methods perform caries classification using periapical images, which
require human labor to extract the input image. In contrast, the proposed method extracts
the tooth region of interest automatically. Although the automatically segmented images
may contain some errors, the proposed method has an accuracy of 93.58%, outperforming
state-of-the-art methods.

Because features are extracted from seven feature descriptors, redundant features may
be overcrowded. In future work, we would like to analyze each feature’s contribution to
lowering the computational cost.
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