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ABSTRACT Solute-binding proteins (SBPs) are of central physiological relevance for
bacteria. They are located in the extracytosolic space, where they present substrates
to transporters but also stimulate different types of transmembrane receptors coordi-
nating compound uptake with signal transduction. SBPs are a superfamily composed
of proteins recognized by 45 Pfam profiles. The definition of SBP profiles for bacteria
is hampered by the fact that these Pfam profiles recognize sensor domains for differ-
ent types of signaling proteins or cytosolic proteins with alternative functions. We
report here the retrieval of the SBPs from 49 bacterial model strains with different
lifestyles and phylogenetic distributions. Proteins were manually curated, and the
ligands recognized were predicted bioinformatically. There were very large differen-
ces in the number and type of SBPs between strains, ranging from 7 SBPs in
Helicobacter pylori 26695 to 189 SBPs in Sinorhizobium meliloti 1021. SBPs were found
to represent 0.22 to 5.13% of the total protein-encoding genes. The abundance of
SBPs was largely determined by strain phylogeny, and no obvious link with the bac-
terial lifestyle was noted. Most abundant (36%) were SBPs predicted to recognize
amino acids or peptides, followed by those expected to bind different sugars (18%).
To the best of our knowledge, this is the first comparative study of bacterial SBP
repertoires. Given the importance of SBPs in nutrient uptake and signaling, this
study enhances the knowledge of model bacteria and will permit the definition of
SBP profiles of other strains.

IMPORTANCE SBPs are essential components for many transporters, but multiple pieces
of more recent evidence indicate that the SBP-mediated stimulation of different trans-
membrane receptors is a general and widespread signal transduction mechanism in bac-
teria. The double function of SBPs in coordinating transport with signal transduction
remains to a large degree unexplored and represents a major research need. The defini-
tion of the SBP repertoire of the 49 bacterial model strains examined here, along with
information on their cognate ligand profiles forms the basis to close this gap in knowl-
edge. Furthermore, this study provides information on the forces that have driven the
evolution of transporters with different ligand specificities in bacteria that differ in phylo-
genetics and lifestyle. This article is also a first step in setting up automatic algorithms
that permit the large-scale identification of the SBP repertoire in proteomes.

KEYWORDS solute-binding proteins, transport, signal transduction, model bacteria,
transport substrate, signal molecules, transmembrane receptors

Bacterial life is enabled by the uptake of compounds from their environment. To
this end, bacteria have evolved different types of transmembrane transporters that

permit the specific uptake of a variety of organic and inorganic compounds. Several
transporter families, like the ATP-binding cassette (ABC), tripartite ATP-independent
periplasmic (TRAP), and tripartite tricarboxylate transporter (TTT) families, employ
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solute-binding proteins (SBPs) to capture the transport substrate in the extracytosolic
space and to present it to the transmembrane receptor permeases (1). These proteins
thus play a central role in defining the transporter substrate specificity.

Whereas SBPs in Gram-negative bacteria are present as diffusible proteins in the peri-
plasm, they are tethered to the external face of the cytoplasmic membrane in Gram-positive
bacteria and archaea (2). SBPs are found in all kingdoms of life (1) and form a superfamily
composed of many protein families (3). Based on an analysis of their structural distance,
SBPs have been classified into 6 or 7 clusters (1, 4, 5). Although SBPs vary greatly in size,
from 20 to 65 kDa, they share the same overall topology, which consists of two lobes linked
by a hinge region (5–7). The transport substrate binds to the interface of both lobes, a pro-
cess that frequently induces structural rearrangements (8, 9).

Other major constituents of prokaryotic membranes are signal transduction recep-
tors (10). These proteins sense extracytoplasmic signals to define a cellular response,
leading to a more optimal adaptation to a given environmental condition. The most
abundant signal transduction receptors are sensor kinases, chemoreceptors, diguany-
late cyclases and phosphodiesterases, adenylate cyclases, extracytosolic function sigma
factors, and Ser/Thr/Tyr kinases and phosphatases (10, 11). Many of these receptors are
transmembrane proteins that contain an extracytoplasmic ligand-binding domain
(LBD) that is flanked by two transmembrane regions. Signal binding to the LBD creates
a molecular stimulus that is transmitted to the cytosolic part of the receptor, inducing
signaling cascades for the definition of a response.

Transmembrane receptors employ many different LBD types for signal sensing (12,
13), as exemplified by the more than 80 different LBD types identified in chemoreceptors
(12). Typically, transmembrane receptors are stimulated by the direct binding of signal
molecules to LBDs, but there is an alternative mechanism for receptor activation that
consists of the binding of ligand-loaded SBPs to signal transduction receptor LBDs.
Several pieces of evidence suggest that this is a general and widespread mechanism: (i)
different receptor types can be activated by SBP binding, including chemoreceptors (14,
15), sensor kinases (16, 17), diguanylate cyclases/cyclic di-GMP (c-di-GMP) phosphodies-
terases (18, 19) or serine/threonine kinases (20, 21); (ii) this mechanism of receptor stimu-
lation has a wide phylogenetic spread in archaea and Gram-positive and Gram-negative
bacteria (22); (iii) a significant number of different receptor LBD types were found to bind
SBPs (22); (iv) SBPs that belong to at least 13 families were found to bind to receptor
LBDs (22); and (v) the most extensively studied chemoreceptors are the Escherichia coli
proteins, and there is evidence that all four receptors with a periplasmic LBD can be acti-
vated by SBP binding (14, 23–25).

There is scarce information available on the number and type of SBPs present in dif-
ferent bacterial strains, information that forms the basis for establishing eventual links
with bacterial physiology, lifestyle, and habitat. However, establishing the SBP reper-
toire of bacterial strains is hampered by a number of issues: (i) there are at least 45 dif-
ferent SBP Pfam families, most of which have been regrouped into 2 clans (CL0144 and
CL0177) (26); (ii) there are SBP genes that are not in the vicinity of transporter genes
(27); (iii) many domains recognized by Pfam signatures as SBPs are sensor domains of
other signal transduction receptors, like sensor kinases or transcriptional regulators
(26); and (iv) there are cytosolic single-domain proteins that carry out alternative func-
tions and that are also recognized by Pfam SBP signatures (28).

Proteins of the SBP superfamily recognize a very diverse range of ligands, including
amino acids, sugars, organic acids, polyamines, metal cations and oxyanions, inorganic
anions, quaternary amines, peptides, and phosphonates (7, 27). Remarkably, the recent
classification of SBPs into 7 clusters based on structural phylogenetics made it possible
to establish a correlation between SBP clusters and ligand specificity (5). In addition,
the TransportDB database, which was developed to annotate transport systems in
sequenced genomes, contains an algorithm that predicts the ligands recognized by
transport systems and their cognate SBPs (27). In this regard, in a previous study we
assessed the precision of these TransportDB predictions. We purified 17 SBPs and
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determined their ligand profile experimentally, showing that the experimental data
matched, to a large degree, the predictions by the TransportDB database (29).

In the present study, we developed an algorithm that identifies members of the
SBP superfamily in bacterial strains. We used this algorithm to define the SBP repertoire
of 49 model strains that show a wide phylogenetic spread and that differ in lifestyle
and habitat. Our results reveal very large differences in the number and type of SBPs
between strains. No obvious links between the bacterial lifestyles and the SBP reper-
toire were observed. In a number of cases, phylogenetically close bacteria with differ-
ent lifestyles showed similar SBP repertoires.

RESULTS
Selection of model strains and data retrieval. To compile and analyze SBPs, we

selected 49 bacterial strains. The primary criteria for the selection were (i) their rele-
vance in microbiological research, (ii) their phylogenetic distribution, (iii) their diversity
in lifestyles and ecological niches, and (iv) the availability of the complete proteome in
UniProtKB (30). These strains were then classified according to their lifestyle, ecological
habitat, and isolation source into 11 groups, namely, sediment (marine/fresh water),
human/animal pathogen, freshwater/marine water, soil, human intestinal microflora,
food, oil reservoir, active sludge, plant pathogen, beneficial plant associated, and ani-
mal symbiont (Table 1). More detailed information on the classification of these differ-
ent strains is found in Table S1 in the supplemental material. We then compiled a list
of Pfam families that were shown or predicted to function as SBPs. The Pfam codes of
the resulting 45 families are provided in Materials and Methods. We subsequently
retrieved all proteins that match these Pfam signatures in the 49 proteomes. We found
that many members of these 45 Pfam domain families were not SBPs but proteins with
cytosolic location or sensor domains of cytosolic and transmembrane signal transduc-
tion systems. To distinguish between SBPs and proteins with alternative functions in
this initial set of retrieved sequences, we identified those sequences (i) for which the
protein segment covered by the SBP domain profile is less than 60% of the total pro-
tein length, (ii) which had predicted transmembrane regions, and (iii) which lacked a
predicted signal peptide. These sequences were then curated manually using a num-
ber of approaches defined in Materials and Methods. A flowchart of the individual
steps leading to the establishment of the SBP repertoire is shown in Fig. S1.

Correlation between SBP families and ligand specificity: the central role of
amino acid- and sugar-sensing SBPs. The final curated SBP repertoire of the 49 strains is
found in Table S2. In total, these 49 strains contained 2,934 SBPs that belonged to 22 protein
families (Table 2). Figure 1 shows the phylogenetic tree of the SBPs; sequences are colored
according to their respective Pfam protein family. Whereas members of most families cluster
together, members of the families SBP_bac_1, PBP_like_2, PBP_like, and SBP_bac_8 were
mixed. The ligands predicted to be recognized for each of the proteins are provided in Table
S2, and Table 2 summarizes the ligands predicted to be recognized by members of the indi-
vidual SBP families. A number of conclusions can be derived from these data. (i) There is a
clear correlation between the SBP family and the ligands recognized, since most families are
predicted to recognize a particular ligand type. Ten families were predicted to bind a single
ligand type (Table 2), including the well-populated families SBP_bac_3, TctC, and DctP, which
were predicted to bind specifically only amino acids, tricarboxylates, and dicarboxylates,
respectively. Another seven families were predicted to bind 2 or 3 ligand types. The data
thus indicate that the type of ligand recognized is reflected in the protein sequence. (ii) Most
populated were the SBP_bac_3 and SBP_bac_5 families (Table 2; Fig. 2). Members of these
families have been predicted to bind almost exclusively amino acids or di-, tri-, and oligopep-
tides, respectively. In addition, the well-populated families Peripla_BP_6 and Lipoprotein_9
were predicted to bind mostly branched-chain amino acids and methionine, respectively
(Table 2). Taken together, the SBPs predicted to bind amino acids or peptides amount to
more than 36% of the total number of SBPs retrieved in this study, indicating a particular
relevance in the uptake and sensing of these compounds. (iii) The second most abundant
ligand family is sugars. Almost all members of the families SBP_bac_1 and Bmp were
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predicted to bind sugars, and the family Peripla_BP_4 is specific for xylose, rhamnose, and
ribose (Table 2; Fig. 2). In total, 18% of all SBPs are predicted to bind sugars. (iv) Other popu-
lated ligand groups were tricarboxylates (7.5%), iron hydroxamate (6.1%), the quaternary
amines betaine and proline (5%), the polyamines spermidine and putrescine (4.8%), the ni-
trate-sulfonate-taurine category (4.4%), and dicarboxylates (4.3%), which are recognized
mostly by members of the TctC, Peripla_BP_2, OpuAC, SBP_bac_8, NMT1, and DctP families,
respectively (Table 2; Fig. 2).

Bioinformatic predictions by TransportDB strongly correlate with experimen-
tally determined SBP ligands. To assess the precision of ligand prediction by
TransportDB, we extracted from the UniProt and Protein Data Bank (PDB) databases all

TABLE 1 Assignation of a bacterial lifestyle and ecological habitat to the different bacterial strains analyzed in this studya

Strain Lifestyle/isolation source
Thermotoga maritimaMSB8 Sediments (marine water/freshwater)
Chlamydia trachomatis D/UW-3/CX Human/animal pathogen
Borrelia burgdorferi B31 Human/animal pathogen
Spirochaeta thermophila Z-1203 (=DSM 6578) Freshwater/marine water
Synechocystis sp. strain PCC 6803 Freshwater/marine water
Anabaena cylindrica PCC 7122 Freshwater/marine water
Streptomyces coelicolor A3(2) Soil
Nocardia brasiliensis ATCC 700358 Human/animal pathogen
Mycobacterium tuberculosis H37Rv Human/animal pathogen
Clostridium botulinum A strain ATCC 3502 Human/animal pathogen
Lactobacillus acidophilus NCFM Human intestinal microflora
Lactococcus lactis subsp. lactis Il1403 Food
Streptococcus pneumoniae R6 Human/animal pathogen
Staphylococcus aureus NCTC 8325 Human/animal pathogen
Geobacillus thermodenitrificans NG80-2 Oil reservoir
Bacillus amyloliquefaciens FZB42 Soil
Bacillus subtilis subsp. subtilis 168 Soil
Bdellovibrio bacteriovorus HD100 Soil
Helicobacter pylori 26695 Human/animal pathogen
Neisseria meningitidisMC58 Human/animal pathogen
Bordetella pertussis Tohama I Human/animal pathogen
Comamonas testosteroni CNB-2 Active sludge
Burkholderia cepacia 383 Soil
Ralstonia solanacearum GMI1000 Plant pathogen
Sphingomonas wittichii RW1 Freshwater/marine water
Caulobacter crescentus CB15 Freshwater/marine water
Rhodobacter sphaeroides ATCC 17025 Freshwater/marine water
Azospirillum baldaniorum Sp245T (formerly Azospirillum brasilense Sp245T) Beneficial plant associated
Brucella abortus 2308 Human/animal pathogen
Sinorhizobium (Ensifer)meliloti 1021 Beneficial plant associated
Agrobacterium fabrum C58 Plant pathogen
Acinetobacter baumannii AB0057 Human/animal pathogen
Xanthomonas campestris pv. campestris ATCC 33913 Plant pathogen
Legionella pneumophila subsp. pneumophila strain Philadelphia-1 Human/animal pathogen
Shewanella oneidensisMR-1 Sediments (marine water/freshwater)
Aliivibrio fischeriMJ11 Animal symbiont
Vibrio cholerae O1 biovar El Tor strain N16961 Human/animal pathogen
Azotobacter vinelandii DJ Soil
Pseudomonas syringae pv. tomato DC3000 Plant pathogen
Pseudomonas fluorescens Pf0-1 Soil
Pseudomonas putida KT2440 Soil
Pseudomonas aeruginosa PAO1 Human/animal pathogen
Pectobacterium atrosepticum SCRI1043 Plant pathogen
Photorhabdus luminescens subsp. laumondii TTO1 Human/animal pathogen
Yersinia pestis Nepal516 Human/animal pathogen
Serratia plymuthica S13 Beneficial plant associated
Salmonella enterica serovar Typhimurium LT2 Human/animal pathogen
Escherichia coliMG1655 Human intestinal microflora
Klebsiella pneumoniae HS11286 Human/animal pathogen
aThe strains are ordered according to their phylogenetic relationship, as shown in Fig. 3. More detailed information on lifestyles and habitats is found in Table S1.
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articles (435) and three-dimensional (3D) structures (;600) associated with the 2,934
SBP sequences initially retrieved. After the inspection of these articles and protein
structures, we were able to retrieve information on the ligands recognized by 166
SBPs. These data, along with the article references and PDB identification codes, are
provided in Table S2. The analysis revealed that 71% of the ligands were predicted cor-
rectly by TransportDB. Furthermore, in 10% of the proteins, TransportDB predicted a
single ligand, and the experimentally determined ligand belonged to the same family
as the predicted ligand. For another 4%, the experimentally determined ligand was
similar to the family of predicted ligands. Remarkably, TransportDB predicted the
ligand incorrectly for only 15% of the proteins. Taken together, these data indicate an
elevated precision of TransportDB-based ligand predictions.

Strains differ widely in the number and type of SBPs as well as in the ligands
recognized. On average, the strains analyzed contained 60 6 49 SBPs. However, their
abundance varied largely among strains (Fig. 3). Strains that contain very few SBPs include
Helicobacter pylori 26695 (7 SBPs), Chlamydia trachomatis D/UW-3/CX (9 SBPs), Caulobacter
crescentus CB15 (9 SBPs) and Xanthomonas campestris pv. campestris ATCC 33913 (9 SBPs),
whereas the highest numbers were observed in Sinorhizobium meliloti 1021 (189 SBPs),
Comamonas testosteroni CNB-2 (177 SBPs), Agrobacterium fabrum C58 (169 SBPs), and
Bordetella pertussis Tohama I (167 SBPs). There was thus a 27-fold difference between the
strains with most and fewest SBPs. The genomes of the strains analyzed differ significantly
in size, from 1.042 Mbp (C. trachomatis D/UW-3/CX) to 9.436 Mbp (Nocardia brasiliensis
ATCC 700358), and we found no correlation between the size of their genomes and the

TABLE 2 Prediction of the ligands recognized by the solute binding proteins from the 49 model strains according to TransportDB (27)a

aValues for the primary ligands for each family are in boldface and shading.
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total number of SBPs (Fig. 4). In accordance, Fig. 3 shows the percentage of SBPs with
respect to the total number of open reading frames (ORFs). The highest percentage of
SBPs relative to the total number of ORFs was observed in Bordetella pertussis Tohama I
(5.13%), whereas the lowest percentage was obtained with 0.19% in Sphingomonas wittichii
RW1, resulting in a 27-fold difference (Fig. 3).

Figure 5 presents a phylogenetic tree of the 49 strains analyzed in this work, includ-
ing the relative abundance of the different SBP families and the predicted abundance
of ligands for each strain. Strains can be distinguished that possess a balanced SBP
ligand profile, whereas others possess a strong bias for a particular ligand family,
caused mainly by a particularly abundant SBP family. E. coli MG1655 is an example of a
strain with a balanced repertoire. It has 49 SBPs, which is close to the average number
of SBPs in the strains analyzed in this study, and SBPs are distributed over 15 different
families. It has a modest degree of redundancy, with 9, 8 and 7 members of the
PF00496 (SBP_bac_5), PF00497 (SBP_bac_3), and PF13407 (Peripla_BP_4) families,
which are specific for peptides, amino acids and sugars, respectively. This balanced
SBP profile thus permits the sensing of a broad range of ligands. Other strains possess
a SBP repertoire that is strongly biased toward the recognition of a particular ligand
type. For example, 69% of Bdellovibrio bacteriovorus HD100 SBPs belonged to a single
family, namely, the amino acid-specific family PF00497 (SBP_bac_3) (Table 2). B. bacter-
iovorus has a particular lifestyle, since it is a bacteriolytic ectoparasite that predates
Gram-negative bacteria (31). Another example of an unbalanced SBP profile is the
enormous abundance of TctC family members in the phylogenetically close B. pertussis
Tohama I (79 members) and C. testosteroni CNB-2 (100 members) (Fig. 3). This abun-
dance is in stark contrast to the remaining strains, which had either no or only 1 to 9
TctC family members (Fig. 3). All 220 TctC family members analyzed were predicted to
bind tricarboxylates (Table 2; Table S2). Other examples of bacteria with unbalanced
SBP profiles are Streptomyces coelicolor A3(2), Spirochaeta thermophila Z-1203, and
Borrelia burgdorferi B31 for which about half of their SBPs were predicted to bind sug-
ars, or the elevated abundance of peptide-binding SBPs in the phylogenetically close
Thermotoga maritima MSB8, C. trachomatis D/UW-3/CX and B. burgdorferi B31. It
remains to be established whether and to what degree the lifestyle is related to this
ligand bias.

FIG 1 Unrooted phylogenetic tree of the solute-binding proteins present in the 49 bacterial strains
analyzed in this study. Proteins are colored according to their Pfam families.
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The SBP repertoire is primarily related to phylogeny. Considering the large dif-
ferences between strains in the total number of SBPs, the SBP profiles, and the diversity
of ligands that these SBPs recognize, we investigated whether SBP abundance is a
reflection of bacterial lifestyle. The analysis of the SBP abundance in bacteria with dif-
ferent lifestyles did not show any obvious correlation. This is illustrated by the three
most populated lifestyle categories, namely, human/animal pathogens, soil bacteria,
and freshwater/marine water bacteria (Fig. 6). The SBP abundance in human/animal
pathogens spanned almost the entire range from 167 SBPs in B. pertussis to only 7
SBPs in H. pylori 26695. A similarly wide spread was observed for soil bacteria, which
had between 126 (Burkholderia cepacia 383) and 33 (Bacillus amyloliquefaciens FZB42)
SBPs, and freshwater/marine water bacteria, which harbored between 78 (Rhodobacter
sphaeroides ATCC 17025) and 9 (C. crescentus CB15) SBPs (Fig. 6). Similarly, large differ-
ences were observed in the plant pathogens X. campestris pv. campestris ATCC 33913
(9 SBPs), Ralstonia solanacearum GMI1000 (67 SBPs), Pectobacterium atrosepticum
SCRI1043 (85 SBPs), and Pseudomonas syringae pv. tomato DC3000 (95 SBPs).

Although the evolutionary mechanisms that have led to the differences in SBP con-
tent and abundance between strains are unknown, there are a number of observations
indicating that phylogenetic closeness of strains rather than similarities in the lifestyle
is related to the SBP repertoire. Thus, the phylogenetic tree in Fig. 3 can be divided
into two main branches, with the members of the upper branch having a lower SBP
content (35 6 22 SBPs) than the lower branch (73 6 53 SBPs). The last column in Fig. 3
shows the most abundant ligand family for each of the strains. In this analysis, the
ligand categories shown in Fig. 2B “amino acids,” “branched amino acids” and

FIG 2 Classification of the solute-binding proteins from 49 strains according to their Pfam families (A)
and ligands recognized as predicted by TransportDB (B). Less populated Pfam families and ligand
categories have been regrouped in the category “Others.”
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FIG 3 The solute-binding protein repertoires of 49 bacterial model strains. Members of the most abundant protein family for each strain are
shaded. The second column indicates the bacterial lifestyle/ecological niche as detailed in Table S1. Lifestyles were classified as follows: 1,
sediment (marine water/freshwater); 2, human/animal pathogen; 3: freshwater/marine water; 4, soil; 5, human intestinal microflora; 6, food; 7,
oil reservoir; 8, active sludge; 9, plant pathogen; 10, beneficial plant associated; 11, animal symbiont. The ligand prediction was done using
the TransportDB database (27), and ligands of the individual families correspond to the categories shown in Fig. 2B. In the last column,
showing the most abundant ligand recognized by the SBPs of a given strain, “amino acids” corresponds to the sum of the categories “amino
acids,” “branched amino acids,” and “methionine,” whereas “sugars” corresponds to the sum of “sugars,” “xylose,” “ribose,” and “rhamnose,”
as detailed in Table 2 and Fig. 2B. The upper and lower branches of the phylogenetic tree are separated by a thick line.
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“methionine” were combined into a single category called “amino acids,” and the cate-
gories “sugars,” “xylose,” “ribose” and “rhamnose” were combined into the category
“sugars”. For almost half (i.e., 24) of the analyzed strains, amino acids formed the most
populated ligand group, followed by 13 strains for which sugars were the predominant
SBP ligand (Fig. 3). For both categories, a clear link with strain phylogenetics was
observed. In the upper branch of the phylogenetic tree (Fig. 3), amino acids were most
abundant for only 11.8% of the strains, whereas this ligand family was prevalent for
68.8% of the strains in the lower branch. Conversely, 58.8% of the strains in the upper
branch preferentially bound sugars, which is in stark contrast to the only 9.4% of the
strains in the lower branch.

In a number of cases, species on neighboring phylogenetic branches showed a sim-
ilar number of total SBPs and a similar spread over the individual SBP families (Fig. 3).
A first illustrative example is B. pertussis and C. testosteroni, two species that belong to
the order Burkholderiales but that differ radically in lifestyle. Whereas B. pertussis
Tohama I is a human pathogen that infects airways, causing whooping cough (32), C.
testosteroni CNB-2 is a free-living bacterium, isolated from activated sludge, that is able
to metabolize complex xenobiotic compounds (33). Despite these differences, the
number and distribution of their SBPs are very similar (Fig. 3). B. pertussis Tohama I and
C. testosteroni CNB-2 possess 167 and 177 SBPs, respectively, which are distributed sim-
ilarly among the individual families (Fig. 3). As mentioned above, a striking feature is
the presence of a very high number of the tricarboxylate-specific TctC family members,
namely, 79 for B. pertussis Tohama I and 100 for C. testosteroni CNB-2.

Another significant example is the four pseudomonads included in this analysis,
namely, the human pathogen Pseudomonas aeruginosa PAO1, the plant pathogen P.
syringae pv. tomato DC3000, and the soil bacteria P. fluorescens Pf0-1 and P. putida
KT2440. These strains possess very similar SBP numbers (84 to 95), and in all strains,
the amino acid-specific family PF0497 (SBP_bac_3) is the most populated family.
Further examples of similar SBP profiles of phylogenetically close bacteria are the soil
bacterium S. coelicolor A3(2) and the human pathogen N. brasiliensis ATCC 700358,
which possess 93 and 80 SBPs, respectively, and which both recognize sugars as the
primary ligand (Fig. 3). Furthermore, the soil bacterium B. cepacia 383 and the plant
pathogen R. solanacearum GMI1000, which are very close phylogenetically (Fig. 3), pos-
sess similar SBP/total-ORF ratios and show a preference for amino acids.

DISCUSSION

SBPs play a major role in the delivery of organic and inorganic molecules to ABC,
TRAP, and TTT transport systems, initiating transport across the membrane. These
transport systems are substrate specific, and the initial sequence-based classification of

FIG 4 Abundance of solute binding proteins as a function of genome size in the 49 model bacterial
strains. For the calculation of genome size, the presence of plasmids was considered.
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SBPs did not show a correlation with their cognate ligands (34). We show here that
SBPs form a large protein superfamily that is composed of proteins recognized by 45
different Pfam signatures. Members of this superfamily differ in size (20 to 65 kDa) and
sequence but share the same topology, which consists of two structural lobes con-
nected by a hinge (1). The increase in 3D structural information on SBP-ligand com-
plexes has permitted the classification of SBPs into clusters and subclusters, which are
characterized by a well-defined ligand specificity (5). The fact that the ligand profile is
reflected in SBP 3D structure is also consistent with the precision of sequence-based
prediction of SBP ligands by TransportDB (27, 29).

Previous studies revealed a link between genome size, the number of ABC transport
systems, and bacterial lifestyle (35). Furthermore, a relation between transport systems
and the bacterial habitat was observed, showing that TRAP systems are more frequent
in deep-sea and saline environments (36). However, we did not observe any obvious
correlation of the SBP profile with either lifestyle (Fig. 3 and 6) or genome size (Fig. 4).
In contrast, there was evidence for phylogenetics-related similarities in the SBP reper-
toire. This study may form the basis for studies aimed at relating the SBP repertoire
with the detailed metabolic maps of the individual strains that may provide insight
into the reasons for the differences observed.

To the best of our knowledge, this is the first study to establish and compare the
SBP repertoires of different strains. We show that there are very large differences in
SBP numbers and types, as well as the predicted ligands. This study thus forms the ba-
sis to establish the SBP repertoires of other strains and to tackle central questions on
this important superfamily, such as their role in stimulating different transmembrane

FIG 5 Phylogenetic tree of the 49 strains analyzed. The inner circle corresponds to the abundance of the SBP families for each strain,
whereas the outer circle represents the abundance of ligands predicted for the SBPs of each strain.
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receptors, thereby coordinating transport with signal transduction. Another central yet
poorly understood question is the enormous apparent redundancy of SBPs, which is
best illustrated by the 100 TctC family members of C. testosteroni CNB-2 that are pre-
dicted to be specific for tricarboxylates (Fig. 3). Further studies will show to what
degree this redundancy of genes corresponds in fact to a redundancy of proteins with
the same ligand spectrum. TctC members bind tricarboxylic acids, and future studies
are required to identify the ligands identified by these proteins in order to assess the
functional overlap between family members and to determine the proteins that indeed
respond to the same ligands.

By far the most populated ligand category was that of SBPs that bind amino acids
or peptides, indicating the central importance of amino acid sensing and uptake (Fig. 2B).
In this respect, clear parallels to amino acid chemotaxis exist. Currently available data indi-
cate that amino acid-sensing chemoreceptors represent the most abundant functional

FIG 6 Abundance of solute-binding proteins in strains with different lifestyles. Shown are the abundances of proteins for strains that
were classified as human/animal pathogens, soil bacteria, or freshwater/marine water bacteria.
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chemoreceptor family by far (37). Chemotaxis to amino acids facilitates their uptake, which
may have driven the coevolution of mechanisms for amino acid chemotaxis and uptake.
The importance of amino acid sensing is furthermore demonstrated by a recent study that
identified an amino acid-specific subfamily of the dCache sensor domains that is present
throughout the tree of life (38). This amino acid-specific domain is abundantly present not
only in chemotaxis chemoreceptors but also in all major families of bacterial transmem-
brane signal transduction receptors, including sensor histidine kinases, diguanylate cyclases
and phosphodiesterases, guanylate/adenylate cyclases, serine/threonine kinases and phos-
phatases, and phosphohydrolases (38). The presence of amino acid-specific sensor
domains at these receptors underlies the role of amino acids not only as nutrients but also
as central signal molecules that play key roles in regulating multiple processes such as
gene expression or the control of second messenger levels, as recently exemplified in
P. syringae pv. tomato DC3000 (39), one of the model strains in this work. Several studies
have reported the activation of chemoreceptors by the binding of amino acid-loaded SBPs
(40–42).

Clear links emerge between the SBP repertoire of a given strain and the information
available on the corresponding chemotaxis chemoreceptors. As mentioned above,
C. testosteroni CNB-2 was predicted to possess 100 SBPs of the tricarboxylate-specific
TctC family, representing 2.1% of the total ORFs of this strain (Fig. 3). These SBPs feed
substrates into the 66 Tct (tricarboxylate transport) and 9 TRAP transporters for carbox-
ylic acid uptake (43) that were identified in this strain (33). These compounds are then
metabolized by the complete tricarboxylic acid (TCA) cycle identified in this strain (33).
However, CNB-2 is among the strains for which information on the function of chemo-
taxis chemoreceptors is available. Of its 20 chemoreceptors (11), so far three have been
annotated with a function. Interestingly, all three receptors have been found to bind
different tricarboxylic acids: MCP2201 bound exclusively 7 different TCA cycle inter-
mediates (44), and MCP2983 was identified as a cis-aconitate specific receptor (45),
whereas MCP2901 had a broader ligand range but has a preference for citrate (46).
Another example of a link between the SBP and chemoreceptor repertoire is that of P.
syringae pv. tomato DC3000, P. fluorescens PF0-1, and P. aeruginosa PAO1, for which
amino acids were identified as the principal SBP ligand (Fig. 3). All three strains were
found to possess three different amino acid-sensing chemoreceptors, namely, PctA,
PctB, and PctC for P. aeruginosa (47, 48), CtaA, CtaB, and CtaC for P. fluorescens (49, 50),
and PscA, PscB, and PscC for P. syringae (39, 51). Although these chemoreceptors are
homologous and likely to be paralogous within a strain (48), their detailed amino acid
ligand profiles differ.

Currently, 13 of the 22 SBP protein families identified in the 49 model bacteria ana-
lyzed in this work have been found to interact with either chemoreceptors, sensor ki-
nases, diguanylate cyclase/c-di-GMP phosphodiesterases, or Ser/Thr kinases (22). Given
the relatively low number of characterized signal transduction systems that are stimu-
lated by SBP binding, it is likely that members of further SBP families also carry out a
function in signal transduction. B. pertussis Tohama I has an elevated number (79) of
members of the tricarboxylic-specific TctC family (Fig. 3). So far, there are only about
10 characterized examples of SBP binding to the periplasmic domain of sensor kinases,
causing their activation (22). One of these is the B. pertussis TctC family member BctC
(BP3867) (Table S2). BctC forms part of a BctCBA tripartite tricarboxylate transporter
that mediates the uptake of citrate. It was shown that the citrate-loaded BctC interacts
with the periplasmic sensor domain of the BctE sensor kinase, which in turn increases
the expression of the bctCBA operon, causing an upregulation of the citrate transporter
in the presence of citrate (52, 53). B. pertussis was also shown to possess a fully func-
tional TCA cycle (54), but the reason for the enormous redundancy of TctC family mem-
bers in C. testosteroni and B. pertussis is unknown.

Future work is needed to advance understanding of the evolutionary processes
that have resulted in the generation of these largely differing SBP repertoires and to
characterize and understand the reasons for the observed SBP redundancy in many
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strains. Furthermore, the inhibition of ligand binding to SBPs has been shown to be an
efficient approach to combat pathogens (36, 55), and in this context, this study may be
helpful for the development of approaches to fight pathogens of human, animal, and
plant relevance.

MATERIALS ANDMETHODS
Sequence retrieval and curation. The complete proteomes of the selected 49 bacterial strains were

downloaded in compressed xml format from the proteome database of UniProtKB (30). A custom
Python 3 script was coded for the full query and integrated analysis of the SBP sequences in these pro-
teomes. For this purpose, protein sequences were retrieved when matching one of the following Pfam
(26) signatures: PF00405, PF00496, PF00497, PF00532, PF00800, PF01094, PF01297, PF01379, PF01497,
PF01547, PF01634, PF02030, PF02470, PF02608, PF02621, PF03180, PF03401, PF03466, PF03480,
PF04069, PF04348, PF04392, PF05048, PF05494, PF06646, PF09084, PF09822, PF10613, PF12683,
PF12727, PF12849, PF12916, PF12974, PF13343, PF13377, PF13379, PF13407, PF13416, PF13433,
PF13458, PF13531, PF13531, PF14503, PF16868, and PF18610. This analysis generated a sequence list for
each of the proteomes in SeqRecord format. This format allowed us to store for each of the sequence
entries all information that is included in the UniProtKB database. Domains of the above families also
serve as sensor domains in cytosolic and transmembrane signal transduction proteins and are thus not
SBPs. To identify the SBPs among the initial sequence set, the proportion of the SBP domain with respect
to the entire protein was determined, as well as the presence of transmembrane regions and signal pep-
tides. Sequences for which the protein segment covered by the SBP domain profile corresponds to less
than 60% of the total protein, which were predicted to have transmembrane regions, or which were not
predicted to possess a signal peptide were manually curated. The value of 60% was determined empiri-
cally by comparing false-positive and false-negative results using a number of cutoff values. At the value
of 60%, an optimal ratio of false-positive and -negative results was obtained. About 10% of automatically
retrieved proteins contained a transmembrane region, and around 1% were predicted have a cytosolic
location, whereas for about 12%, the SBP Pfam signature covered less than 60% of the total proteins,
and the SBP domains are thus likely to be sensor domains of receptors. Manual curation was based on
literature searches to retrieve information on protein function, generation of 3D models, prediction of
transmembrane regions and signal peptides using Phyre2 (56), Phobius (57), and SignalIP (58), and
assessment of the length of the protein segment recognized by the Pfam signature by JPred (59) and
Phyre2 (56). Only the Pfam families that were present in at least a single sequence from these 49 pro-
teomes were retained for further analyses.

Data analysis. The primary lifestyle/ecological niche was assigned to each of the strains. This was
done by analyzing the scientific literature and considering the information on the isolation site as speci-
fied in the BioProject section of NCBI (60) and the Integrated Microbial Genomes and Microbiomes (IMG)
database (61). A detailed analysis of the lifestyle/ecological niche for each of the strains is provided in
Table S1. Subsequently, the ligands that were predicted to bind to the set of SBPs were retrieved from
TransportDB (27). For SBPs from strains that were not included in TransportDB (namely, Staphylococcus
aureus NCTC 8325 and Escherichia coli MG1655), a BLAST sequence search (62) was performed between
the unannotated SBPs and the set of ligand-annotated SBPs. The ligand predicted for the closest homo-
logue (lowest E value) was retained. Ligand and lifestyle annotations were stored in a file harboring the
SBP set of the individual strains. Subsequently, predicted ligands were classified into groups following
the ChEBI ontology (63) to generate more populated families for subsequent analyses.

In a second stage, the set of SBP sequences for the 49 strains was analyzed and organized accord-
ing to (i) the number of sequences encoded per genome that match the above-mentioned Pfam fam-
ilies, the number of SBPs, and the ratio of SBPs relative to the total number of proteins per proteome;
(ii) the number of SBP family members for each of the strains; (iii) the number of sequences that rec-
ognize ligands from each ligand category in each strain’s SBP set and the ratio over all SBP sequences
in that strain; and (iv) the number of SBP families and the number of SBPs that recognize determined
ligands in each lifestyle category. Finally, the script generated a list of all SBPs in each of the 49
strains, their sequences in FASTA format, and a list of all sequences belonging to each SBP protein
family.

Multiple sequence alignments and construction of phylogenetic trees. The full list of sequences
corresponding to SBPs of the selected 49 strains was subjected to a phylogenetic analysis using the
TREND pipeline (64). We selected MAFFT (65) for the alignment of all sequences, with an L-INS-I algo-
rithm, and FastTree (66) was then used for the phylogenetic tree generation (JTT1CAT substitution
model and the Shimodaira-Hasegawa test for phylogeny). Five hundred pseudoreplicates were gener-
ated for the bootstrap confidence level calculation. The phylogenetic tree was subsequently analyzed,
and sequences were annotated with their corresponding SBP Pfam family, colored accordingly, and rep-
resented by the iTOL graphical tool (67). Outlier sequences where manually analyzed, and their homol-
ogy against HMM profiles of the different Pfam families was measured. The taxonomic tree of all strains
used in this work was generated with the PhyloT (68) tool by the NCBI taxonomy facility (69). We used
the strains’ NCBI TaxIDs assigned for each of the UniProtKB proteomes and represented the tree using
the iTOL graphical tool. The pie chart representations of ligand and Pfam family distributions were
added by the iTOL editor.
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