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Abstract: Artificial intelligence (AI)-assisted diagnosis and treatment could expand the medical sce-
narios and augment work efficiency and accuracy. However, factors influencing healthcare workers’
adoption intention of AI-assisted diagnosis and treatment are not well-understood. This study con-
ducted a cross-sectional study of 343 dental healthcare workers from tertiary hospitals and secondary
hospitals in Anhui Province. The obtained data were analyzed using structural equation modeling.
The results showed that performance expectancy and effort expectancy were both positively related
to healthcare workers’ adoption intention of AI-assisted diagnosis and treatment. Social influence
and human–computer trust, respectively, mediated the relationship between expectancy (perfor-
mance expectancy and effort expectancy) and healthcare workers’ adoption intention of AI-assisted
diagnosis and treatment. Furthermore, social influence and human–computer trust played a chain
mediation role between expectancy and healthcare workers’ adoption intention of AI-assisted di-
agnosis and treatment. Our study provided novel insights into the path mechanism of healthcare
workers’ adoption intention of AI-assisted diagnosis and treatment.

Keywords: performance expectancy; effort expectancy; social influence; human–computer trust;
adoption intention; healthcare worker; AI-assisted diagnosis and treatment

1. Introduction

Artificial intelligence (AI) is advertised as the principal general-purpose technology
of this era [1,2]. Medical AI denotes applying a series of functions, including auxiliary
diagnosis, risk prediction, disease triage, health management, and hospital management,
through intelligent algorithms and technologies such as machine learning, representation
learning, and deep learning [3]. Among them, AI-assisted diagnosis and treatment is
highly followed worldwide, and domestic and foreign technology giants are striving in
this field. AI robots perform medical AI-assisted diagnosis and treatment to complete daily
supporting tasks, including directing methods, consultation in hospitals, image capture
and recognition, assistive support in surgery, and epidemic-prevention information [4,5].
The last decade has witnessed a noticeable progression in the use of AI-assisted diagnosis
and treatment in the field of dentistry [6].

AI-assisted diagnosis and treatment is the application of AI in disease diagnosis and
treatment. For disease diagnosis, in oral implantology, several artificial intelligence models
have been able to classify normal and osteoporotic subjects on panoramic radiographs,
and their accuracy, sensitivity, and specificity are above 95%. They can assist doctors in
identifying osteoporotic patients before implant treatment and improve the success rate
of treatment [7]. In endodontics, some scholars [8,9] found that a deep-learning-based
convolutional neural network algorithm can provide accurate diagnosis of dental caries,
with an accuracy of 89.0% for premolars and 88.0% for molars, respectively, which is
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expected to be one of the effective methods for diagnosing caries. For treatment, dental
robots play an important role in various fields of dentistry. In maxillofacial surgery, the
robot can provide high-definition, three-dimensional magnified images and enter the body
through a minimally invasive incision during surgery, which can significantly improve
the precision, safety, and therapeutic effect of surgery [10]. In oral implantology, the
robot system can achieve the reproduction of the anatomical structure of the surgical area,
the precise design of preoperative implants, the automatic and precise implementation
of surgery, and immediate implant restoration, which meet the requirements of precise,
efficient, minimally invasive, and comfortable surgery [11]. Although the application of AI-
assisted diagnosis and treatment could expand the medical scenarios [12,13] and augment
work efficiency and accuracy [14,15], healthcare workers are unwilling to believe and rely
on things that cannot be explained [16,17]. Owing to the lack of algorithm transparency,
data security risks, uncertain medical responsibilities, and substitution threats, healthcare
workers refuse to use AI [18,19]. Thus, it is imperative and urgent to investigate the
acceptance of AI-assisted diagnosis and treatment for healthcare workers at this stage.

Research on technology-adoption intention in healthcare can be divided into three
categories according to the different subjects of adoption: healthcare recipients (e.g., pa-
tients), healthcare workers (e.g., doctors, nurses), and healthcare institutions (e.g., hospitals,
clinics). For different adopters, there are different factors influencing the intention to adopt
technology, and the research models also differ [20–25]. This study compares the relevant
literature, summarizes the theoretical basis and factors of healthcare workers’ intention to
adopt technology, and lays the foundation for subsequent research on healthcare workers’
adoption intention of AI-assisted treatment technology (see Table 1).

Table 1. Literature review on healthcare workers’ adoption intention.

Authors Context Theoretical Basis Region Key Findings

Alsyouf et al.
(2022) [23]

Nurses’ continuance
intention of EHR UTAUT, ECT, FFM Jordan

Performance expectancy as a mediating
variable on the relationships between the
different personality dimensions and
continuance intention, specifically
conscientiousness as a moderator.

Pikkemaat et al.
(2021) [24]

Physicians’ adoption
intention of
telemedicine

TPB Sweden
Attitudes and perceived behavioral control
being significant predictors for physicians
to use telemedicine.

Hossain et al.
(2019) [25]

Physicians’ adoption
intention of EHR Extended UTAUT Bangladesh

Social influence, facilitating conditions, and
personal innovativeness in information
technology had a significant influence on
physicians’ adoption intention to adopt the
EHR system.

Alsyouf and Ishak
(2018) [26]

Nurses’ continuance
intention to use EHR UTAUT and TMS Jordan

Effort expectancy, performance expectancy,
and facilitating conditions positively
influence nurses’ continuance intention to
use and top management support as
significant and negatively related to nurses’
continuance adoption intention.

Fan et al.
(2018) [27]

Healthcare workers’
adoption intention of
AIMDSS

UTAUT, TTF,
trust theory China

Initial trust mediates the relationship
between UTAUT factors and behavioral
intentions.

Bawack and
Kamdjoug
(2018) [28]

Clinicians’ adoption
intention of HIS Extended UTAUT Cameroon

Performance expectancy, effort expectancy,
social influence, and facilitating conditions
have a positive direct effect on clinicians’
adoption intention of HIS.
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Table 1. Cont.

Authors Context Theoretical Basis Region Key Findings

Adenuga et al.
(2017) [29]

Clinicians’ adoption
intention of
telemedicine

UTAUT Nigeria

Performance expectancy, effort expectancy,
facilitating condition, and reinforcement
factor have significant effects on clinicians’
adoption intention of telemedicine.

Liu and Cheng
(2015) [30]

Physicians’ adoption
intention of MEMR

The dual-factor
model Taiwan

Physicians’ intention to use MEMRs is
significantly and directly related to
perceived ease of use and perceived
usefulness, but perceived threat has a
negative influence on physicians’
adoption intention.

Hsieh (2015) [31]

Healthcare
professionals’ adoption
intention of health
clouds

TPB and Status quo
bias theory Taiwan

Attitude, subjective norm, and perceived
behavior control are shown to have positive
and direct effects on healthcare
professionals’ intention to use the
health cloud.

Wu et al.
(2011) [32]

Healthcare
professionals’ adoption
intention of mobile
healthcare

TAM and TPB Taiwan

Perceived usefulness, attitude, perceived
behavioral control, and subjective norm
have a positive effect on healthcare
professionals’ adoption intention of mobile
healthcare.

Egea and
González
(2011) [33]

Physicians’ acceptance
of EHCR Extended TAM Southern

Spain

Trust fully mediated the influences of
perceived risk and information integrity
perceptions on physicians’ acceptance of
EHCR systems.

Note: EHR, electronic health record; AIMDSS, medical diagnosis support system; HIS, health information
system; MEMR, mobile electronic medical records; EHCR, electronic health care records. UTAUT, unified theory
of acceptance and use of technology; ECT, the theory of expectation confirmation; FFM, five-factor model;
TPB, theory of planned behavior; TMS, top management support; TTF, task technology fit; TAM, technology-
acceptance model.

The current research on healthcare workers’ adoption intention is primarily based on
a single technology-adoption theory (e.g., technology-acceptance model (TAM) and unified
theory of acceptance and use of technology (UTAUT)) [34,35], which explored the impact
of AI technical characteristics [27], individual psychological cognition [26,28,29], and so-
cial norms [25,31,32] on healthcare workers’ intention to adopt AI technology. Of these,
expectancy includes performance expectancy and effort expectancy, which are psycho-
logical cognitive factors that affect technology adoption [34–37]. Performance expectancy
signifies the degree to which an individual believes that adopting new technology could
improve his/her work performance and is an individual perception of the practicality of
new technology [34,35]. Effort expectancy denotes the level of effort required by healthcare
workers to use AI-assisted diagnosis and treatment and their perception of the ease of use
of the new technology [34,35]. Two expectancies both positively affect users’ adoption
intention [26,28,29]. Nevertheless, the adoption intention of AI by healthcare workers
might change because of technological and environmental changes. At present, limited
research has been conducted on the microprocess mechanism and medical scenarios of
healthcare workers’ acceptance of AI.

It is worth noting that although existing studies have confirmed the validity of models
such as TAM and UTAUT in assessing healthcare workers’ technology-adoption intention,
medical AI is different from the previous technologies and presents the characteristics
of high motility, high risk, and low trust. Therefore, a single model based on traditional
TAM and UTAUT has a low explanation for intention to use AI [38]. Most existing studies
have used mostly extended TAM or UTAUT to explore the factors influencing healthcare
workers’ technology-adoption intention (see Table 1).
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AI represents a highly capable, complex technology designed to mimic human in-
telligence, characterized by agency and control shifting from humans to technology and
altering people’s previous understanding of the relationship between humans and technol-
ogy, thereby creating a sense of trust [39]. Research has confirmed that HCT is an important
prerequisite for user’s acceptance of medical AI, especially for more automated AI applica-
tions [40]. HCT contributes to reliability and the anthropomorphic features of AI [4,39,41].
Although many studies have examined trust in the interpersonal and societal domains,
in different technologies, studies addressing trust in medical AI-assisted diagnosis and
treatment are scarce. Madsen and Gregor (2000) defined HCT as “the extent to which
a user is confident in, and willing to act on the basis of the recommendations, actions,
and decisions of an artificially intelligent decision aid” [42], which enhances healthcare
workers’ adoption intention of AI-assisted diagnosis and treatment [27,33]. Theories of
interpersonal relationships have established trust as a social glue in relationships, groups,
and societies [21,43]. However, the current literature leaves unanswered questions. For
example, how is HCT built among healthcare workers, and how does it affect adoption
intention? In addition, based on the UTAUT model, social influence exerts a positive impact
on technology adoption [34,35]. The research has established that social influence indirectly
affects users’ adoption intention of AI through trust [44]. Thus, based on the UTAUT model
and HCT theory, this study investigates the path mechanism of expectancy on healthcare
workers’ adoption intention of AI-assisted diagnosis and treatment.

This study contributes to the extant research literature in two ways. First, previous
studies primarily used a single technology-adoption model to examine the electronic
health record (EHR) [23,25,26] and telemedicine [24,29] by healthcare workers’ adoption
intention. This study proposes an integrated model of the UTAUT model and HCT theory
to determine what factors affect the intention of healthcare workers to adopt AI-assisted
diagnosis and treatment, enriches the theoretical research of the UTAUT model, and
expands the application scenarios of medical AI.

Second, previous research focused more on the direct impact of technology adop-
tion [34,35]. The intermediary mechanism influencing the expectancy on healthcare work-
ers’ adoption intention of AI-assisted diagnosis and treatment has received limited attention.
Of note, HCT fails to elucidate the underlying mechanisms of why some healthcare work-
ers are reluctant to believe medical AI. This study constructs a chain mediation model
to illustrate the psychological mechanism of how healthcare workers’ expectancy affects
their intention of embracing AI-assisted diagnosis and treatment. In addition, this study
demonstrates the single mediating effect and chain mediation effect of social influence and
HCT. By integrating social influence and HCT in the model, we offer a better understanding
of how social influence and HCT can individually and collectively influence the associa-
tion between expectancy and adoption intention for healthcare workers. Moreover, the
conclusions could also provide a theoretical basis for medical explainable AI research and
provide management enlightenment or reference for service providers, hospital managers,
and government sectors.

The rest of the paper is structured as follows. Section 2 presents the proposed model
with theoretical background. The research methodology is explained in Section 3. Data
analysis and results are presented in Section 4. In Section 5, we discuss the implications
of the findings, contributions, limitations, and directions for future research. Section 6
concludes the paper with some final thoughts.

2. Theoretical Background and Research Hypotheses
2.1. Theoretical Background
2.1.1. The Unified Theory of Acceptance and Use of Technology

The UTAUT is a model to explain the generation of behavior proposed by integrating
eight theoretical models, including the theory of reasoned action (TRA) [35,45], TAM [34],
and theory of planned behavior (TPB) [46]. The UTAUT model could explain 70% of
individual intentions to adopt information technology and 50% of information technology-
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adoption behavior. Among them, performance expectancy, effort expectancy, and social
influence play a decisive role in individual intention, and facilitating conditions directly
influence individual behavior [35]. This study focuses on healthcare workers’ adoption
intention of AI-assisted diagnosis and treatment rather than on their adoption behavior.
Therefore, the impact of facilitating conditions on healthcare workers’ adoption intention
was not considered.

Wang et al. (2020) integrated UTAUT and task–technology fit (TTF) to understand
the factors influencing consumer acceptance of healthcare wearable devices (HWDs). The
key findings revealed that consumer acceptance is influenced by both users’ perceptions
(performance expectancy, effort expectancy, social influence, and facilitating conditions)
and the task–technology fit [20]. As the faster application of medical AI makes healthcare
workers face greater uncertainty, the reasons for healthcare workers to adopt new technol-
ogy are more diverse. Hossain et al. (2019) explored factors influencing the physicians’
adoption of EHR in Bangladesh and determined that social influence, facilitating condi-
tions, and personal innovation positively influenced physicians’ intention to adopt the EHR
system [25]. A Chinese study reported that doctors’ initial trust in AI-assisted diagnosis
and treatment exerted a significant positive impact on doctors’ adoption intention [27]. The
UTAUT model has been broadly used in healthcare.

2.1.2. Human–Computer Trust Theory

The interaction between people and technology has special trust characteristics [47].
HCT is the degree to which people have confidence in AI systems and are willing to take
action [42]. Trust is considered an attitude intention [47], which could directly influence
acceptance and help people make cognitive judgments by decreasing risk perception [48]
and enhancing benefit perception [49]. HCT is an attitude of trust that stems from the
interaction between human and AI [50]. Fan et al. (2020) stated that perceived trust
positively correlated with the adoption of AI-based medical diagnosis support system
(AIMDSS) by healthcare professionals [27]. Furthermore, a Chinese study established that
initial trust in an AI-assisted diagnosis system affects doctors’ adoption intention [37].

The traditional medical service relationship primarily occurs between patients and
medical institutions or medical personnel, while in the medical AI scenario, the vital fac-
tor of human–technology interaction is added. HCT largely focuses on the collaboration
between the human being and the automatic system [51]. From the perspective of tech-
nological object, the performance (such as trustworthiness and reliability) and attributes
(such as appearance and sound) of the AI system itself as well as the different social and
cultural situations might affect the HCT establishment [52]. From the viewpoint of tech-
nology users, people’s perceived expertise and responsiveness, risk cognition and brand
perceptions, and other influencing factors constitute a preliminary model of technology
trust, which emphasizes that users’ trust in AI chatbots could be a direct factor affecting
users’ behavior [53].

2.2. Research Hypotheses
2.2.1. Expectancy and Adoption Intention

Performance expectancy denotes the degree to which using technology would bring
effectiveness to users in performing specific tasks [34,35]. In the context of AI-assisted
diagnosis and treatment, performance expectancy indicates the extent to which AI-assisted
diagnosis and treatment help healthcare workers increase their work efficiency. Effort
expectancy is defined as the degree to which a person believes that using a particular
system would be free of effort [34,35]. In this study, effort expectancy is to mirror healthcare
workers’ perception of how easy it is to adopt AI-assisted diagnosis and treatment. Previous
studies demonstrated that performance expectancy and effort expectancy are the primary
determinants of intention to adopt a new technology [20,27,35]. Adenuga et al. (2017)
posited that performance expectancy and effort expectancy exerted significant effects
on Nigerian clinicians’ intention to adopt the telemedicine systems [29]. Regarding the
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adoption of the EHR [23,25] and the health information system (HIS) [28], studies have
confirmed that performance expectancy and effort expectancy are positively related to
physicians’ adoption intention. Hence, the following hypotheses are proposed:

Hypothesis 1a (H1a). Performance expectancy is positively related to healthcare workers’ adoption
intention of AI-assisted diagnosis and treatment.

Hypothesis 1b (H1b). Effort expectancy is positively related to healthcare workers’ adoption
intention of AI-assisted diagnosis and treatment.

2.2.2. The Mediating Role of Social Influence

Social influence is defined as the degree to which an individual believes that important
others believe he/she should adopt a new technology, which is considered the main
predictor of general technology-acceptance behavior [34,35,54,55]. The rationale behind
social influence could be that individuals want to fortify their relationships with critical
persons by following their views of specific behaviors [56]. Based on the UTAUT model,
Shiferaw and Mehari (2019) stated that social influence significantly and positively affected
the intention of healthcare workers to use the electronic medical record system [57]. In
addition, previous studies confirmed the positive association between social influence and
behavioral intention [25,28]. Social influence can also aid the understanding of uncertainty
reduction, as it might function as a substitute for interaction with the unknown and not-yet-
available technology [58]. In other words, social influence is an active information-seeking
method [59]. In this study, healthcare workers’ expectancy (performance expectancy and
effort expectancy) of AI-assisted diagnosis and treatment are influenced by other healthcare
workers’ attitudes, in turn influencing other healthcare workers’ attitudes toward AI-
assisted diagnosis and treatment. This social interaction allows healthcare workers to
gain information about AI-assisted diagnosis and treatment, reducing their perception
of uncertainty and thus influencing their willingness to adopt AI-assisted diagnosis and
treatment. Hence, the following hypotheses are proposed:

Hypothesis 2a (H2a). Social influence mediates the relationship between performance expectancy
and healthcare workers’ adoption intention of AI-assisted diagnosis and treatment.

Hypothesis 2b (H2b). Social influence mediates the relationship between effort expectancy and
healthcare workers’ adoption intention of AI-assisted diagnosis and treatment.

2.2.3. The Mediating Role of Human–Computer Trust

Human–computer trust (HCT) denotes the beliefs that technology contributes to attain-
ing personal goals and determining attitudes toward subsequent behavior in situations of
uncertainty and vulnerability [60,61]. In the context of AI-assisted diagnosis and treatment,
HCT demonstrates that healthcare workers believe the suggestions, actions, and decisions
provided by AI-assisted diagnosis and treatment are reliable [62,63]. HCT can be viewed as
a potential and critical prerequisite for the adoption of AI technology [40,64,65]. Nordheim
et al. (2019) first developed an initial model of technology trust in a chatbot scenario
and deduced that technology trust might be a direct factor influencing users’ adoption
intention of AI chatbots [53]. Meanwhile, the association between expectancy and trust has
been illustrated in the field of healthcare [27,66,67]. Furthermore, Prakash and Das (2021)
surveyed 183 radiologists and demonstrated that trust played a mediating role between
expectancy and adoption intention [68]. Of note, healthcare workers are more likely to trust
AI-assisted diagnosis and treatment when they believe it would be more efficient or require
less effort and then more likely to adopt it. Hence, the following hypotheses are proposed:

Hypothesis 3a (H3a). HCT mediates the relationship between performance expectancy and
healthcare workers’ adoption intention of AI-assisted diagnosis and treatment.
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Hypothesis 3b (H3b). HCT mediates the relationship between effort expectancy and healthcare
workers’ adoption intention of AI-assisted diagnosis and treatment.

2.2.4. The Chain Mediation Model of Social Influence and HCT

In the context of medical AI, the social reaction of medical AI would affect the trust
and attitude of healthcare workers toward AI-assisted diagnosis and treatment. A study on
trust in information systems also confirmed that social influence is related to HCT [44,54].
In addition, a study in China showed that social influence affects user behavior indirectly
through trust [44,69]. Zhang et al. (2020) posited that in the automated vehicle sector,
social influence manifests itself in the propaganda and assessment of users, which warrants
service providers to attach importance to propaganda and word-of-mouth because the
improvement of social acceptance could help enhance users’ trust and thus affect adoption
intention [44]. Moreover, based on the above-mentioned discussion, users’ expectancy
(performance expectancy and effort expectancy) influences others’ attitudes toward tech-
nology. When deciding whether to use AI-assisted diagnosis and treatment, healthcare
workers will consider whether AI-assisted diagnosis and treatment could improve their
work efficiency and whether the cost of learning AI-assisted diagnosis and treatment is
less than the benefit [69,70]. Healthcare workers themselves are influenced by others’
attitudes toward AI-assisted diagnosis and treatment [71,72]. That is, when the person they
think is critical to them has a positive attitude toward AI-assisted diagnosis and treatment,
healthcare workers believe that AI-assisted diagnosis and treatment is reliable, accurate,
and convenient [73,74]. When most people are negative about AI-assisted diagnosis and
treatment, healthcare workers query the advice and decisions provided by AI-assisted
diagnosis and treatment. Hence, the following hypotheses are proposed:

Hypothesis 4a (H4a). The relationship between performance expectancy and healthcare workers’
adoption intention of AI-assisted diagnosis and treatment can be mediated sequentially by social
influence and HCT.

Hypothesis 4b (H4b). The relationship between effort expectancy and healthcare workers’ adoption
intention of AI-assisted diagnosis and treatment can be mediated sequentially by social influence
and HCT.

Figure 1 presents the theoretical model of this study.
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3. Materials and Methods
3.1. Participants and Date Collection

Considering the service model of AI-assisted diagnosis and treatment, this study
focused on the dental department, a medical scenario where AI was used widely, and
selected healthcare professionals serving this department as the research subjects. Inclusion
criteria consisted of dental healthcare workers who had a qualification certificate and a
practice certificate, worked for at least 3 months, used AI-assisted diagnosis and treatment
in the department, and understood the purpose of the survey, agreed, and participated
voluntarily. A total of 450 questionnaires were distributed, of which 379 were collected,



Int. J. Environ. Res. Public Health 2022, 19, 13311 8 of 19

with a recovery rate of 84.2%. After screening the incomplete and visibly unqualified
questionnaires, the total number of valid questionnaires was 343.

The demographic characteristics of participants were summarized in Table 2. Most
participants were female (71.1%) with 77.0% aged < 41 years. Approximately half were
married (47.5%), doctor (44.3%), and had a university degree (49.3%). The majority of the
participants had less than 10 years of clinical experience (70.6%) and worked in tertiary
hospital (57.7%).

Table 2. Demographic characteristics for the participants (N = 343).

Characteristics Frequency (f) Percentage (%)

Gender
Male 99 28.9
Female 244 71.1

Age
≤20 37 10.8
21–30 105 30.6
31–40 122 35.6
41–50 57 16.6
≥51 22 6.4

Marital status
Single 118 34.4
Married 163 47.5
Divorced 62 18.1

Education
High school 27 7.9
Junior college 66 19.2
University 169 49.3
Master and above 81 23.6

Clinical experience
<1 23 6.7
1–5 133 38.8
6–10 86 25.1
11–15 54 15.7
16–20 32 9.3
>20 15 4.4

Position
Doctor 152 44.3
Nurse 124 36.2
Medical technician 67 19.5

Type of hospital
tertiary 198 57.7
secondary 145 42.3

Note: In China, there are three hospital levels (the rank of hospitals). The best hospital level is level three (tertiary
hospitals). Hospitals in this level can provide more beds, departments, professional nurses, professional doctors,
and good service for patients. The higher the rank of hospital, the greater the use of AI.

Before the survey, participants were explicitly informed that the survey was for aca-
demic purposes only and that personal information (such as gender, age, and education)
would be involved [75,76]. In the survey, participants were allowed to complete the ques-
tionnaire voluntarily and anonymously. After the survey, the survey data were kept in safe
custody to protect the participants’ privacy.

3.2. Measures

All measurements were based on reliable mature scales. To ensure the applicability and
efficacy of foreign scales in Chinese context, we strictly followed the “forward-backward
translation” procedure [77]. Meanwhile, appropriate adjustments were made to the ques-
tions based on the AI-assisted diagnosis and treatment context, and two professionals were
invited to examine the questionnaire for its clarity, terminology, logical consistency, and
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contextual relevance. The items and sources of the questionnaire are shown in Appendix A.
All responses were reflected using a 5-point Likert scale, where 1 = strongly disagree, and
5 = strongly agree. Moreover, a pretest was administered to 20 dental healthcare workers
before the formal research, and the questionnaire was revised to determine the official
questionnaire based on the results of the research and feedback on the questions. To assess
the reliability of our research instrument, Cronbach’s α values were calculated. Cronbach’s
α of all the scales were greater than the threshold of 0.60 [78], which indicated that our
research instrument had good reliability.

The 4-item performance expectancy scale was applied to measure performance ex-
pectancy [35]. A sample item from the questionnaire is “AI-assisted diagnosis and treatment
will make my work more efficient”. The Cronbach’s α for this scale in the present study
was 0.90. The 4-item effort expectancy scale was applied to measure effort expectancy [35].
A sample item from the questionnaire is “I can skillfully use AI-assisted diagnosis and
treatment”. The Cronbach’s α for this scale in the present study was 0.93.

The 4-item social influence scale was applied to measure social influence [35]. A
sample item from the questionnaire is “People who are important to me think that I should
use AI-assisted diagnosis and treatment”. The Cronbach’s α for this scale in the present
study was 0.92.

The 12-item human–computer trust scale developed by Gulati et al. (2018) was
adapted [79]. A sample item from the questionnaire is “I can always rely on AI-assisted
diagnosis and treatment”. The Cronbach’s α for this scale in the present study was 0.92.

The 3-item behavioral intention scale was applied to measure adoption intention [35].
A sample item from the questionnaire is “I intend to use AI-assisted diagnosis and treatment
in the future”. The Cronbach’s α for this scale in the present study was 0.94.

3.3. Data Analysis

Before reliability and validity testing, this study implemented common methods bias
(CMB) testing [80,81]. To minimize the threats of CMB, data confidentiality and anonymity,
concealing variable names, and item mismatches were guaranteed, but it was still necessary
to test the possible homologous variance. CMB was examined by Harman’s single-factor
test [82,83]. Constraining the number of factors extracted to one, exploratory factor analysis
yielded one single factor explaining 34.72% of the variance, lower than 50%, indicating
there were no serious common method bias.

In this study, SPSS v22.0 was used to conduct the descriptive statistical analysis,
internal reliability of the scales, and correlations between variables. AMOS 23.0 was used
to conduct confirmatory factor analysis (CFA) and convergent validity of the scales. We
used SPSS PROCESS macro 3.5 (MODEL 6) to test the chain mediation effect of social
influence and HCT. The bootstrapping method produced 95% confidence intervals (CI)
of these effects from 5000 bootstrap samples, which was the efficient method to test the
mediating effect [84].

4. Results
4.1. Descriptive Statistics

Table 3 summarized the descriptive statistics and correlation among variables. Perfor-
mance expectancy was significantly positively correlated with social influence (r = 0.583,
p < 0.01), HCT (r = 0.559, p < 0.01), and adoption intention (r = 0.441, p < 0.01). Effort
expectancy was significantly positively correlated with social influence (r = 0.391, p < 0.01),
HCT (r = 0.558, p < 0.01), and adoption intention (r = 0.261, p < 0.01). Social influence
had a positive correlation with HCT (r = 0.451, p < 0.01) and adoption intention (r = 0.551,
p < 0.01). Similarly, there was a positive correlation between HCT and adoption intention
(r = 0.604, p < 0.01).



Int. J. Environ. Res. Public Health 2022, 19, 13311 10 of 19

Table 3. Descriptive statistics and correlation among variables (N = 343).

M SD AVE PE EE SI HCT ADI

PE 3.96 0.75 0.697 0.835
EE 3.11 0.97 0.779 0.276 ** 0.883
SI 3.53 0.75 0.800 0.583 ** 0.391 ** 0.894

HCT 3.44 0.72 0.623 0.559 ** 0.558 ** 0.451 ** 0.789
ADI 3.70 0.72 0.650 0.441 ** 0.261 ** 0.511 ** 0.604 ** 0.806

Note: SD, standard deviations; AVE, average variance extracted; PE, performance expectancy; EE, effort ex-
pectancy; SI, social influence; HCT, human–computer trust; ADI, adoption intention. ** p < 0.05 (two-tailed).
Values on the diagonal are the square root of the AVE of each variable.

4.2. Confirmatory Factor Analysis

We used CFA to show that the theoretical model had a good fit and establish the
distinctiveness of study variables [85]. As shown in Table 4, the fitting degree of the
one-factor model was poor, and our hypothesized five-factor model fits the data best
(χ2/df = 2.213, GFI = 0.901, NFI = 0.937, RFI = 0.915, CFI = 0.964, RMSEA = 0.068). This
indicated that the five-factor model had a good fit, and the distinctiveness of the five
constructs in the current study was clear.

Table 4. Comparisons of measurement models.

Model Variables χ2/df GFI NFI RFI CFI RMSEA

Five-factor model PE, EE, SI, HCT, ADI 2.213 0.901 0.937 0.915 0.964 0.068
Four-factor model PE + EE, SI, HCT, ADI 3.021 0.851 0.903 0.884 0.933 0.088
Three-factor model PE + EE, SI + HCT, ADI 4.676 0.763 0.845 0.821 0.873 0.118
Two-factor model PE + EE + SI + HCT, ADI 6.469 0.648 0.778 0.752 0.805 0.144
One-factor model PE + EE + SI + HCT + ADI 10.870 0.481 0.621 0.583 0.642 0.194

Note: PE, performance expectancy; EE, effort expectancy; SI, social influence; HCT, human–computer trust; ADI,
adoption intention. χ2/df, cmin/df; GFI, goodness-of-fit index; NFI, normed fit index; RFI, relative fit index; CFI,
comparative fit index; RMSEA, root mean square error of approximation.

In addition, as shown in Table 3, the AVE of all constructs scored above the conven-
tional value of 0.5, and the convergent validity of the model could be confirmed [86,87].
Discriminant validity was evaluated using the AVE square root calculated for every con-
struct; all square roots were greater than the correlations among the constructs, proving
discriminant validity (Table 3) [86].

4.3. Structural Model Testing

Figures 2 and 3 indicated the results of the serial multiple mediation model. As shown
in Figure 2, the total effect (βb1 = 0.634, p < 0.001) and the total direct effect (βb2 = 0.285,
p < 0.001) of performance expectancy on healthcare workers’ adoption intention of AI-
assisted diagnosis and treatment were found to be significant. Hence, H1a was supported.
As shown in Figure 3, the total effect (βd1 = 0.594, p < 0.001) and the total direct effect
(βd2 = 0.131, p < 0.05) of effort expectancy on healthcare workers’ adoption intention of AI-
assisted diagnosis and treatment were found to be significant. Hence, H1b was supported.

Using the bootstrap method, we tested the mediating effects of social influence, HCT,
and chain mediation effect of social influence and HCT, where the sampling value was set
to 5000, and the CI was set to 95% [88]. Table 5 presents the results of the hypothesis testing.
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Figure 3. The serial multiple mediation model of effort expectancy. Note: c1, direct effect of effort
expectancy on social influence; c2, direct effect of effort expectancy on human–computer trust; c3,
direct effect of social influence on human–computer trust; c4, direct effect of social influence on
adoption intention; c5, direct effect of human–computer trust on adoption intention; d1, total effect of
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Table 5. Direct and indirect effects.

Effect
X = PE X = EE

Point Estimate Boot SE 95%CI Point Estimate Boot SE 95%CI

Total indirect effect of X on ADI 0.349 0.064 [0.230, 0.481] 0.463 0.064 [0.332, 0.585]
Indirect 1:

X→ SI→ ADI 0.261 0.061 [0.147, 0.386] 0.335 0.061 [0.213, 0.456]

Indirect 2:
X→ HCT→ ADI 0.043 0.020 [0.010, 0.088] 0.088 0.033 [0.027, 0.157]

Indirect 3:
X→ SI→ HCT→ ADI 0.045 0.020 [0.011, 0.090] 0.040 0.017 [0.012, 0.077]

Note: CI, confidence interval; PE, performance expectancy; EE, effort expectancy; SI, social influence; HCT,
human–computer trust; ADI, adoption intention.

For performance expectancy, the total indirect effect of performance expectancy and
adoption intention was 0.349. The total indirect effect was significant at 95% CI (0.230, 0.481),
excluding 0. Of these, indirect effect 1 was performance expectancy→ social influence→
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adoption intention, which tested the mediating effect of social influence between perfor-
mance expectancy and adoption intention. The effect value of indirect effect 1 was 0.261,
with 95% CI (0.147, 0.386), excluding 0. Indirect effect 2 was performance expectancy→
HCT→ adoption intention, which tested the mediating effect of HCT between performance
expectancy and adoption intention. The effect value of indirect effect 2 was 0.043, with
95% CI (0.010, 0.088), excluding 0. Indirect effect 3 was performance expectancy→ social
influence→ HCT→ adoption intention, which tested the chain mediation effect of social
influence and HCT between performance expectancy and adoption intention. The effect
value of indirect effect 3 was 0.045, with 95% CI (0.011, 0.090), excluding 0. Hence, H2a,
H3a, and H4a were supported.

For effort expectancy, the total indirect effect of effort expectancy and adoption inten-
tion was 0.463. The total indirect effect was significant at 95% CI (0.332, 0.585), excluding 0.
Of these, indirect effect 1 was effort expectancy→ social influence→ adoption intention,
which tested the mediating effect of social influence between effort expectancy and adop-
tion intention. The effect value of indirect effect 1 was 0.335, with 95% CI (0.213, 0.456),
excluding 0. Indirect effect 2 was effort expectancy→ HCT→ adoption intention, which
tested the mediating effect of HCT between performance expectancy and adoption inten-
tion. The effect value of indirect effect 2 was 0.088, with 95% CI (0.027, 0.157), excluding 0.
Indirect effect 3 was effort expectancy→ social influence→ HCT→ adoption intention,
which tested the chain mediation effect of social influence and HCT between effort ex-
pectancy and adoption intention. The effect value of indirect effect 3 was 0.040, with 95%
CI (0.012, 0.077), excluding 0. Hence, H2b, H3b, and H4b were supported.

5. Discussion

This study explored the adoption intention theoretical model of AI-assisted diagnosis
and treatment by integrating the UTAUT model and HCT theory. The findings revealed
that expectancy (performance expectancy and effort expectancy) positively influenced
healthcare workers’ adoption intention of AI-assisted diagnosis and treatment, corroborat-
ing well-established evidence in previous UTAUT studies [20,23,25,27–29]. Notably, effort
expectancy had a relatively smaller impact in determining healthcare workers’ adoption
intention of AI-assisted diagnosis and treatment compared with performance expectancy.
The reason might be that nowadays, the public has much experience in using high-tech
devices. They might believe that they can handle AI-assisted diagnosis and treatment
without spending too much effort. Moreover, if technology offers the needed functions, the
public will accept more efforts in using it [89,90].

Our findings established that expectancy (performance expectancy and effort ex-
pectancy) influenced healthcare workers’ adoption intention through the mediation of so-
cial influence. The perceived utility and ease of use of AI-assisted diagnosis and treatment
by healthcare workers would trigger positive attitudes among those around them [75,91].
When people engage in social interactions, healthcare workers are more likely to believe
that adopting AI-assisted diagnosis and treatment is useful and effortless and thus would
like to accept it. In addition, we found that expectancy (performance expectancy and effort
expectancy) exerted a positive impact on adoption intention by the mediating effect of HCT,
in line with previous studies [27,44,68,92]. That is, healthcare workers’ expectancy affected
their trust in AI-assisted diagnosis and treatment, and subsequently, they would like to
accept AI-assisted diagnosis and treatment.

This study supported the hypothesis that social influence and HCT played a chain me-
diation role between expectancy and healthcare workers’ adoption intention of AI-assisted
diagnosis and treatment. Social influence was positively related to HCT, thereby supporting
previous studies [27,44]. Fan et al. (2020) claimed that user advocacy and assessment are
particularly crucial in the promotion and popularization of artificial intelligence-based
medical diagnosis support system and that increased recognition of the service helps in en-
hancing users’ trust [27]. Healthcare workers could decrease costs of decision by referring
to the attitudes of people around them toward AI-assisted diagnosis and treatment. Hence,
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healthcare workers’ expectancy was influenced by the positive attitudes of those around
them toward technology. Furthermore, the positive impact would eventually transform
into trust in AI-assisted diagnosis and treatment, resulting in the adoption intention of
AI-assisted diagnosis and treatment by healthcare workers.

5.1. Theoretical Implications

The major implications of this study can be summarized as follows. First, this study
enriches theoretical research on the application of medical AI scenarios. Previous research
on healthcare workers’ intention to adopt technology focused on technologies such as
the EHR [23,25,26], telemedicine [24,29], and the HIS [28]. However, limited research
has been conducted on AI-assisted diagnosis and treatment. We extended scholarship by
offering a theoretical framework and an empirically tested model of healthcare workers’
adoption intention of AI-assisted diagnosis and treatment, considering healthcare workers’
perception of AI-assisted diagnosis and treatment as well as the anticipated positive effects
on work and society that AI may have. Perhaps this model will serve as a foundation for
others seeking to understand the mixed attitudes and reactions of healthcare workers in
the face of other medical AI scenarios [93].

Second, this study broadens the theoretical research of the UTAUT model by revealing
the impact of human–computer trust (HCT) on healthcare workers’ adoption intention of
AI-assisted diagnosis and treatment. Previous studies primarily used a single technology-
adoption model, such as TAM and UTAUT, as the main research framework, establishing
that performance expectancy and effort expectancy markedly affected the adoption inten-
tion of new technologies [34,35,94]. Nevertheless, medical AI differs from the previous
technologies and presents the characteristics of high motility, high risk, and low trust. Our
results suggested that HCT mediated the relationship between expectancy and healthcare
workers’ adoption intention of AI-assisted diagnosis and treatment, similar to previous
studies [27,44,68]. This study explains well how to promote HCT and sequentially accept
AI-assisted diagnosis and treatment from the perspective of individual perception. This
result is notable because it provides an explanation mechanism of HCT with regards to
medical AI and extends the theoretical framework for UTAUT model in the medical field.

Third, this study addresses how performance expectancy and effort expectancy af-
fected adoption intention of AI-assisted diagnosis and treatment, thereby enriching the
research on the mediating mechanism between the above-mentioned relationships. While
previous studies focused more on the direct effects of technology adoption, this study in-
corporated the HCT theory based on the UTAUT model and established a chain-mediated
mechanism of social influence and HCT. Moreover, our findings tested the single mediating
effect and chain mediating effect of social influence and HCT between expectancy and
adoption intention, revealing interesting conversions between social influence and HCT. To
some extent, the research conclusions also compensate for the low degree of explanation of
AI-adoption intention based on single models, such as traditional TAM and UTAUT [38].

5.2. Practical Implications

The contributions of this study extend beyond the empirical findings and lie in the
significance of its theoretical extension for the acceptance of AI-assisted diagnosis and
treatment. First, service developers should focus on the performance expectancy and effort
expectancy of healthcare workers for medical AI. Service developers should effectively
comprehend the needs of healthcare workers for AI-assisted diagnosis and treatment,
increase the R&D of AI-assisted diagnosis and treatment, develop professional functions
that fulfill the needs of healthcare workers, ensure the accuracy of information and services
provided by AI-assisted diagnosis and treatment, enhance work efficiency and service
quality of healthcare workers, and improve the worthy perception of healthcare work-
ers. Furthermore, service providers should be user-centered, focus on the experience of
AI-assisted diagnosis and treatment, improve the simplicity of operation and interface
friendliness, and enhance the perception of the ease of use for healthcare workers.
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Second, hospital administrators could adjust their management strategies to augment
the trust and acceptance of AI-assisted diagnosis and treatment among healthcare workers.
For example, hospital managers should encourage healthcare workers to adopt the AI-
assisted diagnosis and treatment as well as convey the hospitals’ support for the use of
AI-assisted diagnosis and treatment. In addition, hospitals should conduct AI technology
training for relevant healthcare workers to help them quickly understand AI-assisted
diagnosis and treatment and enhance their expectancy [75]. Hospital managers could also
associate work performance with salary and promotion for healthcare workers to urge
them to adopt AI-assisted diagnosis and treatment.

Third, the government could amplify publicity on AI-assisted diagnosis and treatment
and enhance its social influence. A study demonstrated that technology is adopted faster
in mandatory settings [28]. The government’s vigorous promotion of AI-assisted diagnosis
and treatment would enhance healthcare workers’ recognition of AI-assisted diagnosis and
treatment. Moreover, social influence is a key factor affecting healthcare workers’ trust
in AI-assisted diagnosis and treatment. When building trust with AI-assisted diagnosis
and treatment, healthcare workers would refer to the positive or negative attitudes of
those around them toward the technology. Thus, service providers must focus on their
own publicity and word-of-mouth to increase the recognition of AI-assisted diagnosis and
treatment, enhance HCT, and in turn influence healthcare workers’ adoption intention.

5.3. Limitations and Future Research

Although this study provided meaningful findings about healthcare workers’ adop-
tion intention of AI-assisted diagnosis and treatment, the following points merit further
research. First, our study used adoption intention instead of actual usage behaviors as the
agent of acceptance because it is hard to measure potential users’ actual usage behavior in
such a cross-sectional survey study, a fact that is commonly encountered by many previous
studies [95]. A meta-analysis inferred that medium-to-large changes in intention induce
small-to-medium changes in behavior [96]. Future studies could focus on healthcare work-
ers’ adoption behavior of AI-assisted diagnosis and treatment to make the findings more
practical. Second, this study was conducted in the dental department; thus, the findings
might not be applicable to other departments. Further research might also involve other
departments, such as imaging and clinic. Third, this study investigated the antecedents of
healthcare workers’ adoption intention of AI-assisted diagnosis and treatment only from
the viewpoint of healthcare workers’ perceptions. Notably, some other scenario-related
factors (e.g., perceived risk and task–technology fit) might also contribute to healthcare
workers’ acceptance and merit future explorations. Finally, this study was conducted with
healthcare workers, including doctors, nurses, and medical technicians, but there were
differences in the psychological perceptions of different types of healthcare workers (e.g.,
performance expectancy and effort expectancy). Research on the intention to adopt medical
AI for just one type of healthcare worker would also be valuable in the future.

6. Conclusions

The adoption of AI-assisted diagnosis and treatment by healthcare workers could
enhance work efficiency and accuracy; however, the “black box” nature of AI technology is
a real barrier to its acceptance by healthcare workers. This study proposed and verified the
theoretical model of adoption intention by integrating the UTAUT model and HCT theory to
explain healthcare workers’ adoption intention of AI-assisted diagnosis and treatment. The
results revealed that expectancy (performance expectancy and effort expectancy) positively
affected healthcare workers’ adoption intention. In addition, we explored the single
mediating effect and chain mediating effect of social influence and HCT between expectancy
and adoption intention. This study could also effectively assist AI technology companies
in their technology algorithm optimization, product development, and promotion and
provide a reference for decision making on policy formulation for establishing trustworthy
AI as well as the management needs of AI systems in government public and other sectors.
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Appendix A

Table A1. Measurement items of constructs.

Constructs Variables Measurement Items

Performance
Expectancy

(PE)

PE1 AI-assisted diagnosis and treatment will enhance the efficiency of my medical
consultation process.

PE2 AI-assisted diagnosis and treatment will make my work more efficient.

PE3 AI-assisted diagnosis and treatment will provide me with new abilities that I did not
have before.

PE4 AI-assisted diagnosis and treatment will expand my existing knowledge base and provide
new ideas.

Effort Expectancy
(EE)

EE1 I think the openness of AI-assisted diagnosis and treatment is clear and unambiguous.

EE2 I can skillfully use AI-assisted diagnosis and treatment.

EE3 I think getting the information I need through AI-assisted diagnosis and treatment is easy
for me.

EE4 AI-assisted diagnosis and treatment doesn’t take much of my energy.

Social Influence
(SI)

SI1 People around me use AI-assisted diagnosis and treatment.

SI2 People who are important to me think that I should use AI-assisted diagnosis
and treatment.

SI3 My professional interaction with my peers requires knowledge of AI-assisted diagnosis
and treatment.

Human–Computer
Trust
(HCT)

HCT1 I believe AI-assisted diagnosis and treatment will help me do my job.

HCT2 I trust AI-assisted diagnosis and treatment to understand my work needs and preferences.

HCT3 I believe AI-assisted diagnosis and treatment is an effective tool.

HCT4 I think AI-assisted diagnosis and treatment works well for diagnostic and
treatment purposes.

HCT5 I believe AI-assisted diagnosis and treatment has all the functions I expect in a
medical procedure.

HCT6 I can always rely on AI-assisted diagnosis and treatment.

HCT7 I can trust the reference information provided by AI-assisted diagnosis and treatment.

Adoption Intention
(ADI)

ADI1 I am willing to learn and use AI-assisted diagnosis and treatment.

ADI2 I intend to use AI-assisted diagnosis and treatment in the future.

ADI3 I would advise people around me to use AI-assisted diagnosis and treatment.
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