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ABSTRACT Features of the airway microbiome in persons with cystic fibrosis (pwCF)
are correlated with disease progression. Microbes have traditionally been classified for
their ability to tolerate oxygen. It is unknown whether supplemental oxygen, a com-
mon medical intervention, affects the airway microbiome of pwCF. We hypothesized
that hyperoxia significantly impacts the pulmonary microbiome in cystic fibrosis. In
this study, we cultured spontaneously expectorated sputum from pwCF in artificial
sputum medium under 21%, 50%, and 100% oxygen conditions using a previously
validated model system that recapitulates microbial community composition in uncul-
tured sputum. Culture aliquots taken at 24, 48, and 72 h, along with uncultured spu-
tum, underwent shotgun metagenomic sequencing with absolute abundance values
obtained with the use of spike-in bacteria. Raw sequencing files were processed using
the bioBakery pipeline to determine changes in taxonomy, predicted function, antimicro-
bial resistance genes, and mobile genetic elements. Hyperoxia reduced absolute micro-
bial load, species richness, and diversity. Hyperoxia reduced absolute abundance of
specific microbes, including facultative anaerobes such as Rothia and some Streptococcus
species, with minimal impact on canonical CF pathogens such as Pseudomonas aerugi-
nosa and Staphylococcus aureus. The effect size of hyperoxia on predicted functional
pathways was stronger than that on taxonomy. Large changes in microbial cooccurrence
networks were noted. Hyperoxia exposure perturbs airway microbial communities in a
manner well tolerated by key pathogens. Supplemental oxygen use may enable the
growth of lung pathogens and should be further studied in the clinical setting.

IMPORTANCE The airway microbiome in persons with cystic fibrosis (pwCF) is corre-
lated with lung function and disease severity. Supplemental oxygen use is common
in more advanced CF, yet its role in perturbing airway microbial communities is
unknown. By culturing sputum samples from pwCF under normal and elevated
oxygen conditions, we found that increased oxygen led to reduced total numbers
and diversity of microbes, with relative sparing of common CF pathogens such as
Pseudomonas aeruginosa and Staphylococcus aureus. Supplemental oxygen use may
enable the growth of lung pathogens and should be further studied in the clinical
setting.
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Cystic fibrosis is a genetic disease arising from mutations in the cystic fibrosis transmem-
brane conductance regulator (CFTR) gene that causes defective chloride secretion. Loss

of CFTR function leads to the production of thick, viscous mucus and poor pulmonary clear-
ance that result in lifelong recurrent bouts of pulmonary infections. In the absence of proper
channel function, there is often progressive lung function decline that may result in the need
for supplemental oxygen and ultimately necessitate lung transplantation or cause death.
Pulmonary infections in persons with cystic fibrosis (pwCF) are polymicrobial, with the cooc-
currence of specific microbes in a community leading to altered antimicrobial susceptibility
(1) and clinical severity (2). In the long run, a reduction in sputum microbial diversity has
been associated with worsening lung function and disease progression corresponding to the
observed succession of the microbiome toward dominance of pathogens such as
Stenotrophomonas and especially Pseudomonas (3–6). With the introduction of CFTR channel
modulator drugs such as ivacaftor, both lung function and sputum microbial diversity
improve (7).

Historically, oxygen supplementation has been considered a benign medical inter-
vention and is provided liberally in many clinical contexts. However, early evidence in
animal studies alluded to a link between exposure to hyperoxia and adverse effects,
including lung injury and reduced immune activity (8–10). Over time, this evidence has
been corroborated in human observational studies and clinical trials, where supple-
mental oxygen targeting high patient oxygen levels increased the risk of bacteremia,
ventilator-associated pneumonia, and higher mortality in critical illness (11–15). While
proposed mechanisms for the deleterious effects of oxygen have focused on the gen-
eration of reactive oxygen species and injury to pulmonary cells, less is known about
the effects of supplemental oxygen on the pulmonary microbiome (16, 17).

Supplemental oxygen is prescribed for approximately 11% of pwCF (18–23). In clinical
studies of pwCF, use of supplemental oxygen therapy has been associated with more
advanced disease (24, 25), although oxygen therapy has been traditionally viewed as simply
a marker of disease severity rather than a contributor to disease progression (26). In this
study, we tested our hypothesis that supplemental oxygen alters the airway microbiome in
pwCF. Our approach used a previously validated method (27) for culturing sputum from
pwCF in artificial sputum medium under various oxygen conditions. We performed taxo-
nomic, predicted functional, antimicrobial resistance, and mobile genetic element profiling
using shotgun metagenomic sequencing, with the use of spike-in bacteria to determine
absolute microbial abundance.

RESULTS
Study population. Study participants were recruited through the Massachusetts

General Hospital Adult Cystic Fibrosis Center from November 2019 to March 2020.
Characteristics of the 11 pwCF included in this study are described in Table 1. The average
age was 29.2 years old. Six pwCF were on CFTR modulators, six were actively receiving anti-
microbials, and one was on supplemental oxygen. Seven had impaired glucose tolerance.
Eleven sputum samples, one from each of these pwCF, were obtained during routine outpa-
tient clinic visits and underwent culture in artificial sputum medium (ASM) under 21%, 50%,
and 100% oxygen. This yielded 110 samples that underwent shotgun metagenomic
sequencing (Fig. 1). Of these, two samples as well as the negative reagent-only control failed
library preparation and sequencing.

Visual culture phenotypes. Oxygen influenced the observed phenotypes of spu-
tum cultures. At the time of inoculation, filter-sterilized artificial sputum medium is
clear yellow in color. Figure S1 in the supplemental material contains photographs of
microbial communities from the 11 pwCF after 72 h of culture under 21%, 50%, and
100% oxygen. These visual differences between the same original sputum sample cul-
tured under different oxygen conditions were the first indication that hyperoxia alters
airway microbial communities. In Fig. S1, panels A, C, F, and H show sputum cultures
with uniform yellow-white turbidity without noticeable visual differences across oxy-
gen conditions. Panel B has yellow-white turbidity but also has a ring-shaped pellicle
at the liquid-air interface that grows more prominent with increasing oxygen
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concentration. Panel D has strong gray-black pigmentation at 21% oxygen which is
entirely absent under 50% and 100% oxygen. Panel E also displays color change, with
yellow-orange pigmentation at 100% oxygen. Panel G has large orange clumps of
growth at 21% and 50% oxygen but not at 100% oxygen. Panel I contain numerous
white growth clumps that are much more numerous at 21% and 50% oxygen than at
100% oxygen. Panel J shows drastically decreased turbidity at 100% oxygen, sugges-
tive of reduced growth. Lastly, panel K also shows color differentiation, with green pig-
mentation at 21% oxygen that was not present under 50% and 100% oxygen.

Metagenomic sequencing. Uncultured sputum and aliquots of sputum cultured in
ASM from the indicated oxygen and time culture conditions underwent nucleic acid
extraction and metagenomic sequencing on the Illumina NovaSeq platform. After trim-
ming of low-quality reads, removal of host reads, and removal of spike-in reads, a median
of 23.3 (interquartile range, 10.8 to 33.5) million reads per sample (78.7%) remained. A total
of 7.4% of reads failed quality control, 1.2% were human, and 12.6% mapped to spike-in
control bacteria. The minimum observed final sample read count was 148,882 reads.
Figure S2 shows that even rarefaction to this minimum observed read count produces full
saturation of species detection, indicating that at the level of deep sequencing performed
in our study, differences in sequencing depth between samples did not affect species di-
versity estimates. The bioBakery3 (28) suite of tools was used to generate profiles for micro-
bial taxonomy, predicted pathways, antimicrobial resistance (AMR) genes, and mobile
genetic elements (MGE). Figure S3 shows a comparison of microbial species detected in
uncultured sputum and in sputum cultured at 21% oxygen for 48 h, annotated with known
oxygen tolerance based on preexisting literature. Anaerobes were detected in both uncul-
tured sputum and sputum cultured under 21% oxygen.

Microbial load. Absolute cellular counts for the overall community and for each spe-
cies were estimated by the addition of the spike-in control bacterium (29, 30) Imtechella
halotolerans to the sample at the time of nucleic acid extraction. Imtechella halotolerans is a
halophile not found in human microbial communities, allowing us to calculate total micro-
bial load and species-specific counts based on the resulting sequencing data. Higher oxy-
gen levels decreased the absolute microbial load, while longer culture times increased the
absolute microbial load (Fig. 2). For each 1% increase in oxygen above 21%, the log10 cells
per milliliter absolute microbial load estimate decreases by 3.55 � 1023. Culturing for 72 h
under 100% oxygen compared to 21% oxygen for 72 h reduces estimated microbial load
by half, from 2.60 billion cells per milliliter to 1.36 billion cells per milliliter.

Microbial diversity. Figure 2 outlines the effect of culture condition on the number of
unique species per culture and the inverse Simpson and Shannon alpha diversity indices.

TABLE 1 Characteristics of study participantsa

Characteristic Value for participantsb

n 11
Age in yr, median (IQR) 29.2 (25.3, 39.7)
Male gender 3 (27.3)
White race 10 (90.9)
BMI, median (IQR) 21.6 (18.9, 23.4)
Pancreatic insufficiency 10 (90.9)
Condition = exacerbation 4 (36.4)
Supplemental oxygen use 1 (9.1)
Channel modulator 6 (54.5)
Antibiotic use within past 90 daysc 9 (81.8)
Impaired glucose tolerance 7 (63.6)
Insulin use 4 (36.4)
% Predicted FEV1, median (IQR) 0.63 (0.42, 0.86)
% Predicted FVC, median (IQR) 0.77 (0.58, 1.00)
aSummary of medical characteristics of the 11 study participants whose sputum was used for these experiments
and the resulting analyses. IQR, interquartile range; BMI, body mass index; FEV1, forced expiratory volume in 1 s;
FVC, forced vital capacity. FEV1 and FVC are measures of quality of lung function.

bValues are number (%) unless indicated otherwise.
c6 (54.5%) participants on antibiotics at time of sputum collection.
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Hyperoxia decreased the alpha diversity of the airway microbial communities. Culture time
conversely increases alpha diversity, though the observed number of species remained
unchanged. The observed species count as well as the inverse Simpson and Shannon alpha
diversity indices decrease as oxygen increases. For each 1% increase in oxygen above 21%,
mixed-effects models predict that observed species decrease by 7.19� 1022, inverse Simpson
diversity decreases by 4.86 � 1023, and Shannon diversity decreases by 3.26 � 1023.
Culturing the same starting community for 72 h under 100% oxygen compared to 21% oxy-
gen reduces the number of unique species from 15.67 to 9.99 and reduces other measures of
alpha diversity and community evenness. These estimates point to an overall community
depletion effect from exposure to hyperoxia, where the diversity of microbes decrease as oxy-
gen exposure increases.

To test the hypothesis that hyperoxia affected overall microbial community structure,

FIG 1 Overview of study design. Each patient sputum sample generated 10 samples (9 cultured and 1 uncultured) for metagenomic
sequencing. Sputum was cultured in artificial sputum medium under 21%, 50%, and 100% oxygen atmospheres, with aliquots taken
at 24, 48, and 72 h. One aliquot was processed uncultured as the “source” sputum.
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we performed beta diversity ordination with permutational analysis of variance modeling
(Fig. S4). Both oxygen and time significantly impacted community composition. As seen in
other airway microbiome studies from pwCF (31), there are very strong subject-specific
effects, i.e., the airway microbiome of each pwCF is unique. Despite these strong subject-
specific effects, oxygen remains a significant predictor of microbial community structure
for both the Bray-Curtis dissimilarity (R2 = 0.01, P = 0.003) and the Jaccard index (R2 = 0.01,
P = 0.007). Bray-Curtis, Jaccard, and nonmetric multidimensional scaling (NMDS) distances
all revealed similar patterns of separation between samples.

Hyperoxia additionally influenced both the alpha and beta diversity of predicted

FIG 2 Hyperoxia reduces microbial load and community diversity. (A) Distributions of microbial load and alpha diversity metrics stratified by culture
condition. (B) Estimated effect size and 95% confidence intervals for the effect of oxygen and time on microbial load and alpha diversity from linear mixed-
effects regressions. (C) Balloon plot with predicted values for microbial load and alpha diversity for each oxygen and time condition.
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functional, antimicrobial resistance, and mobile genetic element profiles (Fig. S5). Similar to
the patterns noted in the taxonomic profiles, oxygen decreases and time increases the
observed alpha diversity of functional profiles. Using mixed-effects models, the same air-
way microbial community cultured for 72 h under 100% oxygen compared to 21% oxygen
reduced the number of observed pathways from 307.7 to 268.5, that of mobile genetic ele-
ments from 16.2 to 12.5, and that of antimicrobial resistance genes from 51.9 to 44.3. The
effect size of oxygen on microbial community structure was largest in predicted functional
profiles (Bray-Curtis R2 = 0.02, P = 0.002), followed by taxonomy (Bray-Curtis R2 = 0.01,
P = 0.003) and then predicted antimicrobial resistance genes (Bray-Curtis R2 = 0.005,
P = 0.015).

Figure 3 depicts the microbial community profiles of cultured and uncultured sputum
stratified by patient, showing both the relative and absolute abundances of microbial taxa.
There were large differences in community composition between participants, indicating
strong subject-specific effects. Most uncultured raw sputum had high relative and absolute
abundances of Staphylococcus aureus and/or Pseudomonas aeruginosa.

Differential effect of hyperoxia on microbial taxonomy and function. Differential
abundance testing was performed to evaluate the effect of oxygen on individual mi-
crobial species and predicted functional pathways. The differential effects of hyperoxia
for all microbial taxa are available in Table S1, and those for all functional pathways are
in Table S2. The pathways tested were subsequently manually curated to a subset of
potential relevance to hyperoxia, including pathways related to fermentation, the elec-
tron transport chain, respiration, and metabolism. The differential effects data for this
subset are available in Table S3. A complete list of inclusion and exclusion criteria for
pathway curation are available in Table S4.

As noted earlier, oxygen overall reduced the absolute abundance of detected microbial
species. The degree of this negative impact, however, varies widely by species (Fig. 4). Of
the 10 most affected organisms, eight are obligate or facultative anaerobes, including
Rothia mucilaginosa, Actinomyces oris, and multiple Streptococcus species. The two fungi
among this set, Candida albicans and Aspergillus fumigatus, are both eradicated under 100%
oxygen. Conversely, the most oxygen-tolerant species are aerobes or facultative anaerobes
commonly classified as canonical pathogens in persons with cystic fibrosis, including
Pseudomonas aeruginosa, Staphylococcus aureus, and Stenotrophomonas maltophilia.

To determine whether different microbial clades occupied similar functional niches, we
examined associations between microbes and functional pathways using normalized
Spearman’s correlation and hierarchically clustered these taxonomy-function correlations in
Fig. 5. Microbial taxa and pathways significantly altered by hyperoxia are annotated with
blue boxes. Hierarchical clustering suggests the existence of five functional niches, each
occupied by microbes performing similar functions in the community. Pseudomonas aerugi-
nosa and Serratia marcescens form the backbone of the first cluster. Klebsiella species form
their own tight cluster. Staphylococcus and Burkholderia species form a third cluster. A fourth
group consists mostly of various facultative anaerobes, including Rothia and various Strep-
tococcus species. The final group includes Stenotrophomonas maltophilia as well as the
eukaryotes Candida and Aspergillus. These last two groups of species are most strongly
impacted by hyperoxic conditions. Eukaryote-specific pathways were reduced by hyperoxia,
which is associated with the large reduction in fungi and other eukaryotes under hyperoxic
conditions. A wide variety of cellular functions are also impacted by the introduction of
hyperoxia, including glycolysis, synthesis of electron transport carriers, nucleotide degrada-
tion, and fermentation, reflecting the alteration of the previously described groups.

Effect of hyperoxia on microbial cooccurrence networks. Although it is often
assumed that microbial communities with higher diversity are also more stable, this is not
always the case, as ecological models indicate that competitive relationships may stabilize
microbial networks (32). Thus, we evaluated the effect of hyperoxia on microbial cooccur-
rence networks (Fig. 6) and compared network statistics for communities cultured under
21% and 100% oxygen. Exposure to a hyperoxic environment leads to global changes in
network topology (Table S5). Comparing the overall similarities of the two networks yields
an adjusted Rand index of 0.462 (P, 0.001), indicating only 46.2% agreement in microbial
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pair placement between the two sets. There is 92% dissimilarity between global degree
centrality (P = 0.004) and a shift in network density from 0.308 to 0.150 (P = 0.068) under
100% oxygen conditions. Hyperoxia leads to fragmentation of the microbial network.
While the normoxic microbial association network is unified into a single component, the
hyperoxic network is broken into 16 components (P = 0.001), 12 of which are singlets iso-
lated by the strong depletion of that species’ presence under hyperoxia. These three met-
rics point to a significant overall sparsification of microbial associations under hyperoxic
conditions. Within the remaining sparser network under hyperoxia, the cluster coefficient
increases from 0.688 to 0.841 (P = 0.002), indicating tighter cluster formation among

FIG 3 Per-participant sputum community taxonomic profiles. Leftmost “source” bar corresponds to uncultured sputum samples; the remainder represent
the nine culture conditions. Colors correspond to the 12 most abundant genera, with the remainder grouped in gray as “other.” (A) Relative abundance
community profiles, grouped by study participant. (B) Absolute abundance community profiles, grouped by study participant. Calculated using spike-in
bacteria. The y axis differs between study participants due to differences in microbial load.
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the remaining relationships. Hyperoxic conditions may have reduced competition, approxi-
mated by the percentage of negative edges (negative correlations) between microbial spe-
cies. The overall negative edge percentage decreased from 12.1% to 2.3% (21% versus
100% oxygen, P = 0.004), indicating a depletion of significant mediating (competitive) rela-
tionships. Global dissimilarity in eigenvector centrality is notably the weakest change, with
only 38.1% dissimilarity (P = 0.998), suggesting that despite these changes, the most influ-
ential microbes in the network largely remain the same. A cluster of mostly facultative
anaerobes such as Streptococcus, Abiotrophia, and Actinomyces (Fig. 6, colored in orange) is
most perturbed by the increase in oxygen concentration.

DISCUSSION

In this study, where we cultured sputum from pwCF in artificial sputum medium
under normoxic and hyperoxic conditions, we demonstrate that supplemental oxygen

FIG 4 Per-species differential effects of hyperoxia. Left, phylogenetic tree of the 30 most prevalent microbial species. Names in bold represent species
identified as significantly impacted by hyperoxia. Middle, taxon-normalized conditional abundance values for each species. The highest conditional mean
for each taxon is set to 100%. Right, significance level of differential effect of oxygen. Solid blue stars indicate q values of ,0.1 after Bonferroni-Hochberg
multiple-hypothesis correction; white stars indicate raw P values of ,0.05 but q values of .0.1.
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significantly alters airway microbial communities, with reduced absolute microbial load
and reduced alpha diversity of microbial species, predicted microbial community func-
tion, and predicted antimicrobial resistance genes and mobile genetic elements.
However, the effect of oxygen has a differential element, decreasing the absolute abun-
dance of some facultative anaerobes such as Rothia mucilaginosa, Streptococcus species,
and Actinomyces oris while having no significant effect on the absolute abundance of
typical CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. The
influence of supplemental oxygen is greater at the functional level than at the

FIG 5 Associations between predicted functional pathways and CF microbes. The y axis contains the 30 most prevalent microbial taxa, and the x axis
contains a curated subset of predicted functional pathways, including fermentation, the electron transport chain, respiration, and metabolism pathways.
Significance annotations indicate microbes/pathways that are significantly impacted by hyperoxia after Bonferroni-Hochberg multiple-hypothesis correction
with a threshold q value of ,0.1; blue boxes indicate q values of ,0.1, gray boxes indicate q values of $0.1 The main heat map plots the Spearman rank
correlation of each microbe against each of the selected pathways. Dendrograms relate microbes by functional pattern and functions by microbial pattern.
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taxonomic level. These findings support our hypothesis that the use of supplemental ox-
ygen as a therapy may have unintended consequences on the airway microbiomes of
pwCF. The decrease in alpha diversity due to supplemental oxygen may be analogous
to the effect of antimicrobial administration and, importantly, raises the possibility that
oxygen may enable the growth of pathogens. This possibility should be verified in future
clinical studies.

These results parallel those of other studies examining questions of potential impacts
of hyperoxia on airway microbiota. For example, in a study utilizing amplicon sequencing
of the 16S rRNA gene on lung homogenate in a mouse model of acute lung injury, hyper-
oxia altered the lung microbiome in both newborn and adult mice (33). In this study, there
was a decrease in the relative abundance of anaerobes such as Clostridia and Bacteroidia
and a corresponding increase in the relative abundance of oxygen-tolerant microbes such
as Staphylococcus. Changes in lung microbial communities due to oxygen preceded the
development of acute lung injury, and germfree mice were protected from oxygen-
induced acute lung injury, indicating that the deleterious effect of hyperoxia on lung
injury is at least partially mediated by the lung microbial community (33). Another study
examined the effect of oxygen gradients on microbial communities using the WinCF
model, where sputum from pwCF was cultured in capillary tubes under 21% oxygen to
mimic plugged airways (34). Steep oxygen gradients ranging from normal to low oxygen
levels formed naturally based on the distance to the air-liquid interface. This oxygen gradi-
ent split the airway community into separate communities of oxygen-tolerant pathogens
and anaerobes (34). Although this study focused on normoxic to hypoxic conditions while
ours focused on hyperoxic conditions, there was strong parity between the affected taxa in
this study and our findings, including high growth performance by Pseudomonas under
normal or elevated oxygen conditions and the reduction of Actinomyces, Prevotella, and
Streptococcus.

Anaerobic bacteria are an important component of the airway microbiome in pwCF
(35) and may be associated with improved outcomes (36). The climax-attack model (37) for

FIG 6 Hyperoxia alters microbial network topology. Comparison of microbial association networks from sputum cultured under 21% and 100% oxygen.
Network associations were calculated based on Spearman’s correlation from absolute abundance data and sparsified via adaptive Bonferroni-Hochberg
corrected t tests with a q value threshold of 0.1. Edge weights were based on Spearman’s correlation, with synergistic (positive) relationships indicated by
green lines and mediating (negative) relationships indicated by magenta lines. Each node corresponds to a bacterial or fungal species, with node color
determined by association cluster and node size determined by average absolute abundance scaled using a log10 transformation.
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airway microbial communities of pwCF hypothesizes the existence of two major functional
communities: the attack community, which induces strong innate immune responses typi-
cally seen in exacerbations of cystic fibrosis, and a climax community associated with
slower-growing communities not associated with exacerbations. Anaerobes such as Rothia
have been implicated as part of the stable climax microbial community (37). In one study,
pulmonary exacerbations and an attack community correlate to a diminished relative
abundance of Rothia, with resolution of the exacerbation associated with the reemergence
of Rothia and a return to a climax community (38). A culture-based study found that higher
colony counts of anaerobic bacteria on sputum cultures were associated with a better lung
clearance index and lower systemic inflammatory markers (39). The presence of certain an-
aerobic bacteria such as Veillonella in the airway microbiome of pwCF has been associated
with better lung function (40). During pulmonary exacerbations of cystic fibrosis, the abun-
dance of anaerobes such as Streptococcus sanguinis, Prevotella melaninogenica, and Porp-
hyromonas catoniae decrease, suggesting that decreasing abundance of anaerobes is
associated with exacerbations (41), although in this study, a higher abundance of Veill-
onella parvula, another anaerobe, was observed during pulmonary exacerbations. Ana-
erobes, however, produce short chain fatty acids that have been associated with increased
inflammatory responses in cell culture studies of airway epithelia (42, 43), may produce fer-
mentation products that support the growth of Pseudomonas aeruginosa (44), and may fur-
ther contribute to antimicrobial resistance in recognized CF pathogens, including
Pseudomonas (45). Thus, there is overall some debate as to whether an increased represen-
tation of anaerobes in the airway microbiome of pwCF is overall beneficial for health.
Regardless, our study shows that oxygen supplementation in pwCF may decrease the
absolute abundance of anaerobes and facultative anaerobes that are important constitu-
ents of the airway microbiome in pwCF and may restrain the growth of canonical lung
pathogens. In the context of the climax-attack model, stable microbial communities have
been associated with mild disease, while shifting unstable communities are associated
with more severe disease outcomes (46).

The role of the pulmonary microbiome in health may run parallel to that of the gut
microbiome, where alterations to microbial composition and diversity may lead to sub-
sequent consequences in terms of clinical health. Decreased gut microbial biodiversity
following antibiotic use has been linked to an increased susceptibility to opportunistic
infection (47). In CF, thickened mucus leads to areas of relative hypoxia throughout the
lungs and subsequent enrichment of anaerobes (48, 49). Supplemental oxygen can
potentially alter oxygen gradients within the lungs, which may lead to the depletion of
the anaerobes observed with reduced absolute microbial growth and biodiversity
under conditions of hyperoxia. Interestingly, we found that the pathogen S. aureus
appeared to be the most oxygen-tolerant microbe in our study. It is unclear whether
the relative dominance of S. aureus with hyperoxia in the lungs may promote acceler-
ated growth to fill the ecological niche of other depleted species, as this may bestow
an associated risk of pulmonary infection. While S. aureus is a common colonizer in
early CF, its presence as a colonizer later in CF disease has not been associated with
alterations in lung function and thus the long-term clinical implications need further
study (50).

Excessive oxygen has been associated with worsened clinical outcomes in mortality
and infection risk in critical illness. Our work provides evidence of potential unintended
consequences of supplemental oxygen use with alterations in the airway microbiome
of pwCF. At present, clinical efforts limiting oxygen use have focused on conservative
oxygen targets when administering supplemental oxygen in order to minimize exces-
sive use. Oxygen supplementation may disrupt the airway microbiome by promoting
growth of canonical CF pathogens such as Pseudomonas and S. aureus while depleting
anaerobes and fungi. Thus, it may be prudent for clinicians to monitor sputum micro-
bial communities following initiation of supplemental oxygen for emergence of harm-
ful pathogens. The impact of hyperoxia on microbial growth in our study raises the
possibility that supplemental oxygen may impact other clinically relevant outcomes,
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such as antimicrobial susceptibility (51). While we were underpowered to explore such
effect modification in this study, exploration of the effects of supplemental oxygen
over a longer time horizon, or trending changes in airway microbiology from pwCF fol-
lowing oxygen initiation, would provide further insight on additional potential risks
and benefits of oxygen use. Oxygen is often initiated at the time of clinical deteriora-
tion, when other therapies such as antimicrobials may be initiated, making it difficult
to disentangle the confounding effects of these therapies from oxygen alone in an
observational study.

This study had several strengths. We evaluated the effect of supplemental oxygen
using an ecological approach, where we cultured airway microbial communities using
sputum from pwCF rather than single isolates. It is well known that canonical CF patho-
gens such as Pseudomonas aeruginosa exhibit a different phenotype when studied in
isolation than when studied in the presence of a broader microbial community (52,
53). We used artificial sputum formulated to mimic the composition of sputum for
pwCF (27) rather than using rich medium more typically used in clinical microbiology
laboratories. We have previously shown that sputum cultured under the 21% oxygen
condition in our model recapitulates microbial communities of uncultured sputum
when assessed by metagenomic sequencing (27). We evaluated changes in absolute
rather than relative abundance in our taxonomic profiles with the use of spike-in con-
trols prior to nucleic acid extraction, although we did not verify the derived absolute
abundance estimates. Absolute rather than relative abundance may be an important
determinant of clinical outcome (54) and does not have inherent statistical limitations
associated with compositional data sets (55). While most existing studies on the airway
microbiome in pwCF have leveraged amplicon sequencing, we used deep metage-
nomic sequencing, thus allowing for evaluation of all microbial domains, finer taxo-
nomic resolution to the species level, and addressing not just microbial taxonomy but
also potential function of the airway microbial community.

There are limitations to this study approach that must be considered in evaluating
these findings. First, we employed an ex vivo model for culture that we have previously
shown can recapitulate uncultured airway microbial communities from pwCF (27).
However, while useful, all models have inherent limitations, and the exact effects in
vivo may differ somewhat from those observed in our ex vivo approach. Our model
does not account for host mechanisms to reduce microbial load, which include cough,
other mucus clearance mechanisms, and the host immune system, as well as host-
derived microbial nutrients. While we do not know the role that these host factors may
play in the response to hyperoxia, it is of relevance that in human studies of ventilator-
associated pneumonia where patients require life support for respiratory failure and
therefore high levels of supplemental oxygen, the two most common pathogens
detected are Pseudomonas aeruginosa and Staphylococcus aureus, two of the most oxy-
gen-tolerant species identified in our study (56). Thus, despite inherent limitations of
all model systems (57), the results of our study may generalize to the clinical setting,
although this will need to be further verified in future studies.

In this model system, we did not include a purely anaerobic condition, which is a limita-
tion, although we did still detect anaerobes in our 21% oxygen culture condition. Steep ox-
ygen gradients naturally form in microbial communities in many environments, including
both in vivo in humans and in experimental laboratory conditions. While in health the air-
way lumen is an aerobic environment, bacterial respiration at the air-liquid interface in
human lung environments rapidly consumes oxygen, thus allowing anaerobic bacteria to
grow below the air-liquid interface. Oxygen concentration gradients proportional to the
distance from the surface of airway mucus have been documented in the airways of per-
sons with established CF (58, 59). Measurements taken in CF sputum samples show that
sputum samples have steep oxygen gradients, with little oxygen measured just 1 mm
below the surface of the sputum sample (58). In experimental models, such as the WinCF
model that mimics one form of mucus aggregation (complete plugging of small airways)
seen in pwCF, anaerobic conditions naturally develop below the air-liquid interface even
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though cultures are incubated under normoxic (21% oxygen) conditions (34, 60). Even in
our aerobic culture model at 21% oxygen, a variety of anaerobes and facultative anaerobes
were still identified, including Actinomyces, Veillonella, Gemella, and others (see Fig. S3 in
the supplemental material). With the advent of CFTR channel modulators which potentiate
CFTR function and thus normalize mucus viscosity and mucus transport (61), the preva-
lence of complete plugging of the small airways and alveoli is likely to decrease, making
anaerobic conditions in the airways of pwCF less frequent, although it will likely always
remain relevant due to the presence of an air-liquid interface in the lungs.

Our airway samples were obtained through spontaneous expectoration rather than
bronchoscopy. While expectorated sputum raises the possibility of oral contamination, spu-
tum has been validated as an accurate measure of the airway microbiome in pwCF with
strong similarity to lower respiratory tract samples (62). Finally, our sample size at the
patient level was small due to the large number of samples generated for deep sequenc-
ing in order to test different time and oxygen conditions. While we clearly detected differ-
ences in omnibus measures of the microbiome such as alpha and beta diversity, a larger
sample size may have increased our power to detect changes in abundances of specific
microbes and allowed for exploration of effect modification between antibiotic use and
hyperoxia or between channel modulator use and hyperoxia.

Our study demonstrates that in this validated model system, hyperoxia alters the
airway microbiome in pwCF and therefore may have unintended effects in reducing
airway microbial diversity by depleting less-oxygen-tolerant species, including anae-
robes. This may enable the growth of more-tolerant pathogens, with potential clinical
implications surrounding the initiation of supplemental oxygen and subsequent risk of
CF exacerbations or disease progression. Further studies into the clinical effects of oxy-
gen on the airway microbiome in pwCF, the mechanisms and timing of subsequent
alterations, and potential interactions with other perturbations such as antibiotic use
are warranted.

MATERIALS ANDMETHODS
Study inclusion. Adult pwCF aged 18 years and older with a prior diagnosis of cystic fibrosis based

on diagnostic criteria receiving routine care at the Massachusetts General Hospital Adult Cystic Fibrosis
Center were recruited for a prospective cohort study. The study was given ethical approval by the
Institutional Review Board of Mass General Brigham (protocol no. 2018P002934). Written informed con-
sent was obtained from all participants. During routine outpatient clinical visits, expectorated sputum
samples were obtained from adult pwCF and inoculated into culture on the same day. Clinical data were
abstracted from the electronic medical record.

Culture of airway microbial communities under different oxygen conditions. Sputum samples
were cultured under different oxygen conditions in artificial sputum medium on the day of sample collection
(see Fig. 1 for a study overview). For each sputum sample, three autoclave-sterilized 500-mL serum bottles
were prepared, one for each oxygen condition (21%, 50%, and 100%). Each serum bottle is inoculated with
24 mL of artificial sputum medium and 1 mL of patient sputum, sealed, and prepared for oxygen sparging
(the process of replacing the internal atmosphere of the bottles with the desired oxygen concentration). Gas
flow was set up to allow each bottle to undergo 10 air exchanges, and then the bottles were pressurized to
11 atmosphere. For each sputum sample inoculated into three serum bottles, one bottle was sparged to
21% oxygen, one to 50%, and one to 100%, representative of normal oxygen, moderate supplemental oxy-
gen, and high supplemental oxygen conditions, respectively. Cultures were incubated at 37°C with orbital
shaking at 150 rpm. At 24, 48, and 72 h after sputum inoculation, aliquots of cultured sputum were taken
from each serum bottle and stored at 280°C until nucleic acid extraction. After aliquot removal, each serum
bottle was resparged to the target oxygen concentration and reincubated until a total of 72 h of incubation
time had elapsed. Figure S3 provides details on the observed microbes that were and were not able to be
cultured, as well as the oxygen tolerance capability and Gram stain result for each species. Full details on the
validation of this culture approach, including justification for the composition of artificial sputum medium
and oxygen sparging protocol, have been previously described (27).

Nucleic acid extraction and sequencing. All samples were extracted and sequenced in the same
batch prior to nucleic acid extraction, and 10 million cells of Imtechella halotolerans, a novel bacterium
isolated from estuarine water and not found in human biological samples (55), were spiked into each
sample (Zymo Research) for subsequent calculation of absolute microbial abundance. While a variety of
methods exist for absolute abundance estimation (56), use of spike-in bacteria at the time of nucleic
acid extraction is an approach that has been previously validated against other quantification methods
of absolute abundance quantification (29).

The average sputum sample from pwCF is estimated to contain roughly 5 billion CFU per 0.5 mL
sputum (our extraction volume), but the observed range varies greatly (58). Values as low as 100 million
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CFU per milliliter were common, and thus, 10 million cells of Imtechella halotolerans (10 mL) was used to
give an optimal working range between 100 million and 10 billion cells in a sample.

Samples, reagent-only negative controls, and mock community-positive controls (Zymo Research)
were extracted using a protocol optimized for respiratory samples with a magnetic bead-based protocol
using the Maxwell HT 96 genomic DNA (gDNA) blood isolation system (Promega) on a KingFisher Flex
instrument as previously described (63). Briefly, 500 mL of each sputum sample and 500 mL of cetyl tri-
methyl ammonium bromide (CTAB) were added to individual lysing matrix E tubes (MP Biomedicals),
and the tubes were incubated at 95°C for 5 min, followed by bead beating for three 30-s cycles at 7.0 m/
s, and then incubated with proteinase K at 70°C for 10 min. Then, 300-mL lysate samples were collected,
followed by additional bead beating for three 30-s cycles at 7.0 m/s with each cycle, and additional 300-
mL lysate samples were collected. Lysate samples were transferred to 96-well plates for binding, wash-
ing, and elution steps on the Kingfisher Flex sample purification system. Extracted nucleic acids were
quantified using the PicoGreen double-stranded DNA (dsDNA) assay kit (Invitrogen), library preparation
was performed using the Nextera XT DNA library preparation Kit (Illumina), and the library was
sequenced on the NovaSeq 6000 platform to generate 2 � 150 base pair reads.

Bioinformatics processing. Raw data files in binary base call (BCL) format were converted into
FastQ files and demultiplexed based on the dual-index barcodes using the Illumina “bcl2fastq” software.
Whole-metagenome shotgun sequencing data were subsequently processed using bioBakery3 (28) ver-
sion v3.0.0-alpha.6 (7-10-2020). Demultiplexed raw FastQ sequences were processed using KneadData
(64), including the removal of human “contaminant” sequences, low-complexity and repetitive sequen-
ces, and adapter and low-quality bases with Trimmomatic (65), and contaminant checks were done with
bowtie2 (66). For removal of spike-in bacterial reads, a MultiFasta file was constructed using downloaded
reference genomes for the spike-in bacteria and used as the reference.

Taxonomic profiling of the sequenced samples at the species level was performed using MetaPhlAn3.
Processed FastQ reads were first mapped against the MetaPhlAn3 (28) marker gene database (mpa_v30_
CHOCOPhlAn_201901) to generate taxonomic profiles per sample. The output for all samples is a single taxon
by sample table with estimated read counts and relative abundances. Functional profiling of the microbial
community was performed using HUMAnN3 (28) and binned to the BioCyc (67) pathway database. Default
pathway abundance and coverage tables, as well as gene family abundance output files per sample, were gen-
erated. All tables are split into stratified tables (by taxon) and unstratified (metagenome) tables.

In the case of HUMAnN3-predicted pathways, it was necessary to curate the large number of pre-
dicted functions to a narrow subset for focused analysis and visualization. Pathways were assigned to
categories based on their BioCyc superclasses. With the added insight of this categorization, a subset of
nonredundant pathways with activity related to oxygen were chosen. Particular focus was placed on res-
piration and fermentation reactions, as well as central metabolism, electron transport, stress signaling
and antigen production, antibiotic resistance and production, and biosynthesis/breakdown reactions
affected by oxygen (Table S4).

Antimicrobial resistance gene marker gene sequences were obtained from the Comprehensive Antibiotic
Resistance Database (CARD) (68) version 3.0.7, and mobile genetic element sequences were obtained using a
curated database (69) derived from the NCBI nucleotide database (70) and the PlasmidFinder database (71).
Antimicrobial resistance profiles and mobile genetic element profiles were then generated for each sample
with ShortBRED (72), using these databases as the references.

Statistical analyses. The complete R (https://www.R-project.org/) script used to analyze these data and
generate the associated visualizations is attached as a supplemental document. Microbial features (microbial
taxonomy, predicted function, AMR, and MGE profiles) and sample metadata were aggregated into phyloseq
(73) for analysis. To calculate absolute abundance from taxonomic profiles, the signal attributed to the 10 mil-
lion cells of Imtechella halotolerans spike-in bacteria was divided by its relative abundance, and then the 10
million cells was subtracted to yield the total estimated number of non-spike-in microbial cells for each
sample:

Cellssample ¼ Cellsspike
RelAbundspike

2 Cellsspike

Cellssample denotes the absolute abundance estimate for the cell count in the sample. Cellsspike is the
number of spike-in cells added. RelAbundspike is the resulting relative abundance of the spike-in bacteria
with a range between 0 and 1.

From here, the sample absolute abundance estimate was multiplied by the relative abundance esti-
mate of each taxon to yield per-taxon absolute abundance estimates:

Cellstaxon ¼ Cellssample � RelAbundtaxon

Cellstaxon is the absolute abundance estimate for the number of cells of a given taxon. Cellssample is
the absolute abundance estimate for the whole sample. RelAbundtaxon is the relative abundance of a
given taxon with a range between 0 and 1.

To filter out potentially spurious features due to sequencing or classification errors, we performed
prevalence filtering, excluding taxa and predicted functional pathways identified in less than 10% of
samples (74). We did not perform abundance filtering, that is, rare taxa or pathways were retained if
they were present in at least 10% of sequenced samples. Alpha and beta diversity metrics were calcu-
lated using phyloseq (73) and vegan (75).

To test the hypothesis that supplemental oxygen alters alpha diversity, we used linear mixed-effects
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models as implemented in lmerTest (76). To test the hypothesis that supplemental oxygen alters micro-
bial community structure, we performed permutational analysis of variance as implemented in vegan
(75). Vegan was also used to calculate rarefied richness estimates. Differential abundance testing of
microbes and pathways was performed with boosted additive general linear models as implemented in
MaAsLin2 (77) accounting for repeated measures and multiple hypothesis. Results for differential abun-
dance, as well as microbial metadata obtained from the BacDive (78) and BugBase (79) databases, were
plotted using the Interactive Tree of Life (iTOL) (80).

Associations between microbes and functional pathways were determined using normalized Spearman’s
correlation and hierarchically clustered (81) as implemented by heatmaply (82). The microbial association net-
work was calculated with NetCoMi (83) Spearman’s correlation of absolute abundance estimates, carried out
to 1,000 permutations. The visualized relationships were determined via Bonferroni-Hochberg corrected mul-
tiple-hypothesis testing with a q value (false discovery rate) threshold of 0.1.

For additional details on the computational approaches applied to these data, please refer to the R
analysis code document in the supplemental material.

Data availability. High-quality paired-end sequence and associated sample metadata were
uploaded to the NCBI Sequence Read Archive repository under accession number PRJNA861321.
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