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Abstract

Enhanced sampling methodologies modifying underlying Hamiltonians can be

used for the systems with a rugged potential energy surface that makes it hard

to observe convergence using conventional unbiased molecular dynamics

(MD) simulations. We present CHARMM-GUI Enhanced Sampler, a web-

based tool to prepare various enhanced sampling simulations inputs with user-

selected collective variables (CVs). Enhanced Sampler provides inputs for the

following nine methods: accelerated MD, Gaussian accelerated MD, conforma-

tional flooding, metadynamics, adaptive biasing force, steered MD, tempera-

ture replica exchange MD, replica exchange solute tempering 2, and replica

exchange umbrella sampling for the method-implemented MD packages

including AMBER, CHARMM, GENESIS, GROMACS, NAMD, and OpenMM.

Users only need to select a group of atoms via intuitive web-implementation in

order to define commonly used nine CVs of interest: center of mass based dis-

tance, angle, dihedral, root-mean-square-distance, radius of gyration, distance

projected on axis, two types of angles projected on axis, and coordination num-

bers. The enhanced sampling methods are tested with several biological sys-

tems to illustrate their efficiency over conventional MD. Enhanced Sampler

with carefully optimized system-dependent parameters will help users to get

meaningful results from their enhanced sampling simulations.
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1 | INTRODUCTION

All-atom molecular dynamics (MD) simulation becomes
an essential tool to investigate complex molecular

systems and provide a molecular-level understanding of a
target system with an accurate force field (FF).1,2 With
increasing system complexity, however, one might not be
able to observe slow processes of interest within a typical
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simulation time.3 Furthermore, biomolecular systems are
known to have rugged free energy landscapes involving
many local minima separated by high barriers. When the
system falls into those metastable states, it could stay
trapped for a long time with conventional MD simula-
tions. Therefore, various enhanced sampling methods
have been proposed and applied for MD simulations to
resolve such issues by modifying the underlying Hamilto-
nian.4 The modifications for a better sampling efficiency
involve temperature variation, non-equilibrium force
addition to the subset of the system, or reshaping under-
lying potential energy functions.5–7 Correction toward
the equilibrium Boltzmann distribution is feasible using
a replica exchange method or a post hoc reweighting
scheme.8,9 When altering Hamiltonian with additional
biasing terms, defining and utilizing the reduced repre-
sentations of molecular structure called collective vari-
ables (CVs) are often required to apply effective
modifications along the chosen reaction coordinate.10

Since its establishment in 2006, CHARMM-GUI as a
web-based infrastructure has helped numerous academic
users to prepare complex molecular simulation setup. In
this study, we introduce Enhanced Sampler (https://
www.charmm-gui.org/input/es), a new module in
CHARMM-GUI. Enhanced Sampler provides the input
generation for nine different enhanced sampling methods
with reasonable initial parameters accompanied with
nine commonly used CVs.19–32 These enhanced sampling
methods are broadly categorized into (a) biasing potential
energy function, (b) adaptively biasing potential energy
function, (c) pulling, and (c) replica exchange methods.

Among the methods that directly modify a given
potential energy function to lower the energy barrier and
facilitate the transition between states, Enhanced Sam-
pler supports accelerated MD (aMD), Gaussian acceler-
ated MD (GaMD), and conformational flooding (CF).19–21

These methods aim to increase the probability of observ-
ing rare events during the simulation. A set of parameters
to control the amount of boost for aMD and CF solely
depends on the user, and the methods are suitable for
rare event observation within a short amount of simula-
tion time. GaMD can be used to obtain an equilibrium
distribution after reweighting with optimized parameters
that are determined from two sequential pre-runs of con-
ventional MD and GaMD simulations.

Metadynamics (MTD) and adaptive biasing force
(ABF) methods expedite the simulation with continuous
modifications of potential or free energy surfaces.22–24

Both methods retain memories of visited states along the
chosen CV and promote the exploration toward the
under-sampled region by either depositing Gaussian hills
to the visited states or flattening the free energy surface
using the potential integrated from the average mean

force. One can apply external forces to the subset of sys-
tem using steered MD (SMD) with a constant force or
velocity during the simulation.25,33 For any system with
two bodies of high binding affinities, SMD accelerates an
unbinding process.

Enhanced Sampler also supports replica exchange
MD (REMD) simulation setup for both temperature
REMD (T-REMD) and Hamiltonian REMD (H-
REMD).26–28 Many copies of the system with different
temperature or Hamiltonian are run simultaneously and
exchanged at a fixed interval with a Metropolis criterion
to expedite the sampling. As one of the earliest REMD
applications, T-REMD is still beloved by researchers
interested in temperature-dependent properties of their
system.5 Two types of H-REMD, replica exchange solute
tempering 2 (REST2) and replica exchange umbrella
sampling (REUS), are available.29,30 Instead of heating up
the whole system, REST2 modifies only the interactions
involving a subset of the system called solute for effective
tempering. In REUS, biasing potentials along a reaction
coordinate ensure thorough sampling and users can
retrieve the unbiased potential of mean force (PMF)
using weighted histogram analysis method or multistate
Bennett acceptance ratio.34–38

While the enhanced sampling methods have been
developed and implemented in various MD packages, the
simulation setup with a certain enhanced sampling
method is often non-trivial, being an entry barrier even

FIGURE 1 Schematic overview of Enhanced Sampler in

CHARMM-GUI. FF, force field.
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for simulation experts. Especially, many found it difficult
to set the initial parameters of the methods that are
system-dependent. The subsequent sections describe the
implementation of Enhanced Sampler including CV
selections, initial parameters for each method together
with its brief theoretical background, and the exemplary
practical usages of some enhanced sampling methods.
We expect that careful setup of enhanced sampling simu-
lations including initial parameters from Enhanced Sam-
pler will be useful to study biological problems more
effectively and accurately.

2 | RESULTS AND DISCUSSION

2.1 | Workflow of Enhanced Sampler

The workflow of Enhanced Sampler is shown in Figure 1.
Enhanced Sampler utilizes Solution Builder and Mem-
brane Builder to prepare user's system in solution or a
lipid bilayer.11,12 First, one can download a PDB structure
from RCSB or upload their own while selecting the sys-
tem type of solution, bilayer, or bilayer only. Through
PDB Reader and Manipulator, users can model the seg-
ments (protein, ligand, RNA, etc) in the system.39 Addi-
tionally, users can handle missing residues, mutate
residues, protonate, glycosylate, and do many more. If a
bilayer system type is selected, users will need to align
the protein orientation with respect to the membrane
(whose normal is the Z-axis and center is at Z = 0),
which is then followed by composing own bilayer using
more than 600 different lipids. The common step would
be solvating the system with the padding water thickness
or box-size and ions. Then, one may select the FF among
CHARMM, AMBER, or OPLS-AA utilizing FF-Con-
verter.13,14 Hydrogen mass repartitioning (HMR) can be
applied at this step, permitting a 4-fs timestep.40,41 Based
on the selected FF, available enhanced sampling
methods-package combinations will be displayed. CV
setup will be required for CV-required methods (MTD,
ABF, and REUS). Users may choose multiple method-
package combinations if willing to try different methods.

2.2 | Supported collective variables

A CV is a subset of the system of interest or any measur-
able parameter based on the atomic coordinates. Certain
enhanced sampling methods require a CV as a reaction
coordinate, the target of one-time or subsequent refine-
ment. Table 1 summarizes the standardized CVs sup-
ported by Enhanced Sampler, utilizing PLUMED2 and
COLVARS module.10,32 The variables used in CV

descriptions are as follows: a coordinate (ri), a mass (mi),
a vector from ri to rj (rij

!Þ, an axis (e), a scalar part of qua-
ternion (q0), and a vector part of quaternion (q).

Enhanced Sampler presents an intuitive selection of
groups of atoms based on a combination of a segment
name (SEGID), a range of residue ID numbers (RESID-
from/to), and the name of atom or a certain groups of
atoms (AtomName). When a user selects the SEGID, cor-
responding residue ID ranges of the segment become
selectable. By setting up a range of residues, RESID-from
and RESID-to that are inclusive, one may select numer-
ous atoms at once. When RESIDs are set, available Atom-
Names are populated. AtomName selection has five
default groups of atoms: All, Heavy atom, Backbone,
Sidechain, and Alpha carbon. Single atom selection is
also accessible if a single residue is chosen, that is,
RESID-from is equal to RESID-to. Figure 2 shows an
illustrative example, having three subsets of atoms for an
angle CV. All CVs except for the number of contacts are
center-of-mass (COM) based, and users can add or
remove groups of atoms freely for each subset. An error-
prone job of writing many atom indices into CV file is
done automatically and promptly in Enhanced Sampler.

2.3 | Supported enhanced sampling
methods and initial parameters

The enhanced sampling method-package combinations
available in Enhanced Sampler are summarized in
Table 2 with the name of function or module used in the
package (AMBER, CHARMM, GENESIS, GROMACS,
NAMD, or OpenMM).31,32,42–53 Figure 3 shows schematic
representations of supported enhanced sampling
methods: (a) biased potential energy (aMD, GaMD, and
CF), (b) adaptively biased potential/free energy (MTD
and ABF), (c) pulling (SMD), and (d) replica exchange
based methods (T-REMD, REST2, and REUS). The spe-
cific modifications of each method and system-dependent
initial parameter setup in Enhanced Sampler are elabo-
rated in the following subsections.

2.3.1 | Biased underlying potential energy
functions

Accelerated molecular dynamics
For aMD, the modified potential is defined as

V� rð ÞaMD ¼
V rð Þ, V rð Þ≥E

V rð Þþ E�V rð Þð Þ2
αþ E�V rð Þð Þ , V rð Þ<E

8><
>: , ð1Þ
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with a threshold energy E where boosting is only effective
when the system potential is below E.19 The boosting
constant α is to determine the depth of a modified

potential energy basin. The boosting potential is carefully
designed to make the derivative of a modified potential
continuous. As a result, a new potential energy function
echoes the underlying shape of potential energy, and a
smoothened potential energy function raises an exchange
rate between various conformational states (Figure 3a).
Users can set the boosting potential to target dihedral,
total potential, or both with different parameters by
selecting a dihedral, total, or dual boosting mode.

Enhanced Sampler determines the initial parame-
ters of aMD simulations based on the previous stud-
ies.54,55 Average potential energies (dihedral and/or
total based on boost modes) are detected from a short
pre-run, and system information including number of
atoms, residues, and lipids is used to define two param-
eters E and α.

Dual
Dihed :Ed ¼Vdþ3:5N resþ10N lip;αd ¼ 0:7N resþ3N lip

Total :Et ¼Vtþ0:175N tot; αt ¼ 0:175N tot

(
,

ð2Þ

where the subscript “d” and “t” represent dihedral and
total, and V , N res, N lip, and N tot are the average potential
energy from the pre-run and the numbers of residues,
lipids, and atoms, respectively. The selection of initial
parameters in Equation (2) ensures that the amount of

TABLE 1 Collective variables supported in Enhanced Sampler

Collective
variables Description Required selections Supported packages

Distance rij
!�� �� Two sets of atoms, range (min/max) All

Angle
cos�1 rji

!� rjk�!
rji
!�� �� rjk

�!�� ��
� �

Three sets of atoms, range (min/max) All

Dihedral
tan�1 rjk

�!�� �� rij!� rjk
�!� rkl

�!� �
rij
!� rjk

�!� �
� rkl
�!�rij!
� �� �

Four sets of atoms, range (min/max) All

Root-mean-square
deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ri�rrefj j2

n

s
A set of atoms, range (min/max) All

Radius of gyration
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

mi ri�rCOMj j2Pn
i¼1

mi

vuuut
A set of atoms, range (min/max) AMBER, CHARMM, NAMD,

GROMACS, and OpenMM

Distance on axis e � rij
!�� �� Two sets of atoms, range (min/max),

axis (xyz vector)
NAMD

Rotation on axis 2tan�1 q�e
q0


 �
A set of atoms, range (min/max), axis
(xyz vector)

AMBER and NAMD

Tilt on axis

2 q0

cos tan�1q�e
q0


 �
0
@

1
A2

�1

A set of atoms, range (min/max), axis
(xyz vector)

AMBER and NAMD

Number of contacts P
i

P
j

1�
ri�rjj j
cutoff


 �6

1�
ri�rjj j
cutoff


 �12

Two sets of atoms, range (min/max),
cutoff

NAMD, GROMACS, and OpenMM

FIGURE 2 Collective variable (CV) selection web-

implementation, showing three subsets of atoms for an angle CV
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boosts are in a reasonable range, preventing simulation
failure.

Gaussian accelerated molecular dynamics
A long-lasted post hoc reweighting problem that often
results in discarded conformations with relatively high
boosting is handled in GaMD.20 The boosting potentials
are designed to be a Gaussian distribution, making a
second-order cumulant expansion be an accurate approx-
imation for the reweighting factor. For GaMD, the modi-
fied potential is similarly defined as in aMD, yet different
in terms of the boosting potential being harmonic:

V� rð ÞGaMD ¼
V rð Þ, V rð Þ≥E

V rð Þþ1
2
k E�V rð Þð Þ2, V rð Þ<E

8<
: : ð3Þ

The GaMD initial parameters E and k are automatically
selected from two sequential pre-runs, a conventional
MD followed by GaMD. Users can select the threshold
energy E between lower and upper bounds, Vmax and
Vmin þ 1

k, respectively, where Vmax and Vmin are detected
during the first pre-run. The boosting constant k kDð for
dihedral and kP for total potential) is defined as
k0= Vmax �Vminð Þ, and k0 is calculated by

TABLE 2 Methods-package combinations supported in Enhanced Sampler

Enhanced sampling methods AMBER CHARMM NAMD GROMACS OpenMM GENESIS

Accelerated molecular dynamics Iamd accelMD AMDIntegrator

Gaussian accelerated molecular
dynamics

Igamd accelMDG GAMD

Conformational flooding Flood

Metadynamics abmd
flooding

metadynamics Plumed Plumed

Adaptive biasing force abf

Steered molecular dynamics Jar rst CONS PULL SMD Pull-coord1 SMD SMD

Temperature replica exchange Rem REPD Tcl script Replex OpenMMTools REMD

Replica exchange umbrella sampling Rem REPD Tcl script Plumed Plumed REMD

Replica exchange solute tempering 2 REPD/
BLOCK

soluteScaling Plumed REST2

FIGURE 3 Schematic representations of categorized enhanced sampling methodologies in Enhanced Sampler: (a) biased potential

energy, (b) adaptively biased potential energy, (c) pulling, and (d) replica exchange with temperature (left) and umbrella sampling (right).

The red ball indicates the system of interest and the green lines indicate the characteristic behaviors of the method
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k0 ¼
min 1,

σ0
σV

�V max �Vmin

Vmax �V avg

� �
, Lower boundE¼Vmax

1� σ0
σV

� �
�V max �Vmin

V avg�Vmin
, Upper boundE¼Vmin þ 1

k

,

8>>><
>>>:

ð4Þ

where σV is the standard deviation of the boosting poten-
tial and σ0 is the upper limit and its default value is 6.

The shell script provided by Enhanced Sampler can
be used for minimization/equilibration, two GaMD pre-
runs for the parameter selection, and then GaMD pro-
duction. To maximize the boost amount and efficiency, it
is recommended to run the pre-runs until k0 reaches its
own stable maximum or 1.

Conformational flooding
The multivariate Gaussian flooding potential in CF lifts
the basin of the potential, permitting an acceleration of
slow processes.21 The boosting potential for CF is
defined as

ΔV rð ÞCF ¼ k � exp �1
2
rTΛr

� 

, ð5Þ

where k and Λ are the strength and the shape of the
flooding potential, respectively. Enhanced Sampler
strictly follows the procedure from flooding in GRO-
MACS to generate the flooding input file containing
flooding matrix and parameters from a short MD pre-
run.56 The default k is set to 12.0 kJ/mol.

2.3.2 | Adaptively biased underlying
potential energy functions

Metadynamics
A history-dependent bias, continuously accumulated
Gaussian potentials to the visited states, is added to the
system for MTD simulations (Figure 3b).22,23 The modi-
fied potential discourages repeated sampling of the same
state, forcing the system out of the kinetic traps toward
unexplored conformational spaces. The reaction coordi-
nate must be defined using CVs to deposit potentials. The
time-dependent MTD bias is defined as

ΔV�
MTD ξ tð Þð Þ¼

X
nδt< t

W exp �
Xn
i¼1

ξ tð Þ�ξ iδtð Þð Þ2
2σ2

" #
, ð6Þ

where ξ is a reaction coordinate, W is a Gaussian hill
height, and δt is a hill depositing frequency.

Enhanced Sampler let users select the hill height and
width (0.2 kcal/mol and 1 as default) and the CV range
of interest by specifying its minimum and maximum. For
the CV range, the default depends on the CV types. A hill
depositing frequency is set to every 500 timesteps, but it
can be decreased for more accuracy at the cost of the
simulation time.

Adaptive biasing force
With ABF's history-dependent bias, one can rather crush
the free energy landscape directly. Thus, the free energy
surface is flattened with the gradients accumulated in the
bins along the chosen reaction coordinate.24,57 To achieve
a zero mean force over the reaction coordinate ξ, the pro-
gressively refined biasing force is defined as

FABF ¼rx A
~¼�⟨Fξ⟩ξrxξ, ð7Þ

where A
~
is the current estimate of the free energy and

⟨Fξ⟩ξ is the mean force at ξ from averaging instantaneous
forces, Fξ. For a CV, the sampling range of interest needs
to be submitted. A parameter named FullSamples is
required in order to avoid non-equilibrium effects due to
large deviations from initial estimates. The biasing force
is multiplied by a scaling factor between 0 and 1, based
on whether each bin has passed this threshold count or
not. The default value of FullSamples is set to 200 and
can be modified in the provided colvars file.

2.3.3 | Pulling simulations

Steered molecular dynamics
A force to a biomolecule is applied in SMD (Figure 3c) to
mimic in-vivo biological events or in-vitro atomic force
experiments.58 While an instantaneous force profile from
SMD is already valuable enough, equilibrium properties
such as the PMF can be acquired based on the Jarzynski's
work that connects non-equilibrium and equilibrium.59,60

The moving potential of SMD is defined as

V r, e, tð Þ¼ k
2
rCOM tð Þ � e� vtð Þ2, ð8Þ

where k is the spring constant, v is the moving speed of
the spring potentials (also called dummy atoms), r(t) is
the current position of the selected COM, and e is the
pulling axis. For a CV, the subsets of atoms to be fixed
and pulled must be defined. Users can set the pulling axis
and the pulling velocity during the colvar selection. The
default pulling velocity is set to 0.00005Å/timestep.
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2.3.4 | Replica exchange based methods

Temperature replica exchange molecular dynamics
T-REMD adopts running multiple replicas of the same
system at different temperatures (Figure 3d).26 The free
energy barrier tends to be smoothened at high tempera-
ture, and the replica exchange based on the Metropolis
criterion allows rigorous sampling. The general accep-
tance probability between T-REMD replicas is

P i$ jð Þ¼ min 1, exp βj�βi


 �
V rið Þ�V rj

� �� �h ih i
ð9Þ

where ri represents the whole configurations of replica i,
βi equals 1=kBTi, kB is the Boltzmann constant, and Ti is
temperature at replica i .

Based on the previous work by Patriksson and
Spoel,61 Enhanced Sampler automatically provides a
priori optimal temperature ladder based on user-specific
minimum and maximum temperatures and a desired
exchange probability. This temperature ladder is carefully
estimated with the number of degrees of freedom in the
system, calculated from numbers of atoms, residues,
water molecules, constraints, and virtual sites.

Replica exchange solute tempering 2
Rather than tempering the whole system, solute temper-
ing methods selectively temper interactions involving
subsets of the system. REST2 is a Hamiltonian replica
exchange method, having all the replicas run at the same
temperature while certain parts of potential energies are
scaled to mimic the tempering.30 The REST2 ith replica
potential energy is defined as

Vi ¼ βi
β0

V ssþ
ffiffiffiffiffi
βi
β0

s
V svþV vv ð10Þ

where Vss,V sv, and V vv are the interaction energies for
solute–solute, solute–solvent, and solvent–solvent,
respectively. β0 ¼ 1=kBT0, and T0 is the target tempera-
ture. Thus, the acceptance criterion becomes

P i$ jð Þ¼ min 1, exp βj�βi


 �
V ss rið Þ�V ss rj

� �
h2
4

þ
ffiffiffiffiffi
β0

pffiffiffiffi
βi

p þ ffiffiffiffi
βj

p V sv rið Þ�V sv rj
� �� ��i35,

ð11Þ

where ri represents the whole system configurations of
replica i.

For the REST2 temperature ladder, we provide the
exponential temperature ladder based on user-specific
minimum and maximum temperatures and number of
replicas. The temperature of ith replica becomes

Ti ¼Tmin exp
i ln Tmax

Tmin


 �
N rep�1

2
4

3
5: ð12Þ

Replica exchange umbrella sampling
With REUS, a thorough sampling along the chosen reac-
tion coordinate is performed using multiple replicas with
consecutive harmonic restraints (Figure 3d). The general
acceptance probability of REUS between neighboring
replicas is

P i$ jð Þ¼ min 1, exp �β Vi rj
� ��Vi rið ÞþVj rið Þ�Vj rj

� �� �� �� �
,

ð13Þ

where ri and Vi represent the whole system configura-
tions and the biased potential (original unbiased poten-
tial + replica-specific biasing harmonic potential) of
replica i, respectively.

Based on the previous work by Park and Im,62

Enhanced Sampler automatically provides a priori opti-
mal REUS ladder of harmonic centers, assuming a flat
free energy surface along the reaction coordinate.

d¼ ξnþ1� ξn ¼ zopt

ffiffiffiffiffi
2
kβ

r
, ð14Þ

where d is the distance between neighboring centers of
replicas, k is the harmonic force constant of the umbrella,
and zopt is set to 0.8643 for the optimal window overlap
that provides an average acceptance ratio of Pa ≈ 0:39. It
is unavoidable to self-optimize the replica ladder based
on the acceptance ratios from a simulation with the ini-
tial ladder, that is, adding or removing windows and/or
adjusting k if poor or overfull Pa is observed. Users can
also run pure US without replica exchange by setting an
infinitesimal exchange frequency.

2.4 | Benchmark test-set simulations
result

Five enhanced sampling methods were tested for their
efficiency and accuracy for five different types of bench-
mark systems: (a) two peptides (Chignolin and K19),
(b) a protein complex of human angiotensin-converting

SUH ET AL. 7 of 18



enzyme 2 (ACE2) receptor and the receptor binding
domain (RBD) of the spike protein of severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2),
(c) Escherichia coli O176 lipopolysaccharide (LPS) O-anti-
gen, (d) two LPS membrane systems (E. coli and Burkhol-
deria cepacia), and (e) a protein–lipid complex of MlaDE
protein and POPG lipid.41,63–69 Table 3 summarizes the
simulation information. All enhanced sampling simula-
tion inputs were generated by Enhanced Sampler.

2.4.1 | Peptides (Chignolin and K19)
with GaMD

An engineered fast-folding 10-residue peptide Chignolin
and a 19-residue peptide K19 are two well-studied bench-
mark peptide systems.63,64 For both peptides, the folded
and unfolded structures are shown (Figure 4a). Folded
into β-hairpin structure in water, Chignolin has been fre-
quently adopted for investigating folding-nature of pro-
teins and peptides as well as for developing sampling
methods owing to its small size.70–72 Likewise, the Ala-
rich Baldwin-type peptide, K19, has been widely
benchmark-tested for FF developments. Recently pro-
posed AMBER FFs were tested with K19, comparing with
the nuclear magnetic resonance experimental results to
model helical contents more accurately.73,74

The average number of folding and unfolding events
are greater in GaMD compared to the conventional MD
for both Chignolin and K19 (Figure 4b). For Chignolin,
the average number of folding/unfolding events during
2-μs simulation is 15.2 with GaMD, eminently greater
compared to 5.0 with MD. The conformational states are
specified with the similar criterion from the previous
study with root-mean-square deviation (RMSD) and
radius of gyration (Rg), defining folded (RMSD <1.8 and
Rg <4.8) and unfolded (RMSD >5.5 and Rg >7) with the
reference coordinates based on PDB ID 1UAO.20 The two
dimensional free-energy surface based on RMSD and Rg
was generated after explicit reweighting, and defined
folded and unfolded states on the surface are marked in

Figure 4c. RMSD time-series shows that a few trajectories
with normal MD are stuck in the metastable states near
the folded region, while swift escapes are notable with
GaMD. For K19 peptide, similar analysis using RMSD
was done with folded (RMSD <1.5) and unfolded (RMSD
>6.5) states. For both helical and extended initial confor-
mations, GaMD shows a greater number of transitions to
MD counterpart. We did additional analysis for the heli-
cal propensity, assigning each residue to be helical if
j �65� � ϕj < 35� and j �37� � ψ j < 30�.74–76 The aver-
age helical propensities, that is, a mean of all residues
from all independent runs, for both MD and GaMD are
converged to the reference over averaging 10 replicas of
2-μs each (Figure 4b). However, we could not observe fas-
ter convergence for this equilibrium property and suspect
if dihedral-only boosting was not suitable for this pur-
pose. Overall, we could observe faster folding and unfold-
ing of two peptides with GaMD compared to
conventional MD.

2.4.2 | ACE2–RBD with SMD

SARS-CoV-2 reported in late 2019 emerged and spread
out the entire world, causing the COVID-19 pandemic.
The RBD of spike glycoprotein of SARS-CoV-2 is known
to bind with ACE2 for its entry to host cells.65,77,78 Since
the original strain (i.e., wild-type [WT]) was identified in
Wuhan, China, the virus has been evolved in ways that it
can either strengthen the ACE2–RBD interaction or neu-
tralize the antibody binding.79–83 Such strategies have
been developed by mutating multiple residues, especially
ones located in the RBD. Thus, scientists have put much
effort to characterize the effects of RBD mutations and
their interaction with ACE2.

We ran SMD simulations for ACE2–RBDWT with
inputs from Enhanced Sampler, reproducing the refer-
ence result that we reported previously.84–86 Figure 5a
shows the average instantaneous force profiles of 20 rep-
licas during the pulling. Savitzky–Golay smoothing filter
was applied to both the current and previous simulation

TABLE 3 Simulation details for five benchmark systems

System Methods Package + force fields Observations Simulation time per method

Peptides (Chignolin and K19) GaMD, MD AMBER + ff19SB/OPC Folding/unfolding Chig: 10 μs (1 μs � 10 reps)
K19: 20 μs (2 μs � 10 reps)

ACE2–RBD SMD (+HMR) NAMD + c36m Force profile 800 ns (40 ns � 20 reps)

Glycan (O176) REST2, MD NAMD + c36 Ramachandran 800 ns (100 ns � 8 reps)

Lipopolysaccharide (Escherichia
coli and Burkholderia cepacia)

aMD ! MD OpenMM + c36 Area per lipid 1.5 μs (500 ns � 3 reps)

Mla–lipid ABF NAMD + c36m Lipid movement 450 ns (150 ns � 3 reps)
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results.87 Figure 5b depicts three representative protein
conformations during the dissociation. Note that both
proteins were pulled to the opposite directions to each
other in the reference simulations, but the pulling force
was applied only to RBD in this study with doubled pull-
ing speed to match the total simulation time. Despite a

few differences in the simulation setup, the location and
the height of the peak are reproduced well. Furthermore,
the new simulations had 250 times more data points of
instantaneous forces and COM coordinates with frequent
outputting from COLVARS module, obtaining a finer
force profile. This result validates the usefulness and the

FIGURE 4 Gaussian accelerated molecular dynamics (GaMD) and molecular dynamics (MD) simulations of Chignolin and K19.

(a) Folded (blue) and unfolded (red) conformations of Chignolin (left) and K19 (right). (b) Time-series of the average number of folding/

unfolding events for Chignolin (top) and K19 (bottom) from 10 independent simulations and time-cumulative average helical propensity for

K19 with dashed lines (bottom). (c) Time-series of root-mean-square deviation for MD (top-left) and GaMD (bottom-left), and the definition

of unfolded and folded states and the corresponding two-dimensional free energy surfaces (right)
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accuracy of SMD simulation setup provided by Enhanced
Sampler.

2.4.3 | Glycan O176 with REST2

O-antigen polysaccharides are the main component of
the LPS molecules in the outer membrane of Gram-
negative bacteria.88,89 In a previous study, Patel et al.
investigated the conformational preferences of an E. coli
O176 O-antigen oligosaccharide at the atomic level
through 1.2-μs MD simulations.67 The authors conducted
a conformational analysis using a set of glycosidic torsion
angles from MD trajectories. Due to the structural flexi-
bility and complexity of the carbohydrate, overall explo-
ration of conformational space required long timescale
simulations.

We simulated O176 system with eight individual runs
of conventional MD and 8-replica REST2 using the
inputs provided by Enhanced Sampler. Each individual
run or replica was simulated for 100 ns, building a total
of 800 ns per method for a fair comparison. The equilib-
rium properties from the previous study are used as refer-
ences. While ψB�C was highly populated near �55� due
to the initial conformation as helical, the probability den-
sity became dominant around 100� after excessive

samplings in the reference study. With REST2, we
observed a faster conformational changes toward the pre-
ferred extended structure with a greater radius of gyra-
tion and a more analogous probability density profile of
the glycosidic linkage (Figure 6). The average acceptance
ratio was 0.36, ensuring adequate replica exchanges with
effectively solute-tempered states.

2.4.4 | LPS systems (E. coli and B. cepacia)
with aMD

An LPS molecule is the main component of the Gram-
negative bacterial outer membrane.90 LPS consists of
lipid A, core oligosaccharide, and O-antigen polysaccha-
ride repeating units. The structural complexity of LPS
molecules plays an essential role in providing protection
against various types of chemical attack from the out-
side.68,89 Despite of the protective advantage, this compli-
cation often causes less mobility within the LPS
molecules, causing an additional relaxing time to obtain
proper conformation for LPS-containing MD
simulations.41,91

We employed two LPS systems, E. coli (Ec) and
B. cepacia (Bc), which were not converged in the previous
study with conventional MD simulations (Figure 7a).41

Selected two systems had area-per-lipid (APL) differences
of 15 Å2 between independent trajectories throughout a
few-microsecond-long simulation. While such deviations
arose from the beginning of the trajectories, we could
prevent the divergence by starting with total potential
boost aMD, then followed by conventional MD. Averaged
APL time-series for the two systems are shown
(Figure 7b). For Ec and Bc, the average APLs are well-
converged among three independent trajectories as well
as between different lengths of aMD usages: 181.94 Å2

(100-ns aMD, Ec), 182.14 Å2 (200-ns aMD, Ec), 198.35 Å2

(100-ns aMD, Bc), and 198.41 Å2 (200-ns aMD, Bc). The
selected aMD parameters result in a substantial boost of
�0.12 kBT per atom for each system. The boosted poten-
tials with high variance complicate the reweighting when
using a large amount of boost with aMD. However, we
applied aMD only for fast lateral relaxation and equilibra-
tion, which do not require any post hoc reweighting. A
greatly improved convergence of APL in LPS systems was
achieved from the conventional MD followed by aMD
simulation.

2.4.5 | Mla–lipid system with ABF

Gram-negative bacteria have an asymmetric outer mem-
brane consisting of LPS in the outer leaflet and

FIGURE 5 Steered molecular dynamics simulations of

angiotensin-converting enzyme 2–receptor binding domain system.

(a) Instantaneous force profiles of reference simulation (black) and

this study (red) with Enhanced Sampler. (b) Protein conformations

at (1) initial, (2) highest force required, and (3) dissociated states.

The correspondent points are marked in (a). COM, center-of-mass.
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FIGURE 6 Replica

exchange solute tempering

2 (REST2) and molecular

dynamics (MD) simulations of

glycan O176. (a) Schematic

representation of Escherichia coli

O176 O-antigen oligosaccharide

(left) and its conformational

change during REST2

simulation (right).

(b) Probability distribution of

radius of gyration (top) and that

of key linkage dihedrals

(bottom) for REST2 and MD

simulations. The bars on the

graphs indicate the standard

errors from eight independent

MD runs

FIGURE 7 Accelerated

molecular dynamics (aMD)

followed by conventional

molecular dynamics

(MD) simulation of

lipopolysaccharide (LPS)

membrane systems. (a) Two LPS

systems, Escherichia coli (Ec,

left) and Burkholderia cepacia

(Bc, right). (b) Area-per-lipid

(APL) convergence analysis of

100-ns aMD followed by 400-ns

MD of Ec (left-top) and Bc

(right-top), and 200-ns aMD

followed by 300-ns MD of Ec

(left-bottom) and Bc (right-

bottom)
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phospholipids in the inner leaflet. Phospholipids appear-
ing at the outer leaflet are deleterious.92 A delicate mech-
anism to maintain the asymmetry is the maintenance of
lipid asymmetry (Mla) pathway,93 spanning the two
membranes. MlaA is located in the outer membrane,
MlaC is in the periplasmic space to shuttle phospholipids,
and MlaFEDB is located in the inner membrane. MlaE
and MlaD are transmembrane protein, where phospho-
lipids are found inside the pocket formed by MlaE and
MlaD (Figure 8a). In the past few years, seven cryo-
electron microscopy (cryo-EM) papers have reported Mla-
FEDB structures.69,92,94–98 However, due to poor electron
densities of the solved lipids inside Mla, the atomistic
coordinates modeled by different research groups
diverged (Figure 8a).

We simulated the MlaDE complex in a bacterial
membrane and modeled the initial lipid structure based
on PDB ID 6XBD (Figure 8a). After 150-ns equilibration,
three replicas of ABF simulations were performed. The
distance between the lipid-binding pocket and the COM
of the lipid was used as the CV. The lipids in the three
systems all explored the pathway from the binding pocket
between MlaE and MlaD to the crown region of MlaD.
Once the lipid returns to the binding pocket, the lipid
adopts a tail-apart configuration (Figure 8b) as
also reported in cryo-EM structures (PDB IDs 7CGE,
6XBD).94,96 When the lipid moves into the crown region,

the lipid position overlaps with the detergent density in
the cryo-EM map of Mla (EMD-11082) (Figure 8c).92 This
shows that the center of the crown region is a hydropho-
bic environment favorable for lipid and detergent. When
we simulated the MlaDEBFG without a lipid or detergent
in the crown region, we observed a collapse of the crown
with a shrinking radius among the hexamer. The ABF
results show that the MlaD crown region is indeed an
important lipid-residency site. When the phospholipid
moves down back to MlaDE region, in one replica, the
phospholipid exhibited flipping behavior (Figure 8d),
similar to the observation from conventional MD simula-
tions demonstrated by Mann et al.92 With the ABF
results, we demonstrate that the upward lipid escape
pathway, the favorable tail-apart configurations, and lipid
flipping behavior inside the MlaDE pocket.

3 | CONCLUSIONS

In this study, we have presented CHARMM-GUI
Enhanced Sampler that generates simulation systems and
inputs for nine different enhanced sampling methods.
The intuitive GUI interface allows users to go through a
familiar road of Solution Builder or Membrane Builder to
build their system, and then a few more clicks to generate
multiple enhanced sampling method inputs at once.

FIGURE 8 Adaptive

biasing force (ABF) simulations

of Mla–phospholipid complex

revealed a key lipid tail

configuration and a lipid escape

way. (a) Reported lipid

configurations in the MlaDE

pocket. PDB IDs 7CHA, 7CGE,

6VBD, 6ZY3 are shown. (b) Two

lipid configurations from two

independent ABF simulations

both ended in a tail-apart

configuration that is the same as

reported in PDB IDs 7CGE and

6XBD. (c) Phospholipid escaped

to the MlaD crown at a position

(red) similar to the detergent

density (cyan) solved in the

cryo-EM structure (EMD-11082,

PDB 6Z5U). (d) Phospholipid

flipping happens during one

simulation. Green spheres

indicate the phosphate group of

bilayer lipids
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Also, users only need to select groups of atoms to define
nine standardized CVs, which could be time-consuming
and error-prone tasks.

To show the robustness of methods covered in
Enhanced Sampler, we have generated and performed
various enhanced sampling simulations and compared
the results with the previous studies. The previous bench-
marks are reproduced for the glycan system and the pro-
tein pulling simulation. The strength of enhanced
sampling methods against the unbiased MD is demon-
strated with frequent folding/unfolding of peptides and
APL convergence in LPS systems. In addition, a common
movement of lipid to the crown region is observed from
independent simulations without giving specific direc-
tions, allowing us to deduce the potential lipid-escaping
pathway. We hope that Enhanced Sampler with carefully
optimized system-dependent parameters will be useful to
get meaningful results from enhanced sampling simula-
tions of various biological systems.

4 | METHODS

Unless noted otherwise, a 1-fs timestep and NVT (con-
stant particle number, constant volume, and tempera-
ture) ensemble were used for minimization and
equilibration. A 2-fs timestep and NPT (constant particle
number, pressure, and temperature) ensemble were used
for the production. The SHAKE algorithm was applied to
the bonds containing hydrogen atoms and the van der
Waals (vdW) interactions were switched off smoothly
over 10–12 Å through a force-switching function.99,100

The electrostatic interactions were calculated by the
particle-mesh Ewald method.101 We performed minimi-
zation and equilibration of the systems using the
CHARMM-GUI default protocol of Solution Builder and
Membrane Builder.

4.1 | Peptides (Chignolin and K19)
with GaMD

Chignolin peptide was modeled from PDB ID 1UAO, and
a 19-residue peptide with sequence of Ace-GGG
(KAAAA)3K-NH2 called K19 was generated with LEaP
module of AmberTools in AMBER-v20 software.63,64,102

Both systems were solvated using CHARMM-GUI Solu-
tion Builder. AMBER ff19SB FF and OPC water model
were used.74,103 The constant temperature at 300 K and
the constant pressure at 1 bar were controlled by Lange-
vin dynamics with a friction coefficient of 1 ps�1 and a
isotropic Monte Carlo (MC) barostat, respectively.104,105

The vdW interactions were cut off at 9 Å. The system size

was set for Chignolin (cubic, 41 � 41 � 41 Å3) and for
K19 (octahedron, 60 � 60 � 60 Å3).

The Chignolin and K19 systems were simulated with
both MD and GaMD. We ran a 1-μs (for Chignolin) and a
2-μs (for K19) each of 10 individual simulations per
method with AMBER simulation package. K19 had two
initial starting points: a completely helical and an
extended conformation. Thus, a total of 10 μs was simu-
lated for Chignolin and a total of 40 μs was simulated for
K19 per method. The time-series of RMSD and Rg were
post-processed using CPPTRAJ from trajectories taken
every 100 ps.106 For GaMD simulations, Chignolin
employed a dual boost while K19 used a dihedral boost
mode. We ran two pre-runs for both systems, 10 ns per
each pre-run for parameter selection and optimization.
Chosen kP for Chignolin and kD for both systems were all
set to 1.0, indicating that maximized boosts were applied.
For a fair comparison, the production was 20 ns less for
GaMD simulations compared to MD.

4.2 | ACE2–RBD with SMD

The overall methods are the same as those in our previ-
ous studies.84,86 The RBD and ACE2 complex model was
obtained from COVID-19 Protein Library in CHARMM-
GUI Archive.107 The complex includes six N-linked gly-
cans: five glycans in ACE2 (Asn53, Asn90, Asn103,
Asn322, and Asn546) and one glycan in RBD (Asn343).
CHARMM-GUI Solution Builder was used for system
generation and parameter setup. The CHARMM36m FF
and TIP3P water model were used with 150 mM K+ and
Cl� ions.75,108,109 The system size (cubic,
190 � 190 � 190 Å3) was large enough to let the proteins
get fully solvated even after complete dissociation. HMR
was applied and a 4-fs timestep was employed for the
production.

NAMD simulation software was utilized for all simu-
lations with the COLVARS module.10,46 In the reference
system,84 the SARS-CoV-2 RBD–ACE2 complex was
aligned along the X-axis and maintained during the pull-
ing simulations, where external forces were applied to
the COM of each protein. In the system reproduced by
Enhanced Sampler, pulling forces were applied to the
RBD only, while ACE2 was COM-position restrained.
The pulling speed of protein and the spring constant were
set to 1 Å/ns and 5 kcal/(mol Å2), respectively. We ran
20 independent simulations to match with the number of
reference simulations, each running for 40 ns, so that the
RBD–ACE2 complex can be completely dissociated.
Other simulation details such as non-bonded interac-
tions, ensemble, simulation temperature, and timesteps
are the same as those in the previous study.84,86
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4.3 | Glycan O176 with REST2

Glycan O176 system was prepared by Glycan Reader &
Modeler in CHARMM-GUI.110,111 An initial structure of
10 repeating units of E. coli O176 O-antigen structures
was built using the topology information in the
CHARMM36 additive FF for carbohydrates.112 The gly-
can was immersed at the center of a box (cubic,
108 � 108 � 108 Å3) including 150 mM K+ and Cl� ions
and TIP3P water molecules.

NAMD 3.0 simulation software was used for O176
simulations, especially with its GPU enforced replica-
exchange feature.46 For normal MD simulations, eight
replicas were built, and minimization and equilibra-
tion were done with a 2-fs timestep. Then, a 100-ns
production simulation was performed for each replica
at a temperature of 303.15 K and a pressure at 1.0 bar.
For a REST2 simulation with eight replicas, the sys-
tem was minimized and equilibrated with a 2-fs time-
step. A 100-ns NPT production simulation per replica
was followed with the temperatures ranged between
303.15 and 400 K for eight replicas. Replica exchanges
were attempted every 10 ps. For comparison, we cal-
culated the Rg and glycosidic torsion angles
(ϕ¼O50 �C10 �On�Cn andψ ¼C10 �On�Cn�Cn�1,
where n is the linkage position).67

4.4 | LPS systems (E. coli and B. cepacia)
with aMD

Both Ec and Bc systems are composed of a symmetric
bilayer membrane with 49 LPS molecules in each leaflet.
The system was prepared by LPS Modeler and Membrane
Builder in CHARMM-GUI with an initial box size of
200 Å in X and Y. TIP3P water model and CHARMM36
FF for LPS, lipids, and carbohydrates were used, and the
temperature was maintained at 310.15 K using Langevin
dynamics with temperature coupling frequency of
1 ps�1.112–116 The pressure was maintained at 1 bar using
a semi-isotropic MC barostat method with a pressure
coupling frequency of 100 steps. The sequence of the Ec
system includes lipid A with a protonation state (�2e) on
the phosphate groups in the glucosamine dimer, K12 core
oligosaccharides, and there is an additional protonation
state (�1e) on Hep residue in the K12 core sequence. For
the LPS sequence of the Bc system, Type 3 lipid A was
used, including penta-acylated tails with two phosphate
groups with an additional 4-amino-4-deoxy-l-arabinose at
both phosphate groups.

OpenMM was used for the following LPS simulations.
For the aMD system, we simulated each system up to
200 ns with a total-boost parameter set of (E, α) for Ec

(�1,460,000, 40,000) and Bc (�600,000, 40,000) in the
unit of kJ/mol. After the aMD run, the conventional MD
simulation was performed starting at the final coordinate
of 100-ns and 200-ns points from the aMD simulation.
Each replica was simulated up to 500 ns. The APL
throughout the accelerated and conventional MD simula-
tions was calculated using CHARMM for a convergence
analysis.

4.5 | Mla–lipid system with ABF

MlaDE protein and phospholipid POPG were modeled
from PDB ID 7CHA and embedded into a complex mem-
brane mimicking the bacterial membrane (33QMPE,
121PMPE, 27PMPG, 35POPE, 11OYPE, 25PYPG,
6PVCL2) using Membrane Builder. The system size was
set to 107.5 � 107.5 � 148 Å3. The CHARMM36m FF
and TIP3P water model were used. The temperature and
the pressure were controlled at 303.15 K and at 1 bar by
Langevin dynamics with a friction coefficient of 1 ps�1

and a semi-isotropic MC barostat, respectively.
The MlaDE–POPG system was first simulated for

150 ns with a conventional MD simulation in OpenMM
and then three replicas were created from this. We then
ran 150-ns ABF simulations with NAMD for each replica.
The COM distance between heavy atoms of POPG and
the binding pocket residue backbone atoms was defined
as the CV. The ABF simulations used a bin size of 0.4 Å,
lowerboundary and lowerwall of 0.5 Å, upperboundary
and upperwall of 35 Å, wallconstant of 10.0 kcal/(mol
Å2), and fullSamples of 100.

5 | GENERAL STATEMENT

Various enhanced sampling methods have been proposed
to observe slow processes of interest and to overcome
high free-energy barriers present in complex biomolecule
systems. Enhanced Sampler generates enhanced sam-
pling simulation inputs with system-dependent initial
parameters and CVs, freely available in CHARMM-GUI
(https://www.charmm-gui.org/input/es).
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