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Abstract: Various studies have shown that lysine acetyltransferase 2A (KAT2A), E2F transcription
factor 1 (E2F1), and ubiquitin conjugating enzyme E2 C (UBE2C) genes regulated the proliferation and
migration of tumor cells through regulating the cell cycle. However, there is a lack of in-depth and
systematic research on their mechanisms of action. This study analyzed The Cancer Genome Atlas
(TCGA) to screen potential candidate genes and the regulation network of KAT2A and E2F1 complex
in pan-cancer. Quantitative real-time PCR (qRT-PCR) and Western blotting (WB), cell phenotype
detection, immunofluorescence co-localization, chromatin immunoprecipitation assay (ChIP), and
RNA-Seq techniques were used to explore the functional of a candidate gene, UBE2C. We found that
the expression of these three genes was significantly higher in more than 10 tumor types compared
to normal tissue. Moreover, UBE2C was mainly expressed in tumor cells, which highlighted the
impacts of UBE2C as a specific therapeutic strategy. Moreover, KAT2A and E2F1 could promote cell
proliferation and the migration of cancer cells by enhancing the expression of UBE2C. Mechanically,
KAT2A was found to cooperate with E2F1 and be recruited by E2F1 to the UBE2C promoter for
elevating the expression of UBE2C by increasing the acetylation level of H3K9.

Keywords: lysine acetyltransferase 2A (KAT2A); E2F transcription factor 1 (E2F1); ubiquitin conju-
gating enzyme E2 C (UBE2C); cell proliferation; cell migration; cell cycle; pan-cancer

1. Introduction

Many cancer treatment strategies have been developed based on targeting specific
molecules related to specific gene mutation or specific gene expression, and breaking
progress is being made with these cancer treatment strategies, and the potential is infinite [1–3].
Therefore, there is an urgent need to identify efficient therapeutical targets in tumors.
Currently, many common molecular mechanisms across pan-cancer have been discovered
by various studies [4–6]. High-throughput transcriptome was an important and effective
data to identify the candidate targets or pathways [7–9]. Although tumors have great
heterogeneity, there are commonalities among different types of tumors, so using the
transcriptome data of large clinical pan-cancer samples to authenticate potential candidate
targets upstream may be a good option. However, whether it will shed light on future
cancer treatment still needs further comprehensive and in-depth research on pan-cancer.

Previous studies have shown that there were abnormalities of histone acetylation mod-
ification in various cancers, including liver, lung, and breast [10,11]. Histone acetylation
mediates the expression and activation of genes related to cell proliferation, differentiation,
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and apoptosis, which could affect the occurrence and development of tumors [12,13] His-
tone lysine acetyltransferases (KATs) and histone deacetylases (HDACs) are key effectors
balancing between histone acetylation and deacetylation. KAT2A, the first discovered KAT
that was related to transcription, has been reported to be involved in gene transcription,
DNA repair, nucleosome assembly, and cell cycle regulation in pan-cancer. Additionally, it
was significantly up-regulated in many cancers to promote the growth of tumor cells/cell
proliferation, and the invasion and migration of cancer cells [14–20]. Therefore, KAT2A
may be a significant oncological target with effective therapeutics for several cancers.

E2F1 was found as a key regulator of G1/S transition, and to promote the transcription
of plenty of critical genes for cell-cycle progression [21]. Many reports have found that
E2F1 played a central role in cancer development, such as in breast cancer [22,23], bladder
cancer [24], and prostate cancer [25]. It is suggested that the up-regulation of E2F1 can
promote the proliferation, migration, and invasion of these cancer cells, and it is also
significantly related to the clinical stage of different cancer types, the depth of tumor
invasion, as well as the metastasis and lesion size of lymph nodes [26]. As a crucial catalytic
component of transcription regulation complex, it has been suggested that KAT2A can
increase the chromatin accessibility of transcription factors (such as E2F1) and form protein
complexes with them. Moreover, it could be recruited to the promoter regions of genes
involved in the cell cycle, DNA damage repair, and cell migration, consequently enhancing
their expression through increasing the acetylation level of H3K9 on these gene-promoting
regions [27,28]. For example, KAT2A has been explored to cooperate with E2F1 and be
recruited by E2F1 to the promoters of cyclin D1 and cyclin E1 [16], and it is amplified in
breast cancer 1 genes [29].

UBE2C is a member of the E2 ubiquitin-conjugating enzyme family [30]. Ubiquiti-
nation is an important cellular mechanism for targeting proteins for degradation, which
is involved in numerous cell processes, such as cell cycle progression, antigen presenta-
tion, transcription, and programmed cell death [31]. Many studies have shown that the
expression of UBE2C is upregulated in a variety of human malignancies, such as tongue
squamous cell carcinoma [32], breast cancer [33], endometrial cancer [34], melanoma [35],
and rectal carcinoma [36]. All these findings suggested that UBE2C is closely associated
with the development of cancer, and could be used as a potential therapeutic target for
different types of cancers.

Taken together, these reports indicated that KAT2A, E2F1, and UBE2C play a funda-
mental role in the progression of several types of cancers. Hitherto, no conclusive study has
reported the role of KAT2A and E2F1 interactions in the pan-cancer landscape. With such
conspicuous roles of both KAT2A and E2F1 in cellular functions and putative links to cancer,
we investigated the common molecular mechanisms and potential transcription target
of their interaction across pan-cancer. This study revealed the common characteristics of
KAT2A/E2F1/UBE2C and clarified the mechanism of this axis across pan-cancer through
RNA-seq dada and in vitro experiments, which might shed light on pan-cancer treatment.

2. Materials and Methods
2.1. Data Source

The expression data and corresponding clinical information of different kinds of cancer
patients were downloaded from The Cancer Genome Atlas (TCGA). The GSE137172 set
was downloaded from the Gene Expression Omnibus database (GEO; http://www.ncbi.
nlm.nih.gov/geo/, accessed on 13 January 2021) for analyzing differentially expressed
genes (DEGs) after knocking down UBE2C.

2.2. Transcriptional Expression of Different Genes in Pan-Cancer

KAT2A, E2F1, and UBE2C were formed with the Transcripts Per Million (TPM) mean
of each mRNA expression of samples in TCGA, and the exact sample sizes of cancer and
normal samples used are reported in Table S1. The expression profiles of KAT2A, E2F1, and
UBE2C were analyzed using GEPIA (Gene Expression Profiling Interactive Analysis, http:
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//gepia.cancer-pku.cn/, accessed on 14 April 2021) online analysis [37]. Then, comparisons
between tumor and normal tissues were analyzed. The relative expression levels of KAT2A,
E2F1, and UBE2C to ACTB were also analyzed using corresponding cancer cell lines in the
Cancer Cell Line Encyclopedia (CCLE) database, respectively.

2.3. Pathological Staging Expression Analysis

The TPM expression of KAT2A, E2F1, and UBE2C at different pathological stages in
the TCGA database were represented by box plots, and Student’s t-test was employed
to compare the relative expression levels among different pathological stages. p < 0.05
indicated statistically significant differences.

2.4. Prognostic Analysis of Patients in Pan-Cancer

The clinical outcome of patients with different types of cancers was determined using
Kaplan–Meier survival curves. For the overall survival (OS), the samples were divided
into two groups according to the median expression of the mRNAs (high vs. low). With
the use of R packages (survival, version 3.2.7; survminer, version 0.4.8), Kaplan–Meier
survival analysis and the log-rank test were employed to compare OS between the tumor
and normal cohorts. p < 0.05 indicated statistically significant differences.

2.5. Identification of Differentially Expressed Genes of Pan-Cancer from TCGA

The samples of different types of cancers in the TCGA databases were separated into
30% each of KAT2A, E2F1, and UBE2C high and low groups to obtain DEGs using the
“DESeq2” package (version 1.28.1) in R language (version 4.0.2). |Fold Change| > 1.5 and
FDR < 0.05 were set as the statistical threshold value of DEGs. Using the transcriptome
data of 11 tumor types (with normal tissues more than 30) in TCGA, which contains the sig-
nificantly highly expressed level of KAT2A, overlapping DEGs were screened according to
the following conditions: each tumor KAT2A and E2F1 were grouped according to the 30%
high and low groups to obtain: the DEGs (FC > 1.2, FDR < 0.05, KAT2A 30%-Up, and E2F1
30%-Up), respectively; the correlation coefficient with KAT2A and E2F1 > 0.3, respectively;
and DEGs that were highly expressed in tumor tissues compared with normal tissues.

2.6. Spearman Correlation among KAT2A, E2F1, and UBE2C

Spearman’s correlation coefficient analysis was performed to explore the correlation
among KAT2A, E2F1, and UBE2C in 11 out of 33 cancers with more than 200 tumor tissues
from the TCGA database, and the corresponding cell lines in the CCLE database.

2.7. Functional Enrichment Analysis

Functional enrichment analysis, gene ontology (GO), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses were conducted by the R package (clusterProfiler,
version 3.16.1) to explore the different molecular mechanisms and involved pathways
between high and low UBE2C expression. The protein–protein interaction (PPI) network of
DEGs was obtained from the STRING (version 11.0) database [38].

2.8. Analyzing the Candidate Genes Regulated by UBE2C and Related to Tumor Cell Proliferation,
Cell Cycle, and Apoptosis Based on the Transcriptome Data of the TCGA and GEO Dataset

The results from the TCGA RNA transcriptome data and the existing GEO dataset
were combined to obtain the overlapping DEGs, and the key genes or target proteins
and signal pathways regulated by UBE2C were searched. The common mechanism of
KAT2A/E2F1/UBE2C affecting tumor cell proliferation, cell cycle, and apoptosis in different
tumors were explored through GO and KEGG function enrichment analyses.

2.9. Single-Cell RNA-Seq Data Processing

The single-cell RNA-Seq data were analyzed as described previously [39] Expression
data were extracted from a previous study [39] and violin plots were drawn using R.

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
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2.10. Cell Lines and Transfection

Parental MCF-7 breast cancer, NCI-H460 large cell lung carcinoma HepG2 liver cancer,
and BxPC3 pancreatic cancer cell lines were gifts from Dr. Peng Huang, Sun Yat-sen
University Cancer Hospital, Guangzhou, China. The 786-O renal clear cell carcinoma cell
line was purchased from Cell Resource Center, Shanghai Academy of Biological Sciences,
Chinese Academy of Sciences. MCF-7, HepG2, and BxPC3 were cultured in DMEM
medium with 10% fetal bovine serum, penicillin (100 U/mL), and streptomycin (100 U/mL)
at 37 ◦C in air with 5% CO2. MCF-7 was cultured with 0.2 mg/mL insulin. NCI-H460 and
786-O were in RPIM-1640 medium with 10% fetal bovine serum, penicillin (100 U/mL),
and streptomycin (100 U/mL) at 37 ◦C in air with 5% CO2. For transient knockdown
studies, KAT2A-shRNA, UBE2C-shRNA (Fitgene, Guangzhou, China), and control shRNA
(shNC) plasmids, and a final concentration of 60 nM of both E2F1-siRNA and control
siRNA (siNC) (Hanheng, Shanghai, China) (Table S2) were transfected for 24 h according
to Lipofectamine™ 3000 (Thermo Fisher Scientific, Waltham, MA, USA). NCI-H460 cells
with a stable knockdown of KAT2A were established by transfection with a KAT2A-shRNA
(shKAT2A-1) lentiviral vector.

2.11. Real-Time Quantitative Polymerase Chain Reaction (qPCR)

Real-time quantitative PCR (qPCR) analysis was performed according to the user’s
manual using the StepOnePlus™ Real-Time PCR System (Applied Biosystems, Foster City,
CA, USA) and Power SYBR Green PCR Master Mix (Applied Biosystems) kits. All samples
were analyzed in triplicate, and the expression of KAT2A, E2F1, and UBE2C was normalized
relative to that of GAPDH, which was used as an internal loading control. The primers for
qPCR are listed in Table S2.

2.12. Western Blotting and Antibodies

The whole-cell lysate or the immunocomplexes were separated by 8 to 12% SDS-PAGE
and transferred onto a polyvinylidene difluoride (PVDF) membrane (Millipore, Billerica,
MA, USA). Anti-KAT2A (Cell Signaling, Danvers, MA, USA, 1:1000, #3305), anti-E2F1
(Invitrogen, Waltham, MA, USA; Thermo Fisher Scientific, Waltham, MA, USA, 1:1000,
MA1-23202), anti-H3K9ac (Cell Signaling Technology, 1:1000, 9649S), anti-UBE2C (Invitro-
gen, Thermo Fisher Scientific, 1:1000, PA5-27223), anti-β-actin (Beyotime Biotechnology,
Shanghai, China, 1:1000, AA128), and horseradish peroxidase (HRP)-conjugated secondary
antibodies (anti-mouse and anti-rabbit IgG) (Beyotime Biotechnology, 1:2000, A0208, A0216)
antibodies were used to detect each protein. Bands were detected using BeyoECL Star
chemiluminescence substrate (Beyotime Biotechnology, P0018AM).

2.13. Cellular Immunofluorescence

The detailed immunohistochemistry procedures were performed as described be-
fore [40]. Cells were seeded into the 35 mm laser confocal petri dishes under normal culture
conditions to reach 60% density without any treatment to prepare for performing cell im-
munofluorescence. After incubating with KAT2A and E2F1 primary antibodies (Invitrogen,
Thermo Fisher Scientific, 1:1000, MA5-14884, MA1-23202), the cells were then incubated
with the corresponding diluted IgG fluorescent secondary antibodies (Invitrogen, Thermo
Fisher Scientific, 1:5000, A11029, A11012) for 1 h at room temperature in the dark. Then,
the cells were stained with nucleus DAPI dropwise and incubated for 5 min in the dark.
The mounting solution containing anti-fluorescence quencher (Invitrogen, Thermo Fisher
Scientific, P36971) was dropped, followed by observing and collecting the image under
a fluorescence microscope (Wetzlar, Germany, Leica TCS SP8 X).

2.14. Chromatin Immunoprecipitation (ChIP) and Co-Immunoprecipitation (Co-IP) Assay

ChIP was performed according to the instructions of the Pierce Agarose ChIP Kit
(Thermo Fisher Scientific, 26156). The E2F1 binding sites on the UBE2C promoter were ana-
lyzed using the JASPAR online tool (http://jaspar.genereg.net/, accessed on 8 June 2020).

http://jaspar.genereg.net/
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ChIP-qPCR data were shown as the percentage of input following normalization with no
antibody (mock). The primers for ChIP-qPCR are listed in Table S2. Co-IP was performed
using indicated antibodies and IgG (Invitrogen) according to the manufacturer’s instruc-
tions. In brief, cell lysates were incubated with antibody-conjugated beads at 4 ◦C for 2 h.
Then, the beads were washed extensively and boiled in SDS loading buffer. A total of 4%
of total protein was used per IP, about 50 µg/100 µg.

2.15. Luciferase Assay

The luciferase assay was performed as described previously [41].

2.16. Cell Proliferation Assay

Cell proliferation assays were performed using the Cell Counting Kit-8 (CCK-8; Sangon
Biotech, Shanghai, China) according to the manufacturer’s instructions. Briefly, cells were
seeded onto 96-well plates (3 × 103 cells per well) and transfected when they reached
70–80% of confluence according to the protocol of Lipofectamine™ 3000, and were then
added with 10 µL of CCK-8 solution and cultured for 1 h at 37 ◦C in air with 5% CO2 on
designated days. The absorbance was measured at 450 nm using TECAN infinite M200
(Softmax Pro., Molecular Devices, Sunnyvale, CA, USA). For EdU assay, the cells were
treated for 48 h, followed by using the BeyoClick™ EdU Cell Proliferation Kit with Alexa
Fluor 594 (Beyotime Biotechnology, C0078S) according to the manufacturer’s protocol.

2.17. Clone Formation Experiment

The stable KAT2A overexpression NCI-H460 cells were seeded in a 6-well plate with
2000 cells per well. After culturing for 14 days, the culture medium was discarded, was
washed carefully with 1 × phosphate-buffered saline (PBS) (Gibco, Grand Island, NY, USA)
once, and 1 mL of methanol solution was added to each well to fix the cells for 30 min. The
methanol solution was aspirated, 1 mL of crystal violet stain solution was added to each
well, and it was left at room temperature for 30 min. The crystal violet was recycled and
each well was washed with distilled water, and the culture plate was placed upside down
on absorbent paper to absorb the water. It was dried naturally, and pictures were taken
using a digital camera. The number of clones with more than 10 cells under the microscope
(4 × magnification) was counted. Finally, we calculated the clone formation rate = (number
of clones/number of inoculated cells) × 100%.

2.18. Cell Migration and Invasion Assay

A wound healing assay was performed to detect the migration of three kinds of cancer
cell lines after treatment. Cells growing the in log phase were trypsinized and seeded in
24-well plates until confluent. A total of 1 × 105 cells per well were seeded in 24-well
plates. After 24 h, the cells were transfected with shKAT2A-1, siE2F1-2, and shUBE2C-3,
and the corresponding control shNC and siNC using LipofectamineTM 3000 (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. After transfection,
cells were incubated at 37 ◦C and 95% confluent cells were used for a wound healing assay.
Wounds were made using a 10 µL sterile tip. After incubation for 0, 24, 48, 72, and 96 h, the
cells were photographed under an inverted microscope, respectively. The distance between
the two edges of the scratch (wound width) was measured at 8 sites using ImageJ in each
image (40× magnification). MCF-7, 786-O, and NCI-H460 cells were transiently transfected
with shUBE2C-3 for 48 h, followed by using Falcon® Permeable Support for a 24-well Plate
with 8.0 µm Transparent PET Membrane (Corning, NY, USA) for measuring cell migration
and invasion. After taking pictures of the cells, we added 1 mL absolute ethanol. With
sufficient shaking, the light absorbance was measured at 570 nm. The optical absorbance
(OD) value was used to plot the dilution of the samples, and the curves of the standard
product and the samples were compared.
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2.19. Cell Apoptosis Assay

The cells were treated with shUBE2C-3 and shNC for 48 h, respectively. Afterwards,
the cells were digested with trypsin without EDTA. After termination, the cells were
centrifuged at 1000 rpm for 5 min at 4 ◦C to remove the supernatant containing trypsin, and
were then washed 2 times with precooled PBS. The cells were regenerated with serum-free
medium, and cell apoptosis was analyzed using an Annexin V-FITC Apoptosis Detection
Kit (Beyotime Biotechnology, C1062M) according to the instructions.

2.20. Cell Cycle Assay

After 48 h treatment of shNC and shUBE2C, the cells were washed twice with pre-
cooled PBS, centrifuged at 1200 rpm 4 ◦C for 5 min, fixed with 70% ethanol, and then
stained with 10 µg/mL propidium iodide in a solution containing 100 µg/mL RNase in
PBS; the cell pellet was slowly and fully resuspended, and was incubated at 37 ◦C for
30 min in the dark. Then, the cells were analyzed on a BD FACSCalibur (Becton, Dickinson
and Company, San Jose, CA, USA).

2.21. RNA-Seq

Total RNA was extracted from the cells transfected for 48 h using Trizol reagent (Takara,
Japan) and stored at −80 ◦C. The complementary DNA (cDNA) libraries of each pooled
RNA sample for single-end sequencing were generated using the NEBNext® UltraTM RNA
Library Prep Kit for Illumina® (NEB, E7530L) according to the manufacturer’s instructions.
The cDNA libraries were subjected to the NovaSeq 6000 system (Illumina), according to
commercially available protocols. The changed RNAs were validated by quantitative PCR
using the primers listed in Table S2.

2.22. RNA-Seq Analysis

The quality control of raw sequencing data was conducted using fastp [42] The clean
reads from RNA-seq were aligned to the human reference genome sequence, GRCH38.p13,
using the HISAT2 program (v2.2.3) [43] The gene expression level was determined by
the featurecounts function of subread software with the genome annotation file from
GENCODE (v36) [44–46].

2.23. Statistical Analysis

Data were showed as the mean values with the standard error of the mean. Statistical
differences were determined using Student’s t-test or one-way ANOVA. p < 0.05 was
considered to indicate statistical significance.

3. Results
3.1. The Highly Expressed KAT2A and E2F1 Could Promote Cancer Progress in Pan-Cancer

From the GEPIA online analysis, we found that compared with the expression level
distributed in a normal person, KAT2A was slightly higher in cancer patients, and E2F1
was obviously higher expressed in cancer patients (Figure 1A,C) [47,48]. As a result of
the TCGA pan-cancer transcriptome data, the expression levels of KAT2A and E2F1 were
significantly up-regulated in 16 and 20 kinds of tumor tissues compared with normal
tissues, respectively. Both the expression levels of KAT2A and E2F1 were significantly up-
regulated in the same 16 cancers, and E2F1 was also higher expressed in CESC, GBM, KICH,
and UCEC cancers (Figure 1B,D). In addition, the expression levels of KAT2A and E2F1
in pathological stages were remarkably higher expressed in stage III and IV in 10 cancers
(Figure 1E,F). These findings suggested that KAT2A and E2F1 may play an important role
in tumor development.

From the results of CCK-8 and wound-healing assays, the proliferation of MCF-7,
786-O, and NCI-H460 cells (Figure 2A–F), and the cell migration ability of NCI-H460 cells
(Figure 2G,H) were suppressed with the knockdown of either KAT2A or E2F1, compared
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with the control group. Moreover, the knockdown of KAT2A significantly inhibited the
colony-forming ability of NCI-H460 cells (Figure 2I).
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Figure 1. The expression levels of KAT2A and E2F1 in pan-cancer tissues and cells. The expression
profiles of KAT2A (A,C), E2F1 in a normal person and patients. The darker the color, the higher the
gene expression. The expression levels of KAT2A (B) and E2F1 (D) in TCGA pan-cancer tissue and
normal tissue samples. The expression levels of KAT2A (E) and E2F1 (F) in pathological stages. The
statistical significance was analyzed by Student’s t-test (two-tailed) analysis. ACC, adrenocortical
carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical
squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD,
colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal
carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH,
kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell
carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepato-
cellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO,
mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG,
pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocar-
cinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT,
testicular germ cell cancers; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus
endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma. *: p < 0.05; **: p < 0.01;
***: p < 0.001; ****: p < 0.0001; ns: no significance.
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MCF-7 (A), 786-O (B), and NCI-H460 (C) were observed using CCK-8. (D–F) After transfecting siNC
and siE2F1-2, the cell proliferation ability of MCF-7 (D), 786-O (E), and NCI-H460 (F) was detected
by CCK-8 assay. Data are representative from at least six independent experiments. The NCI-H460
cells’ migration ability after interference with KAT2A (G) and E2F1 (H), and their negative control
(NC), respectively. Data are representative from three independent experiments. (I) Clone formation
of NCI-H460 cells with a stable knockdown of KAT2A-1 and NC. Data are representative from three
independent experiments. The statistical significance was analyzed by Student’s t-test (one-tailed)
analysis. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001.
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3.2. UBE2C May Be a Downstream Gene That Is Co-Regulated by KAT2A/E2F1 in Pan-Cancer

In order to explore the potential target genes co-regulated by KAT2A and E2F1, the
differentially expressed genes (DEGs) of KAT2A and E2F1 were screened according to
the conditions. A total of 9 to 1202 overlapping DEGs were obtained from different
cancer types (Figure S1A–K). Among 11 cancers, there were 222 genes that appeared
in more than five cancer types at the same time (Figure S1L), including UBE2C, which
appeared in six types of cancer (Table S3). The GO analysis of the overlapping 222 DEGs
revealed that the biological pathways (BP) were related to DNA replication, nuclear division,
the regulation of cell cycle phase transition and cell cycle checkpoint, and so on (Figure
S2A); the enriched cell components (CC) included chromosomal region, chromosome,
centromeric region, spindle, and kinetochore (Figure S2B); and the molecular function
(MF) was involved in the action of catalytic activity, acting on DNA, deoxyribonuclease
activity, and so on (Figure S2C). The KEGG pathway analysis indicated that these genes
were significantly enriched in the cell cycle, DNA replication, homologous recombination,
base excision repair and nucleotide excision repair, and so on (Figure S2D). From the result
of correlation analysis in tumor tissue samples across 11 cancer types and cell line samples
in CCLE, we found that the correlation coefficient between the two in KAT2A, E2F1, and
UBE2C was 0.037–0.82 (Figure 3A). Considering the analysis results of the transcriptional
data of various cancers in the TCGA database (Figure S1), it is suggested that UBE2C may
be a downstream gene that is co-regulated by KAT2A and E2F1. Correspondingly, we
found that both the mRNA and the protein levels of UBE2C were significantly suppressed
after the knockdown of KAT2A or E2F1 in MCF-7, 786-O, and NCI-H460, respectively
(Figure 3B–H). Moreover, the mRNA/protein changes of E2F1 were significantly inhibited
after knocking down KAT2A (Figure 3B–D). Furthermore, the knockdown of UBE2C caused
an extreme decrease of the KAT2A protein level (Figure 3H).

Additionally, the results of cellular immunofluorescence showed the nuclear local-
ization of KAT2A and E2F1 in MCF-7, 786-O, and NCI-H460 cells (Figure 4A). Moreover,
ChIP-qPCR showed that KAT2A and E2F1 can bind to the −322 to +39 region of the UBE2C
promoter (with more than one-fold enrichment), not −1081 to −819, or +11 to +215 regions
(with less than one-fold enrichment) (Figure 4B–G). Additionally, the dual luciferase re-
porter gene experiment also confirmed that E2F1 could bind to the −273 to −266 region
of the UBE2C promoter (Figure S3A–F). Moreover, the ChIP-qPCR assay demonstrated
that the KAT2A bound to the promoter region of UBE2C, and increased the H3K9 acetyla-
tion level in this promoter region, which suggested that KAT2A and E2F1 may cooperate
to regulate UBE2C gene transactivation via histone modification. Moreover, the Co-IP
assays showed that KAT2A, E2F1, and H3K9ac could bind to each other (Figure S3G).
These results demonstrated that KAT2A may promote the expression of UBE2C through
combining with E2F1 to the E2F1 binding site on UBE2C promoter −322/+39 region to
increase the acetylation level of H3K9, and consequently stimulated cancer cell proliferation
and migration.

3.3. UBE2C Highly Expresses in Pan-Cancer

The results of the GEPIA online analysis and TCGA database showed that the ex-
pression of UBE2C was higher in many types of tumors than normal tissues, especially in
brain, lung, and breast (Figure 5A,B). Additionally, the result of the expression levels of
UBE2C in pathological stages showed that it was significantly highly expressed in stage
III and IV in 10 types of cancer (Figure 5C). In addition, based on our previous study [39],
the analysis of tumor tissue single-cell transcriptome data showed that the expression of
UBE2C has a significant up-regulation trend in cancer cell clusters (CS), such as CS4 of CRC,
CS2 of LC, CS4 of OV, CS3 of PDAC, and CS5 of SCC (Figure S4). Moreover, the survival
analyses revealed that the high expression of UBE2C was significantly associated with
a poor prognosis in patients of nine cancer types (Figure 5D). The above results suggested
that UBE2C was up-regulated in a variety of cancer tissues/cells, and it may play a pivotal
role in the development of pan-cancer.
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Figure 3. Both KAT2A and E2F1 could regulate the expression of UBE2C in different cancers. (A) The
correlation coefficient between KAT2A, E2F1, and UBE2C in different cancers. (B–D) The expression
levels of KAT2A, E2F1, and UBE2C were detected by qRT-PCR after interference with KAT2A and NC
in MCF-7 (B), 786-O (C), and NCI-H460 (D) cells. (E–G) qRT-PCR detected the expression levels of
KAT2A, E2F1, and UBE2C after interference with E2F1 and NC in MCF-7 (E), 786-O (F), and NCI-H460
(G) cells. Data are representative from at least three independent experiments. N = 3. The statistical
significance was analyzed by Student’s t-test (one-tailed) analysis. (H) After interfering with KAT2A,
E2F1, and UBE2C and their corresponding NC, the expression levels of their encoded proteins in
MCF-7, 786-O, and NCI-H460 cells were detected using Western blot, respectively. N = 1. *: p < 0.05;
**: p < 0.01; ***: p < 0.001; ****: p < 0.0001.
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Figure 4. KAT2A and E2F1 bind to the UBE2C promoter in different cancer cells. (A) Cellular
immunofluorescence showed the nuclear localization of KAT2A and E2F1 in MCF-7, 786-O, and NCI-
H460 cells. (B–G) After interference with KAT2A and E2F1 and their corresponding NC, respectively,
the enrichment of KAT2A, E2F1, and H3K9ac on the UBE2C promoter. Data are representative from
two independent experiments. N = 2. The bar graph represents mean values, and the dot plots of
individual data points are overlaid on bar graphs.

3.4. Knockdown of UBE2C Significantly Inhibits Cancer Cell Proliferation and Migration, and
Promotes Cell Apoptosis

To investigate the function of UBE2C in MCF-7, 786-O, and NCI-H460 cells, we
transfected the cell lines with UBE2C shRNA (shUBE2C), and the qRT-PCR results showed
that the expression of UBE2C in shUBE2C-treated group was significantly lower than that
in the negative control group (shNC) (Figure 6A). Additionally, the results from the CCK-8
assay showed that the proliferation of different cancer cell lines was markedly suppressed
with knocking down UBE2C in MCF-7, 786-O, and NCI-H460 cells compared with the
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control group (Figure 6B–D). As a key downstream gene of KAT2A and E2F1, we also found
that UBE2C significantly inhibited the proliferation of the liver cancer cell line, HepG2, and
pancreatic cancer cell line, BxPC3, through a CCK-8 assay (Figure S5), which suggested
that UBE2C plays a critical role in pan-cancer. The EdU experiment suggested that the
number of proliferating cells was significantly reduced after the knockdown of UBE2C at
48 h (Figure 6E). In addition, we found that the cell proliferation ability was significantly
inhibited after co-interfering with KAT2A and UBE2C, E2F1, and UBE2C, compared to
that of only knocking down KAT2A or E2F1 in NCI-H460 cells (Figure 6F,G). Moreover,
compared with the control group (pLVX-puro), the overexpression of UBE2C (pLVX-UBE2C)
significantly promoted cell proliferation, whereas knocking down KAT2A and E2F1 caused
an inhibition on cell proliferation, which can be restored by the overexpression of UBE2C
(Figure 6H,I). Moreover, the overexpression of KAT2A (pLVX-KAT2A) also significantly
promoted cell proliferation, whereas knocking down UBE2C caused an inhibition on cell
proliferation, which can be restored by the overexpression of KAT2A (Figure 6J). These
results not only suggested that the downregulation of UBE2C could significantly inhibit the
proliferation of tumor cells, but also confirmed that KAT2A and E2F1 could indeed affect
the proliferation of tumor cells through regulating the expression of UBE2C.
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Figure 5. UBE2C significantly highly expresses in pan-cancer tissues and cells. (A) The expression
profile of UBE2C in a normal person and patients. The darker the color, the higher the gene expression.
(B) The expression level of UBE2C in TCGA pan-cancer tissues and their corresponding normal
tissues. (C) The expression level of UBE2C in pathological stages of different cancer types. The
statistical significance was analyzed by Student’s t-test (two-tailed) analysis. (D) The survival
analysis of UBE2C in different cancer types. Kaplan–Meier survival analysis and the log-rank test
were employed to compare OS between the tumor and normal cohorts. *: p < 0.05; **: p < 0.01;
***: p < 0.001; ****: p < 0.0001; ns: no significance.
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Figure 6. Interference with UBE2C significantly inhibits cancer cell proliferation. (A) The expression
level of UBE2C was detected by qRT-PCR after interference with UBE2C and NC in MCF-7, 786-O,
and NCI-H460 cells. Data are representative from four independent experiments. CCK-8 results of
MCF-7 (B), 786-O (C), and NCI-H460 (D) cells interfered with UBE2C and NC at different time points.
Data are representative from at least six independent experiments. (E) EdU results of MCF-7, 786-O,
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and NCI-H460 cells interfered with UBE2C and NC at 48 h. EdU marks the proliferating cells, Hoech-
est represents the nucleus, and Merge represents an overlay of EdU and Hoechest. 10× magnification.
Data are representative from three independent experiments. CCK-8 results of separately or jointly
interfered with KAT2A and UBE2C (F), or E2F1 and UBE2C (G), and corresponding control at different
time points. CCK-8 results of interference with KAT2A (H) or E2F1 (I), but overexpressed UBE2C
and their corresponding control groups at different time points. (J) CCK-8 results of interference
with UBE2C, but overexpressed KAT2A and their corresponding control groups at different time
points. Data are representative from eight independent experiments. The statistical significance was
analyzed by Student’s t-test (one-tailed) analysis. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001.

Next, we examined the effects of UBE2C on cell metastasis and apoptosis. The results
of the wound-healing assay (Figure S6A–C) and transwell experiment (Figure S7A–C)
showed that the downregulation of UBE2C remarkably suppressed the cell migration
ability in MCF-7, 786-O, and NCI-H460 cells. Moreover, the number of apoptotic cells in
MCF-7, 786-O, and NCI-H460 cells (the total number of cells in Q2 and Q3 in the figure)
was significantly higher after 48 h of knockdown of UBE2C than that of the control groups
(Figure S8A–C).

3.5. UBE2C Promotes the Development of Pan-Cancer through Influencing the Cell Cycle

To better understand the molecular signatures after the knockdown of UBE2C in NCI-
H460 and MCF-7 cells, we performed RNA-seq analysis and analyzed the DEGs. As a result,
a total of 5539 and 1756 DEGs in NCI-H460 and MCF-7 cancer cells was screened with
|FC| > 1.2 and FDR < 0.05, respectively (Figure 7A,B). As expected, the significantly
enriched pathways of GO_BP of NCI-H460 were translational initiation, regulation of cell
growth, cell cycle arrest, cell cycle checkpoint, and so on (p.adjust < 0.05) (Figure 7C). The
KEGG pathways of NCI-H460 were the included ribosome, cell cycle, adherens junction,
protein processing in endoplasmic reticulum, and apoptosis (Figure 7D). Additionally,
the GO analysis showed that the DEGs of MCF-7 were highly associated with cell cycle
G1/S phase transition, the intrinsic apoptotic signaling pathway, histone modification,
and DNA replication initiation (Figure 7E). The KEGG analysis showed that the DEGs of
MCF-7 were significantly related to protein processing in the endoplasmic reticulum, DNA
replication, and the cell cycle (Figure 7F). These results suggested that UBE2C may promote
the development of pan-cancer through influencing the cell cycle.

Notably, there were 772 overlap DEGs in the two cell lines, including Cyclin Dependent
Kinase Inhibitor 1B (CDKN1B), Inhibin Subunit β A (INHBA), Ras Homolog Family Member
U (RHOU), BTG Anti-Proliferation Factor 1 (BTG1), Transducer Of ERBB2, 1 (TOB1), N-Myc
Downstream Regulated 1 (NDRG1), MAX Network Transcriptional Repressor (MNT), MAX
Interactor 1, Dimerization Protein (MXI1), and Ajuba LIM Protein (AJUBA), which have
been reported to be involved in the cell cycle and proliferation [49–56]. Intriguingly, the GO
analysis showed that the overlap genes were highly associated with the G1/S transition
of the mitotic cell cycle, intrinsic apoptotic signaling pathway, and negative regulation
of growth and DNA replication initiation (Figure 7G), and the KEGG analysis showed
that they were significantly related to cell cycle and protein processing in the endoplasmic
reticulum (Figure 7H). Moreover, the heat map showed that the DEGs in two cancer cell
lines with interfering UBE2C was involved in the cell cycle (Figure 7I), suggesting that
UBE2C participating in the cell cycle may be a common regulatory mechanism of pan-cancer
development. Therefore, we performed cell cycle experiments and found that the cell cycle
was significantly blocked in the G1 phase after the knockdown of UBE2C, suggesting that
UBE2C may affect the cell cycle by regulating the G1/S phase transition (Figure S9).

To further validate how UBE2C affects the progress of cancer development through
the cell cycle, the DEGs were obtained based on the 30% of high and low expression
levels of UBE2C in 11 types of cancer tissues. A total of 1514 DEGs, which appeared in
five types of cancer, were screened. A total of 596 DEGs was obtained from 1514 DEGs
overlapped with the DEGs from the GSE173127 dataset. The GO analysis of these 596 DEGs
revealed that they were mainly involved in organelle fission, DNA replication, and the
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cell cycle checkpoint (Figure S10A–C), and the KEGG analysis showed that they were also
involved in the cell cycle, DNA replication, and p53 signaling pathway (Figure S10D). The
PPI analysis results of the above 596 DEGs showed that UBE2C can form an interaction
network with Tumor-Transforming Protein 1 (PTTG1), Polo Like Kinase 1 (PLK1), Cyclin
Dependent Kinase 1 (CDK1), Cell Division Cycle 20 (CDC20), cyclin B2 (CCNB2), cyclin
B1 (CCNB1), cyclin A2 (CCNA2), and Breast and Ovarian Cancer Susceptibility Protein 1
(BRCA1) (Figure S10E). Genes regulated by UBE2C can also form an interaction network
with TP53 (Figure S10F). Furthermore, hub genes contained kinesin family members 11 and
20A (KIF11, KIF20A), BUB1 mitotic checkpoint serine/threonine kinase (BUB1), Aurora
Kinase B (AURKB), CCNA2, CCNB2, CDC20, CDK1, topoisomerase (DNA) II α (TOP2A),
and DLG associated protein 5 (DLGAP5) (Figure S10G).
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Figure 7. Functional enrichment analysis of RNA-Seq DEGs. (A,B) The volcano maps of NCI-H460
(left panel) and MCF-7 (right panel) DEGs with threshold of |FC| > 1.2 and FDR < 0.05. ns: no
significance. (C,D) The GO_BP and KEGG pathways of NCI-H460 DEGs, respectively. (E,F) The
GO_BP and KEGG pathways of MCF-7 DEGs, respectively. (G,H) The GO_BP and KEGG pathways
of the overlap DEGs between NCI-H460 and MCF-7 cells, respectively. (I) The cell-cycle-related
genes from both TCGA and RNA-seq were clustered using hierarchical clustering based on Euclidean
distance. The color represents the TPM of different genes from shUBE2C and shNC groups of
NCI-H460 and MCF-7 cancer cell lines.
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4. Discussion

Multiple studies have revealed that KAT2A was highly expressed in a variety of
cancers compared with adjacent tissues, such as liver cancer [57], colon adenocarcinoma
tissues [58], and non-small cell lung cancer tissues [16]. The downregulation of KAT2A
can significantly reduce the proliferation and migration of cancer cells and the growth
of xenograft tumors [57,59]. In this study, we found that KAT2A was generally highly
expressed in seven cancer tissues compared with normal tissues, including BLCA, CHOL,
ESCA, and HNSC, KIRP, STAD, and THCA. As a transcription factor, high E2F1 levels
were commonly associated with aggressive cancer and poor patient prognosis for multiple
cancer types. E2F1 transcription factor was a key regulator of genes required for cell cycle
progression, cell proliferation, and differentiation [21,60], and played a key regulatory role
in the invasion–metastasis cascade of certain cancer types [61,62]. Previous studies have
revealed that E2F1 can induce cell metastasis by inducing chemoresistance, angiogenesis,
secondary site extravasation, and EMT [63–69] This study found that E2F1 was significantly
highly expressed in 20 cancers, and it was significantly related to the poor prognosis in
patients of 9 different cancers.

By screening the transcriptome data of 11 cancer tissues of TCGA, it was exposed that
the gene set potentially co-regulated by KAT2A and E2F1 was significantly enriched in
the cell cycle, and participated in DNA replication, base excision repair, and nucleotide
excision repair. It was suggested that the regulatory network of KAT2A and E2F1 involved
in the cancer process was very complex, and it could regulate the expression level of genes
involved in the cancer development process.

Previous studies have shown that KAT2A could increase the chromatin accessibility of
E2F1, DNA Damage Inducible Transcript 3 (DDIT3), and other transcription factors, and
form protein complexes with them, and then be recruited to the promoter regions of related
genes, consequently enhancing their expression through increasing the acetylation level of
H3K9 on these gene-promoting regions and regulating the development of cancer. In this
study, the ChIP-qPCR and Co-IP results have demonstrated that KAT2A may interact with
E2F1 and form a complex to bind the UBE2C promoter in MCF-7, 786-O, and NCI-H460
cells. The complex could increase the level of H3K9ac, thereby promoting the expression
of UBE2C. Moreover, we uncovered that the E2F1 binding site region (−322/+39) of the
UBE2C promoter was consistent with the results of a previous study [70].

This study explored the regulatory relationship between KAT2A/E2F1 and UBE2C,
and found that KAT2A can regulate the expression of UBE2C through interacting with
E2F1. KAT2A can also affect the expression of E2F1, which is in agreement with previous
studies [16,71]. E2F1 can also regulate the expression of KAT2A, but whether it affects
the expression of KAT2A through the E2F1 binding site on the KAT2A promoter or other
mechanisms still needs further in-depth research. Interestingly, the downregulation of
UBE2C can inhibit KAT2A protein expression levels, indicating that UBE2C can regulate the
expression of KAT2A and form feedback regulation. Previous studies have reported that the
SCF-Cyclin F ubiquitin ligase complex participates in the ubiquitination and degradation
of E2F1 [72], but whether its degradation required the participation of UBE2C has not been
reported. If it was required for the involvement of UBE2C, it can be explained that the
E2F1 protein was significantly upregulated in 786-O and NCI-H460 after the knockdown
of UBE2C for the reason that the degradation of the E2F1 protein was reduced after the
knockdown of UBE2C. However, what role these up-regulated E2F1 proteins may play
need further research.

Given the clinical and functional significance of KAT2A/E2F1/UBE2C in pan-cancer,
we concluded that KAT2A/E2F1/UBE2C and its associated pathway were crucial for cancer
carcinogenesis, and targeting this pathway may be pivotal in the prevention or treatment
of pan-cancer.
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UBE2C; Table S1. Summary of cancer and normal samples analyzed in this study; Table S2. Primers
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