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Abstract: Brugada syndrome (BrS) is an inherited autosomal dominant genetic disorder responsi-
ble for sudden cardiac death from malignant ventricular arrhythmia. The term “channelopathy”
is nowadays used to classify BrS as a purely electrical disease, mainly occurring secondarily to
loss-of-function mutations in the α subunit of the cardiac sodium channel protein Nav1.5. In this
setting, arrhythmic manifestations of the disease have been reported in the absence of any apparent
structural heart disease or cardiomyopathy. Over the last few years, however, a consistent amount of
evidence has grown in support of myocardial structural and functional abnormalities in patients with
BrS. In detail, abnormal ventricular dimensions, either systolic or diastolic dysfunctions, regional
wall motion abnormalities, myocardial fibrosis, and active inflammatory foci have been frequently
described, pointing to alternative mechanisms of arrhythmogenesis which challenge the definition of
channelopathy. The present review aims to depict the status of the art of concealed arrhythmogenic
substrates in BrS, often resulting from an advanced and multimodal diagnostic workup, to foster
future preclinical and clinical research in support of the cardiomyopathic nature of the disease.

Keywords: Brugada syndrome; substrate; cardiomyopathy; sudden cardiac death; inflammation;
fibrosis; genetics; ventricular arrhythmia

1. Brugada Syndrome: Definition and Current Classification

Brugada syndrome (BrS) is an inherited autosomal dominant genetic disorder, first de-
scribed in 1992 [1], which combines typical electrocardiographic findings with an increased
risk of malignant ventricular arrhythmias. Its prevalence is estimated from 1 in 5000 to 1 in
2000 cases, with a strong male predominance [2].

Current international guidelines [3,4] agree in defining BrS in presence of a type 1
Brugada electrocardiogram (ECG) pattern, i.e., a persistent ST-segment elevation ≥2 mm
followed by a negative T-wave in ≥1 of the right precordial leads V1 to V2, occurring either
spontaneously or following a sodium channel blocker test (Figure 1). However, according
to the Shanghai score system of 2016 [5], if the type 1 pattern is unmasked during a sodium
channel blocker test, then clinical history, family history, and a genetic test need to be
evaluated to meet the diagnostic criteria.

Despite recent advances, the pathogenetic mechanisms of the disease remain not fully
understood. BrS had been initially proposed to be a primary disease functionally involving
impairments in the electric potential transmission. BrS was defined as a channelopathy, due
to the association of the disease genotype with loss-of-function mutations in genes encoding
subunits of the cardiac ion channels [6]. A consistent amount of attention was invested
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in mutations in the SCN5A gene, encoding the α subunit of the cardiac sodium channel
protein Nav1.5, responsible for the initial upstroke of the action potential [7]. This had been
thought to happen in the absence of ischemia, electrolyte disturbance, or structural heart
disease, as supported by silent imaging and post-mortem pathology [8].
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Figure 1. ECG findings in patients with Brugada syndrome. Representative examples of diagnostic
ECGs for Brugada syndrome are shown. Panel (A). A 25-year-old male with a spontaneous type
1 pattern on 12-lead ECG. Panel (B). A 36-year-old male with right bundle branch block pattern
on baseline ECG (upper panel) and subsequent unmasking of a type 1 Brugada ECG pattern after
administration of ajmaline at 1 mg/kg (lower panel). ECG = electrocardiogram.

Nevertheless, several studies suggested that subtle structural or microscopic abnor-
malities may actually take place in BrS, including dilation of the right ventricular outflow
tract (RVOT), localized inflammation, and fibrosis [9,10]. These observations lead to a
rethink of the context of the disease, referring it to apparently normal hearts instead of
structurally normal hearts, paving the way for a controversial overlap between BrS and
cardiomyopathies [11,12]. Indeed, case reports and case series exploring the presence of
concealed substrates in BrS are still preliminary.

The disclosure of concealed substrate abnormalities in BrS may be the answer to
the perception of BrS as more than a pure channelopathy, potentially enabling an im-
provement in the current diagnostic, prognostic, and therapeutic workflow. The present
review aims at exploring this concept while providing an updated description of cardiomy-
opathic changes associated with the disease, from pathophysiological, diagnostic, and
prognostic viewpoints.

2. Inheritance and Genetic Bases of Brugada Syndrome: The State of The Art

At the time that the first genetic alteration in the SCN5A gene underlying BrS was
reported in 1998 [6], highlighting an autosomal dominant inheritance, two other BrS genetic
hallmarks had already been recognized: incomplete penetrance and variable expressivity.
To date, more than 150 loss-of-function alterations have been described in the SCN5A
gene [13], leading to a decrease in the I-Na+ current and a consequent shortening of the
depolarization phase of the action potential [7].

Some studies suggested a role for SCN5A alterations in the prediction of patients’
arrhythmic risk. Indeed, carriers of a deleterious variant in the SCN5A gene show a
spontaneous BrS ECG [14] and a more aggressive arrhythmic phenotype; however, this
feature needs to be further investigated [15].
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Overall, about 20% of cases are caused by rare coding variants in the SCN5A gene [16,17],
which still remains the only gene with definitive evidence of an association with BrS and
is clinically actionable [18–20]. Currently, more than 20 candidate BrS genes have been
proposed [6,17,21–43], but their causality in BrS pathogenesis is widely debated [15]. The
current knowledge about genetics in BrS is summarized in Table 1. To date, however, most
patients do not carry causative mutations on the panel of BrS genes, highlighting the need
for a better characterization of the molecular basis of this disorder.

Table 1. Genetics of Brugada syndrome.

BrS
Susceptibility Genes

Prevalence
in BrS Cases

BrS
Risk Loci SNPs

SCN5A 20–25% SCN5A

rs11708996
rs7638909a

rs62241190a
rs7374540a
rs7433206a

rs34760424a
rs41310232a
rs6782237a

SCN10A >5% SCN10A
rs10428132
rs6801957

CACNA1C CACNB2 1–2% HEY2
rs9388451
rs9398791

PKP2 HCN4

<1%

HDDC2
rs6913204a

KCNH2 KCNE3 rs6913204a
CACNA2D1 KCNJ8

TBX20
s11765936

KCND3 RANGFR rs340398a
SCN2B SCN1B GATA4 rs804281
KCND2 TRPM4 ZFPM2 rs72671655
KCNE5 ABCC9 WT1 rs72905083
SCN3B SLMAP TBX5 rs883079
FGF12 SEMA3A IRX3 rs11645463
GPD1L IRX5 rs72622262

References: [6,17,21–43]
PRKCA rs12945884

MAPRE2 rs476348
MYO18B rs133902

The current knowledge about genetics in BrS is shown, including susceptibility genes, prevalence, risk loci, and
polymorphisms. BrS = Brugada syndrome; SNPs = single nucleotide polymorphisms [6,17,21–27,27–43].

The limited number of BrS cases with a clear monogenic inheritance has pointed
toward new hypotheses of a more complex genetic architecture of the disease, involving
multigenic inheritance and a polygenic risk score that can influence penetrance and risk
stratification [44]. Recently, studies exploiting the genome-wide association study (GWAS)
approach suggested that common genetic variations can modulate the phenotypic expres-
sion of BrS, providing evidence for a model of inheritance more complex than previously
thought [17,43].

Indeed, polygenic risk score analyses based on several susceptibility variants demon-
strate a cumulative contribution of common risk alleles among different BrS patients, as
well as genetic associations with cardiac electrical traits in the general population, thus
supporting the concept of “genomic arrhythmia” [43].

Moreover, the recent findings also highlight that genes encoding structural proteins or
cardiac transcription factors are associated with the BrS phenotype, thus strengthening the
hypothesis of overlap with structural cardiomyopathies [43,45].

Clinical BrS manifestations are more common in adults, and despite autosomal in-
heritance, they are eightfold more frequent in males than in females [4]. To date, gender
differences in BrS phenotype manifestation are widely recognized: female patients less
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frequently display a type 1 Brugada ECG pattern and exhibit lower inducibility rates. But
the underlying causality remains unclear and needs to be further investigated [46]. Recently,
a higher prevalence of pathogenic variants in SCN5A has been published in symptomatic
female patients with BrS compared with male patients, and an even higher prevalence in
females with BrS with arrhythmic events [47] suggesting that pathogenic variants in SCN5A
in women may be a risk factor, perhaps by overcoming a “protective” environment [1].

Overall, although different genetic approaches have been adopted, the characterization
of BrS molecular bases remains limited. The identification of new candidate genes and risk
factors can lead to a better definition of BrS pathogenic mechanisms, allowing an increase
in diagnostic sensitivity and the improvement of family and clinical management and
risk stratification.

3. Imaging Abnormalities

Cardiomyopathies are uniformly characterized by the identification of either structural
or functional myocardial abnormalities via imaging techniques. Although most patients
with BrS display no remarkable alterations on a transthoracic echocardiogram (TTE) or via
cardiac magnetic resonance (CMR) imaging [1], some ECG findings have been suggested
as possible indicators for underlying anatomical arrhythmogenic substrates [48] (Table 2).
For instance, a correlation between patients with a spontaneous type 1 ECG pattern and a
lower right ventricular ejection fraction (RVEF) has been described [49], as well as focal
mechanical abnormalities in the RVOT [50].

Table 2. Concealed substrates in Brugada syndrome.

Structural Findings for Underlying Anatomical Arrhythmogenic
Substrates in BrS. Studies

Echocardiogram
- Decreased biventricular function at TEI index through sodium channel

blocking test.
- Reduction in the RV longitudinal strain.

- Morphologic and wall-motion abnormalities of the RV.

[51]
[52]
[53]

Cardiac magnetic resonance
- Lower right ventricular ejection fraction.

- LV/RV dilation, with a wider involvement of the RV than LV.
- Enlarged RVOT area, larger RV end-systolic volumes, lower LV and RV

ejection fraction.
- Fibrosis and abnormal late fractionated potentials, indicative of slowed

conduction in the RVOT region.

[49]
[54]
[55]
[9]

Endomyocardial biopsy
- Lymphocytic myocarditis with inflammatory infiltrates and focal

necrosis, with or without microaneurysms.
- Parvovirus B19 with VF.

- RV hypertrophy and fibrosis, mainly at RVOT level, with epicardial fatty
infiltration.

- Epicardial interstitial fibrosis, along with increased collagen throughout
the heart and a reduction of the expression of gap junctions in the RVOT.

[56]
[57]
[58]
[59]
[60]
[9]
[61]

EAM
- Electroanatomical substrate on the epicardial rather than endocardial

surface of the RVOT.

[62]
[63]
[64]

Subtle substrate abnormalities with a potential arrhythmogenic role in BrS are shown, as documented by the
multimodal diagnostic workup. BrS = Brugada syndrome; EAM = electroanatomical map; RV = right ventricular;
RVOT = right ventricular outflow tract.

Although the classical echocardiography parameters have a limited yield in BrS,
new techniques including strain and speckle tracking [65,66] have led to a more accurate
evaluation of the systolic and diastolic functions in BrS. In addition, the TEI index, which
evaluates both systolic and diastolic time intervals to assess global cardiac dysfunction, has
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been used to differentiate BrS and non-BrS patients through a sodium channel blocking test:
only the former ones showed prolonged PQ intervals and a decreased biventricular function
at the TEI index [51,52]. Evaluation of the RV longitudinal strain with 2D speckle tracking
quantifies regional myocardial deformation, with high spatial resolution speckle tracking
not being affected by angle dependency or translation or tethering from the surrounding
tissue [67]. The RV longitudinal strain has shown a significant reduction in BrS patients [51].
Moreover, speckle tracking echocardiography may help in differentiating BrS from the
right bundle branch block (RBBB), as it was shown to track slower conduction through free
wall segments which are found in RBBB but not in BrS [66].

CMR is an accurate and reproducible tool for estimating both left ventricular (LV) and
RV volumes and is now considered the gold standard technique for cardiomyopathies [3,4].
Although controversial [68], anatomical involvement in BrS has been demonstrated in the
literature. In detail, greater RV volumes and reduced RV function have been described [69],
especially at RVOT [55]. In addition, some BrS patients display a midwall stria of late
gadolinium enhancement within the LV consistent with an underlying cardiomyopathic
process [69]. These findings lend further support to the presence of subtle structural
abnormalities in BrS, with a possible evolution toward a cardiomyopathic phenotype over
time [69]. Examples are shown in Figure 2. Additional morphofunctional abnormalities
were recently reported: for instance, a direct correlation was shown between the LV/RV
dilation and SCN5A mutation, with wider involvement of the RV than the LV [54] as
observed in the classic arrhythmogenic right ventricular cardiomyopathy (ARVC). A recent
study [70] allowed a more accurate localization of the aforementioned abnormalities, which
appear to be more extended than RVOT as the ajmaline test had them localized both
in the upper anterior wall but also in the antero-inferior wall, leading to an increased
arrhythmogenic risk. In the same study, a significant correlation was observed between
the RV dilation/dysfunction and SCN5A mutations [70]. In particular, the regional RV
contractility abnormalities were found to be dynamic and functionally related to the
expansion of the electrical substrate after ajmaline [70], accounting for the limited diagnostic
value of baseline CMR.
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Figure 2. Imaging abnormalities in Brugada syndrome. Subtle imaging abnormalities associated with
BrS are shown. Panel (A) echocardiogram of a patient with genetically proven BrS. Despite normal
left ventricular systolic function (LVEF = 62%), impairment in global longitudinal strain is shown
(GLS = −16%, nv < −20%) mainly involving the lateral wall (arrows). Panel (B) cardiac magnetic
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resonance in the same patient shows slight hyperintensity in T2-weighted short tau inversion recovery
sequences (STIR, upper panel) involving the inferolateral basal segment of the left ventricular wall,
and focal late gadolinium enhancement (LGE, lower panel) involving the basal segment of the lateral
wall (arrow). BrS = Brugada syndrome; LVEF = left ventricular ejection fraction.

4. Histopathological Findings

From the first characterizations of the ECG pattern, structural alterations, such as
fibrosis, fibrolipomatosis, and RV cardiomyopathic changes, were described in patients with
apparent idiopathic ventricular fibrillation (VF) [53]. As recently described for desmoplakin
cardiomyopathy [71], cardiac inflammation might represent a “hot-phase” in BrS and lead
to the natural progression of the disease [72,73].

Lymphocytic myocarditis (Figure 3) with inflammatory infiltrates and focal necrosis,
with or without microaneurysms, was found in endomyocardial biopsies from the RV, and
the LV as well, in patients with symptomatic BrS [56]. Among BrS patients, those who
were carriers of SCN5A mutations displayed more cardiomyopathic changes. Remarkably,
many patients were positive for intracardiac viral genomes. The authors suggest that the
classic BrS ECG pattern is not a marker of a specific syndrome, but rather an electrical
expression of RV structural abnormalities which may be the outcome of genetic, infective,
and inflammatory conditions. In another study, RVOT endomyocardial biopsy, guided
by a three-dimensional voltage map, showed that myocardial inflammation at histology
correlated with a higher prevalence of abnormal bipolar map and greater bipolar low-
voltage area extension in patients with BrS [10]. Notably, parvovirus B19 was associated
with myocarditis-induced VF in many patients with BrS [57–59]. On the other hand, critical
SCN5A variants can be found in patients with arrhythmic myocarditis, even in the absence
of the BrS ECG pattern [74]. These findings support the role of myocardial inflammation as
a possible arrhythmogenic substrate [75,76].
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Figure 3. Histopathologic findings in Brugada syndrome. Myocardial tissue abnormalities associated
with BrS are shown. Panel (A). Endomyocardial biopsy obtained from the right ventricle in a
patient with genetically proven BrS shows lymphocytic inflammatory infiltrate with a CD3+ T-cell
count consistent with myocarditis (immunohistochemistry assay—upper panel; hematoxylin-eosin
assay—lower left panel; arrows). In the same patient, trichrome assay identifies areas of interstitial
and replacement-type fibrosis, in blue color (lower right panel, arrows). Panel (B). Cardiac magnetic
resonance obtained in the same patient before the automated cardioverter defibrillator implant shows
abnormalities in parametric mapping involving the inferolateral left ventricular wall in both T1 and
T2 sequences (n.v. for parametric mapping: T1 < 1045 ms; T2 < 50 ms). BrS = Brugada syndrome.
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However, other studies failed to confirm definite myocarditis in biopsies from the
RV, by showing only moderate myocardial hypertrophy, moderate fibrosis, and fatty re-
placement of the myocardium, with hypokinetic RV and RV trabeculae [77]. A genetically
positive BrS patient who underwent a heart transplantation for recurrent VF episodes
showed RV hypertrophy and fibrosis with epicardial fatty infiltration, which were deemed
as the origins of ECG alterations. Specifically, the RVOT endocardium showed activation
slowing due to interstitial fibrosis and was the origin of VF, without a transmural repolariza-
tion gradient, and with normal conduction in the LV [60]. Another patient with compound
heterozygosity for a nonsense and a missense mutation in SCN5A revealed changes consis-
tent with a dilated cardiomyopathy and advanced degeneration of the electrical conduction
system with severe sodium channel dysfunction [78]. Even asymptomatic family members
with BrS and SCN5A gene mutation showed histological abnormalities [79], and up to
33% of the families of patients suffering from unexplained sudden cardiac deaths with
idiopathic fibrosis and/or hypertrophy received a post-mortem diagnosis of BrS [80].

Epicardial surface and interstitial fibrosis were described in BrS, along with increased
collagen throughout the heart and a reduction in the expression of gap junctions in the
RVOT. There was a correlation between structural abnormalities and abnormal potentials,
and their ablation abolished the BrS phenotype and malignant arrhythmias [9]. Another
group confirmed that BrS is associated with increased collagen content throughout the RV
and the LV, but irrespective of sampling location or myocardial layer in patients experi-
encing sudden cardiac death [61]. Based on the data provided above, an endomyocardial
biopsy could become a new diagnostic tool for the research of concealed morphological
abnormalities in BrS, as well as for the identification of dynamic arrhythmogenic sub-
strates [75,81,82].

5. Electroanatomical Substrates

Electroanatomical mapping (EAM) is an invasive method to visualize intracardiac
electrical activation [83]. Low voltage and prolonged or fragmented ventricular signals
reflect the arrhythmogenic substrate in BrS patients undergoing EAM [84] (Figure 4).
Initial studies with endocardial mapping localized the electroanatomical substrate in the
RVOT [10,84,85]. However, recent studies could demonstrate that the electroanatomical
substrate is located most often on the epicardial surface of the RVOT [62–64].
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Figure 4. Electroanatomical substrate of Brugada syndrome. Examples of electroanatomical map
abnormalities involving the right ventricle are shown in a patient with genetically proven BrS. The
disproportion between low-voltage areas in bipolar (panel (A)) and unipolar (panel (B)) endocardial
maps indicates the presence of a deep arrhythmogenic substrate consistent with classic arrhyth-
mogenic right ventricular cardiomyopathy. The activation map during sinus rhythm (panel (C))
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shows an extensive area of late potentials within the basal lateral segment of the right ventricle. In
this patient, radiofrequency energy was extensively delivered (panel (D)), aimed at the complete
abolishment of abnormal potentials in the right ventricle. No ventricular arrhythmias were induced
on post-procedural programmed ventricular stimulation. BrS = Brugada syndrome.

In their landmark paper, Nademanee et al. were the first group that performed en-
docardial and epicardial mapping of the RVOT in a case series of nine patients with a
type 1 BrS ECG pattern. They demonstrated that the underlying mechanism is delayed
depolarization over the anterior aspect of the RVOT epicardium [63]. The issue is relevant
since the RVOT has distinct electrophysiological properties as compared to the surround-
ing myocardium [86]. Catheter ablation of the substrate resulted in the normalization
of the BrS ECG pattern and the non-inducibility of VF/ventricular tachycardia (VT) in
most patients [63]. Furthermore, ablation was associated with an event-free follow-up of
20 ± 6 months in all patients [63]. The largest study of endocardial and epicardial EAM
with subsequent ablation in BrS patients (n = 135) was performed by Pappone et al. [64].
Combined endo-epicardial mapping localized the substrate exclusively on the anterior
RVOT and RV anterior free wall of the epicardium. Ajmaline administration increased
the area of the epicardial substrate and catheter ablation resulted in the normalization of
the type 1 BrS ECG pattern and non-inducibility of VT/VF [64]. The substrate size corre-
lates with the arrhythmia inducibility during the electrophysiologic study [87]. A cutoff
of > 4 cm2 of the abnormal electrophysiological substrate on EAM was described as an
independent predictor of inducible ventricular arrhythmias (VT/VF) during programmed
ventricular stimulation [88]. Radiofrequency catheter ablation of ventricular arrhythmias
can reduce the burden of VT/VF and is now recommended for patients with recurrent
ICD shocks or patients who are not suitable or decline an ICD according to current US
guidelines (class I indication, level of evidence B from non-randomized trials) [4]. In the
recent HRS/EHRA/APHRS/LAHRS expert consensus statement [83], catheter ablation
was assigned a class IIa indication (level of evidence B from non-randomized trials) for
patients with recurrent sustained ventricular arrhythmias or implantable cardioverter de-
fibrillator (ICD) therapies. The ablation strategy has shifted away from targeting premature
ventricular complex-triggered VF in BrS patients [89] and toward directly targeting the
substrate on the epicardial aspect of the RVOT [90]. In a systematic review of 233 patients
from 11 case series and 11 case reports, it has been demonstrated that endocardial mapping
alone does not identify the electroanatomic substrate in 93% of cases and that epicardial
substrate modification via catheter ablation is more effective than an endocardial-only
approach [90].

6. Critical Review of Arrhythmic Risk Stratification

The identification of high-risk BrS patients remains a pivotal issue for the prevention
of sudden cardiac death (SCD). Although almost every author agrees on the importance of
symptoms and a spontaneous type 1 pattern [3,4], some other risk markers are controversial.
An aborted SCD or documented VT/VF are clear recommendations [3] for ICD implanta-
tion, giving the burden of recurrences as high as 8–10% per year [91]. Patients diagnosed
after syncope are still at a high risk irrespective of a spontaneous ECG pattern (1.9% per
year if a type-1-induced pattern vs. 2.3% per year if a spontaneous type 1, statistically
nonsignificant), provided vasovagal etiology has been excluded [92]. Defining the etiology
of every syncope is often challenging, and a great effort should be directed toward history
collection to improve patient selection for ICD implants.

A spontaneous type 1 BrS pattern is consistently associated with a higher event
rate, even when asymptomatic (1.2% per year vs. 0.4% per year in drug-induced type 1,
p = 0.049) [92]. However, since the longitudinal variation in the ST-segment in the right
precordial leads is well described [93,94], a structured follow-up must be considered by
employing 12-lead ECG Holter recordings [95].
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Considering the high psychological and physical impact of an ICD in a young popula-
tion, in the last two decades, other features have been proposed for better stratification of
the arrhythmic risk in BrS. So far, little evidence corroborates the hypothesis of a strong asso-
ciation between a specific gene mutation and a worse prognosis [1]. Therefore, multimodal
prognostic workup should also include clinical, electrocardiographic, and electrophysiolog-
ical parameters.

Among the clinical parameters, age and the number of familial cases of SCD can
help to define the individual risk [96,97]. Although few data are available for younger
(<12 years old) and older (>60 years old) BrS patients, the event risk seems lower in elderly
patients [98]. Males are largely predominant in all BrS groups, including SCD and syncope
patients, driving a threefold increase in event risk. For female patients, a PQ interval greater
than 200 ms as well as sinus node dysfunction have been proposed as risk factors [99],
defining a strong role for the hormonal balance on the sodium channels pathophysiology.

As for the electrocardiographic parameters, QRS fragmentation and duration [100],
late potentials [101], and the aVR sign [97] have been proposed. In particular, QRS fragmen-
tation is associated with a twofold to ninefold increase in events, depending on filtering
and recording modalities in different studies [3]. Furthermore, the aVR sign [97] establishes
a link with the pathophysiology of the disease, analyzing right ventricle outflow tract
involvement in some severe arrhythmic phenotypes. The extent of the ST alterations was
in turn linked to the severity of the arrhythmic risk. A BrS type 1 pattern in the peripheral
leads [102] and early repolarization pattern in the inferior leads [103] were linked to an
increased arrhythmic risk. Instead, a prolonged (>200 ms) T peak–T end interval was not
confirmed in different studies [104,105]. A recent paper focused on the depolarization delay
shown by the r’ wave morphology. The authors found a strong correlation between the
dST-Tiso interval and the VT/VF inducibility during the EPS [106]. Nevertheless, further
evidence is needed to use this marker as an independent risk factor.

Albeit controversial, the prognostic value of VF/VT induction during the electrophysi-
ological test (EPS) remains a cornerstone in clinical practice. The latest ESC guidelines [3]
assign a class IIb to the ICD implantation after a positive EPS in asymptomatic patients
with a spontaneous type 1 BrS ECG. No universal agreement exists about the stimulation
protocol, but a standardized right apex and outflow tract stimulation, a drive train [S1-S1]
of eight beats at 600 and 400 ms, and three extrastimuli [S2-S3-S4] with a minimum coupling
interval of 200 ms have been suggested [107]. Inducibility is confirmed if sustained VT or
VF are recorded [107]. Nonetheless, the association between a positive EPS and subsequent
clinical events was confuted by many authors [108,109]. Metanalysis and large observa-
tional studies [110,111] found a more than twofold (hazard ratio 2.55) augmented risk of
spontaneous VF after a positive EPS. Furthermore, an induction with a single extrastimulus
or a ventricular refractory period < 200 ms [3] are valuable elements of vulnerability to
consider in a multiparameter assessment.

An overview of the prognostic factors for BrS is provided in Table 3. Given the multiple
and controversial candidate prognostic factors, different risk scores have been proposed
in the last few years to improve the SCD risk stratification in BrS [5,112]. However, these
scores showed good results for low- and high-risk patients, but poor performances in the
large grey zone of the intermediate-risk patients [113]. However, since most evidence
to date is based on small case series or isolated reports, it is still not possible to define
a hierarchy of prognostic factors as well. Dedicated studies with uniform design and
advanced diagnostic workup are needed for improving it.
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Table 3. Known and candidate prognostic factors for Brugada syndrome.

Prognostic Factors Accounting for Arrthymogenic Risk in BrS. Studies

ECG
- Spontaneous type I Brugada pattern, even when asymptomatic.

- PQ interval greater than 200 ms, as well as sinus node disfunction.
- QRS fragmentation and duration.

- Late potentials.
- aVR sign.

- Brugada type 1 pattern in the peripheral leads.
- Early repolarization pattern in the inferior leads.

[92]
[99]

[100]
[101]
[97]

[102]
[103]

Genetics
- SCN5A mutation

[14]
[15]

Echocardiogram
- Focal abnormalities localized in the upper anterior wall but also in the

antero-inferior wall.
[70]

Endomyocardial biopsy
- Myocardial inflammation.

- Carriers of SCN5A mutations.

[10]
[56]

Cardiac magnetic resonance
- Late gadolinium enhancement. [69]

EPS
- Length of the dST-Tiso interval.

- Induction of ventricular arrhythmias with a single extrastimulus or a
ventricular refractory period <200 ms.

[106]
[110]
[111]

EAM
- Area > 4 cm2 of abnormal electrophysiological substrate. [88]

Factors, either known or potentially associated with an increased arrhythmic risk in BrS, are shown. BrS = Brugada
syndrome; EAM = electroanatomical map; EPS = electrophysiological study.

In this setting, the identification of novel prognostic signs from concealed structural
abnormalities may considerably improve the patient selection for ICD implants, especially
with a primary prevention indication.

7. Conclusive Remarks and Future Directions

We hereby showed that BrS sometimes displays concealed substrates that may be
identified via advanced diagnostic techniques, including CMR, EMB, and EAM. In this
setting, diagnostic criteria for cardiomyopathy may be met more frequently than expected
following genetics and simple tests such as ECGs. Waiting for further research and big data
analysis, many parameters derived from advanced myocardial imaging, electroanatomical
mapping, and histology may be included in a multimodal score to significantly improve
the arrhythmic risk stratification of BrS. For instance, LGE [114], replacement fibrosis [115],
low-voltage areas [116], and myocardial inflammation [117] are recognized risk factors for
many cardiomyopathies. In the setting of BrS, major beneficial effects are expected from
a multimodal assessment, in particular for the majority of patients currently classified at
intermediate risk for SCD [113] and with no clear indications for a primary prevention ICD
implant [3,4].
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