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Abstract: In this article, 34 anticoagulant drugs were screened in silico against the main protease
(Mpro) of SARS-CoV-2 using molecular docking tools. Idraparinux, fondaparinux, eptifibatide,
heparin, and ticagrelor demonstrated the highest binding affinities towards SARS-CoV-2 Mpro. A
molecular dynamics study at 200 ns was also carried out for the most promising anticoagulants
to provide insights into the dynamic and thermodynamic properties of promising compounds.
Moreover, a quantum mechanical study was also conducted which helped us to attest to some of the
molecular docking and dynamics findings. A biological evaluation (in vitro) of the most promising
compounds was also performed by carrying out the MTT cytotoxicity assay and the crystal violet
assay in order to assess inhibitory concentration 50 (IC50). It is worth noting that ticagrelor displayed
the highest intrinsic potential for the inhibition of SARS-CoV-2 with an IC50 value of 5.60 µM and a
safety index of 25.33. In addition, fondaparinux sodium and dabigatran showed promising inhibitory
activities with IC50 values of 8.60 and 9.40 µM, respectively, and demonstrated safety indexes of
17.60 and 15.10, respectively. Moreover, the inhibitory potential of the SARS-CoV-2 Mpro enzyme was
investigated by utilizing the SARS-CoV-2 Mpro assay and using tipranavir as a reference standard.
Interestingly, promising SARS-CoV-2 Mpro inhibitory potential was attained for fondaparinux sodium
with an IC50 value of 2.36 µM, surpassing the reference tipranavir (IC50 = 7.38 µM) by more than
three-fold. Furthermore, highly eligible SARS-CoV-2 Mpro inhibitory potential was attained for
dabigatran with an IC50 value of 10.59 µM. Finally, an SAR was discussed, counting on the findings
of both in vitro and in silico approaches.
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1. Introduction

The 2019 new coronavirus disease (COVID-19) has vastly spread around the
world [1,2]. SARS-CoV-2 contributed to more than 6,287,995 deaths globally to date. More
than 521,011,797 cases have been reported as confirmed infection cases [3–5]. Therefore, the
discovery of effective anti-SARS-CoV-2 medications is vigorously needed for combating
this pandemic disease [6–8].

Coronaviruses (CoVs) are enveloped viruses with a spherical shape carrying an array
of projections on their surfaces. The main protease (Mpro) protein was found to have
a critical function in the gene expression and replication of CoV (e.g., MERS-CoV and
SARS-CoV) [9,10]. The protease is involved in the conversion of large polypeptides into
smaller functional protein units. Mpro is composed of a three-domain cysteine protease
(domains I to III) incorporated in most maturation cleavage proceedings within the precur-
sor polyprotein. Hence, the active Mpro is considered a homodimer with two protomers.
The coronavirus Mpro exhibits a non-canonical Cys-His dyad which is oriented in the cleft
between domains I and II. Mpro is conserved among coronaviruses, and substrates of Mpro

in many coronaviruses share several similar characteristics. Hence, the cleavage site is
located between P1 and P1′. Gln amino acid is a crucial requirement in the P1 position
of the substrates. Therefore, the Mpro is an excellent antiviral target because it lacks a
human homolog [11]. Mpro can be considered a pivotal biological target for the discovery of
drugs against coronavirus. Researchers have targeted the Mpro protein in the literature. For
example, Rangsinth et al. assessed a set of 36 natural compounds for their potential against
SARS-CoV-2 main protease using in silico molecular docking and ADMET studies [12,13].

In addition, working on repurposed drugs helps to skip the preliminary drug screening
processes, hence moving directly to clinical trials, which in turn can hasten FDA approval
for the newly proposed indications. Drug repurposing can be a quicker and less expensive
method of drug discovery than de novo drug development [14–17].

Drug repurposing is defined as the reusage of an existing drug for treating another
disease that is quite different from the originally intended indication. Hence, in a short
time, a new drug can become available in the market at a lower cost compared to when
a de novo drug approach is used [18–22]. The Mpro is a favorable target for SARS-CoV
therapeutic design, and a wide range of drug inhibitors have been designed to efficiently
target it [23–25]. Previous analyses of genome sequence have displayed that SARS-CoV-2
engages with the corresponding SARS-CoV and MERS-CoV variants with a high level of
sequence similarity [26]. Therefore, Mpro is regarded as a very promising biological target
for SARS-CoV-2.

Notably, the induced hypercoagulability attributed to COVID-19 has been shown to
play a role in COVID-19 symptoms [27]. SARS-CoV-2 triggers the release of cytokines,
such as interleukins and interferons, which leads to a systemic inflammatory response and
most probably a cytokine storm. A systemic thrombus generation with cerebral infarction
and pulmonary artery thrombosis can be experienced at high cytokine concentrations [28].
It is worth noting that the incidence of venous thromboembolic events (VTEs) is 30%
among COVID-19 patients, whereas it is 1.3% among non-COVID-19 patients [27]. A
significant increase in D-dimer and prothrombin levels with a lowering in fibrinogen levels
was reported in COVID-19 non-survivors on days 10–14 [29]. Elevated D-dimer values
(above 1 µg/mL) are considered vigorous and distinct death risk factors [28]. Therefore, the
use of an anticoagulant is found to be associated with decreased mortality in all patients,
particularly those with a sepsis-induced coagulopathy score higher than 33% [29].

Scientists have been making tremendous efforts to obtain deep insights about SARS-
CoV-2 as well as the pathophysiology that it may cause. The accumulation of information on
SARS-CoV-2, SARS-CoV, and MERS-CoV helps scientists and researchers to recognize novel
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therapeutics, biological targets, and vaccines. Thus, revealing novel effective therapeutics
and/or producing a vaccine is currently a time-counting race [30].

Consequently, in this paper, we aimed to target the Mpro protein in relation to COVID-
19 treatment. Therefore, we conducted a feasible screening using a selected library of
most FDA-approved anticoagulant drugs (Figure 1). The selected anticoagulants were
docked using the 3D structure of a Mpro dimeric form (PDB ID: 6Y2G) [31]. Hence, the
most promising candidates were investigated by some in vitro approaches, assuring their
potential against SARS-CoV-2. Thus, we were able to investigate the most promising
candidates exerting antiviral activity towards SARS-CoV-2, which can help us propose
various anticoagulant drugs to be utilized in blood clotting treatment for COVID-19 patients,
especially for patients with chronic heart diseases (Figure 2).

Figure 1. The chemical structures of selected anticoagulant drugs along with the co-crystallized
inhibitor (O6K) 35 for Mpro.
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Figure 2. A graphical representation of the anticoagulants repositioned as SARS-CoV-2 inhibitors,
showing their role in COVID-19 patient management.

2. Results and Discussion
2.1. Molecular Docking Studies

Molecular docking simulations of the selected anticoagulants, along with the O6K
inhibitor (represented in Figure 1) in the Mpro active pocket of SARS-CoV-2, were per-
formed. They were stabilized into the Mpro binding pocket using various interactions.
Their order of binding strength based on their docking score was as follows: idraparinux
(30) > fondaparinux (29) > eptifibatide (25) > heparin (23) > O6K inhibitor (35, docked)
> ticagrelor (26) > dipyridamole (14) > argatroban (31) > edoxaban (21) > tirofiban (24) >
ximelagatran (32) > apixaban (19) > dabigatran (20) > cilostazol (33) > betrixaban (28) >
ethyl eicosapentaenoic acid (18) > prasugrel (27) > rivaroxaban (22) > sulfinpyrazone (17)
> defibrotide (34) > diphenadione (11) > ethyl biscoumacetate (7) > acenocoumarol (4) >
cyclocoumarol (6) > dicoumarol (2) > warfarin (5) > clopidogrel (16) > ticlopidine (15) >
phenprocoumon (3) > anisindione (9) > bromindione (10) > triflusal (13) > phenindione (8)
> aspirin (12) > sodium citrate (1).

Most of the target drugs achieved feasible binding interactions with the target Mpro.
The poses experienced eligible binding scores and RMSD values were chosen for further
investigation [32–34].

Idraparinux (30), fondaparinux (29), eptifibatide (25), and heparin (23) were found
superior to the O6K inhibitor (35, docked). The aforementioned candidates (23, 25, 29, 30,
and 35), besides ticagrelor (26), were selected for further investigation. Their 3D binding
interactions within the Mpro binding pocket of SARS-CoV-2 are depicted in Table 1.

First, the binding of the docked O6K inhibitor within the dimeric Mpro of SARS-CoV-2
was analyzed. It was noted that O6K was stabilized by the formation of four H-bonds with
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residues Glu166, Asn142, Gly143, and Cys145 at 2.79, 3.04, 3.21, and 4.10 Å, respectively. The
docking score was −9.35 kcal/mol and the root mean square deviation (RMSD) value was
1.41 Å. To evaluate the docking geometry correctness, the RMSD was used as a measure of
the deviation degree of the docked co-crystallized ligand in relation to its original position
(native co-crystallized ligand).

Idraparinux exhibited a score of −12.93 kcal/mol. It was also bound to the deep Mpro

pocket through seven H-bonds with Pro168 (2 H-bonds), Asn214, Glu166, Asn142, Gln192,
and Cys145 amino acids at 2.90, 3.48, 2.94, 2.98, 3.03, 3.47, and 3.86 Å, respectively.

Table 1. Three-dimensional binding interactions and positions of idraparinux, fondaparinux, eptifi-
batide, heparin, and ticagrelor compared to the O6K inhibitor within the binding site of SARS-CoV-2
Mpro.

Rank Drug 3D Mpro Interactions 3D Mpro Positions

1
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The binding score of fondaparinux was −11.28 kcal/mol (RMSD = 2.26 Å), where one
H-bond with Glu166 was calculated at 2.82 Å.

Eptifibatide showed a score of −10.31 kcal/mol at a value of RMSD = 2.01 Å. It
exhibited six H-bonds with Gln192 (2 H-bonds), Glu166, Leu141, Met165, and Cys145
amino acids at 2.96, 3.25, 3.03, 3.24, 3.45, and 4.24 Å, respectively.

Heparin bound to the Mpro pocket of SARS-CoV-2 using seven H-bonds and displayed
a docking binding score of −10.26 kcal/mol. It interacted with Thr25, Glu166, Asn142,
His164, His163, Ser1, and Ser46 amino acids at 2.85, 2.97, 3.13, 3.25, 3.28, 3.39, and 3.47 Å,
respectively.

Finally, ticagrelor experienced a score of -8.33 kcal/mol with only one H-bond forma-
tion with Gly143 at 3.54 Å.
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2.2. Molecular Dynamics (MDs) Simulations Studies

To study the compounds’ stability with the best docking score at the Mpro active site of
SARS-CoV-2, MD simulations were conducted for 200 ns. The obtained root mean square
deviations (RMSDs) for the complexes and the ligands concerning their original positions
within the active site were reported and analyzed. Frontier compounds’ interactions were
also analyzed and evaluated in detail. Finally, the MM-GBSA free binding energy was
estimated for all complexes during the simulation trajectories.

2.2.1. Protein and Ligand RMSD Analysis

Five compounds were selected for MD simulations, including heparin, ticagrelor,
fondaparinux, idraparinux, and eptifibatide, along with the co-crystallized inhibitor (O6K).
The conformational stability of the proteins was monitored through the Cα atoms of the
protein with respect to their initial position. As shown in Figure 3, all complexes showed
stability during the 200 ns simulation, and the RMSD of all complexes was calculated at
values less than 3.00 Å, which is acceptable for such proteins.

Figure 3. The RMSDs of protein complexes (heparin, ticagrelor, fondaparinux, idraparinux, eptifi-
batide, and O6K -6Y2G, respectively) for 200 ns.

The RMSD was measured for ligands’ atoms based on the initial position of the heavy
atoms inside the protein active site, as shown in Figure 4. The studied ligands showed early
stability at the active site, except for ticagrelor, which left the active site ultimately at around
5.00 ns. Ticagrelor fluctuated till the end of the simulation. It was not able to stabilize
within the active site and moved by 20.00 Å from its original site, as shown in Figure S1
(Supplementary Materials). On the other hand, other compounds showed much more
stability during the simulation procedure. Fondaparinux was the most stable, but heparin
along with the co-crystallized O6K inhibitor started fluctuating and moved around 8.00 Å
from their original sites to become deeper inside the active site of the protease chain A of
the dimer at about 70 ns, as shown in Figure S1. Idraparinux showed high stability inside
the active site, barely moved by 4.00 Å at the beginning of the simulation, and fluctuated
inside the active site. Finally, fondaparinux showed the most constancy inside the active
site and moved by only 2.00 Å from its initial location.
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Figure 4. The RMSDs of ligand complexes (heparin, ticagrelor, fondaparinux, idraparinux, eptifi-
batide, and O6K-6Y2G, respectively) during the simulation time (200 ns).

Glu166 residue is a critical residue for the Mpro binding pocket of SARS-CoV-2; there-
fore, the distance between the ligands and this residue was measured throughout the
simulation time using the measurement panel in Maestro software, as shown in Figure 5.
Heparin moved by around 10 Å, while ticagrelor fluctuated and moved by approximately
25 Å and then stabilized at around a 15 Å distance. Idraparinux was unable to form hy-
drogen interactions with the Glu166 residue and kept a 4–5 Å distance during most of the
simulation time. Eptifibatide showed stability in the first 25 ns; then, before it moved by
around 10 Å till around 170 ns, it moved again to around 6 Å with regards to its original
position. Fondaparinux and the co-crystallized inhibitor (O6K) showed similar behaviors.
Both were around 6 Å from Glu166 before forming H-bonds at around 25 ns and 5 ns for
fondaparinux and O6K, respectively. Both compounds held this H-bond till the end of the
simulation time.

Since fondaparinux and idraparinux showed the most promising results, their interac-
tions with the proteins will be discussed in detail.

Figure 5. Cont.
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Figure 5. Distance in Å between Glu166 residue and ligands during the MD simulation using the
measurement panel in Maestro software.

2.2.2. Histogram and Heat Map Analysis

Since fondaparinux and idraparinux showed the highest stability within the Mpro

active pocket, their interactions are discussed in detail.
Fondaparinux formed H-bond interactions with the following residues: Thr25 (~30%),

Thr26 (~150%), His41 (~40%), Asn142 (~100%), Glu166 (~200%), Asp187 (~100%), and
Gln189 (~250%), while idraparinux formed H-bonds with eight residues including Asn142
(~50%), Gly143 (~100), Ser144 (~30%), His163 (~70%), Glu166 (~200%), Thr169 (~50%),
Thr190 (~50%), and Asn214 (~55%), as presented in Figure 6.

A percentage higher than 100 indicates formation of more than one H-bond interaction
at the same time. Glu166 residue was able to form up to three H-bonds simultaneously
with idraparinux, as shown in Figure 7.

Another type of H-bond interaction is the water-bridged H-bond, where crystal water
molecules form a link between the protein residues and ligands. Fondaparinux formed water-
bridged H-bonds with residues Thr24 (~40%), Ser46 (~30%), Asn142 (~50%), Gly143 (~150%),
Glu166 (~50%), Arg188 (~50%), Gln189 (~50%), and Thr190 (~90%). While idraparinux was
able to form more than 20 water-bridged H-bonds interactions, where bridge H-bonds with
Thr26, Asn142, His164, Glu166, Pro168, Gln189, Gln192, Ser1, Asn214, and Asp216 held
interactions more than 50% during the simulation time. Along with H-bonds interactions, fon-
daparinux was able to form a hydrophobic interaction with residue His41 (~90%) and an ionic
interaction with Ser46 residue. On the other hand, idraparinux showed weak hydrophobic
bonds with Leu27, Met165, and Met49, without the formation of ionic interactions.

Another method used to monitor these interactions involves plotting the number of
interactions with respect to time. For example, a heat map (Figure 8) indicates the number
of interactions at each frame, whereas the dark color indicates more interactions between
proteins and ligands. Simulations revealed that fondaparinux holds interactions during the
simulation time with Thr36, Asn142, Glu166, and Gln189, while idraparinux holds tight
interactions with Gly143, Glu166, Ser1, and Asn214 residues.
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Figure 6. Histogram describing the binding interactions of fondaparinux and idraparinux within the
SARS-CoV-2 Mpro during the simulation time (200 ns).

Figure 7. Hydrogen bond interactions between the protein residue (Glu166) and idraparinux.
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Figure 8. Heat map describing the total number of interactions within Mpro pocket during the 200 ns.

2.3. MM-GBSA Calculations

The molecular mechanics, with a generalized Born and surface area solvation (MM–
GBSA), were carried out to calculate both the ligand binding strain and free energies for
docked ligands over the last 50 ns. The ∆G binding energies, Coulomb energies, hydrogen
bond energies, generalized Born electrostatic energies, covalent binding energies, lipophilic
energies, and van der Waals energies were recorded. The obtained results are described in
Table 2 in more detail.

Table 2. MM-GBSA energies for (fondaparinux, idraparinux, and O6K-6Y2G) complexes of 6Y2G
protein (kcal/mol).

Energies Fondaparinux Idraparinux O6K

∆G Binding −51.24 −47.83 −66.14

Coulomb −29.02 −33.05 −21.54

Covalent 1.51 3.00 1.25

H-bond −5.59 −2.75 −1.90

Lipo −4.09 −7.24 −15.07

Solv_GB 44.67 42.06 32.61

VdW −58.72 −49.84 −59.75
Lipo: lipophilic energy; Solv_GB: generalized Born electrostatic solvation energy; vdW: van der Waals energy.

As shown in Table 2, fondaparinux and idraparinux showed high MM-GBSA bind-
ing energies with almost a 15 kcal/mol difference compared to the O6K inhibitor. In
addition, idraparinux showed higher coulomb energy while fondaparinux showed higher
H-bond energy.

In conclusion, MD suggests that both fondaparinux and idraparinux mechanisms of
action mainly exist because of SARS-CoV-2 Mpro inhibition, while heparin and ticagrelor
may have different mechanisms of action. Moreover, fondaparinux and idraparinux have
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good MM-GBSA binding energies, in agreement with the docking outputs, and support our
claims that these compounds’ mode of action involves the Mpro inhibition of SARS-CoV-2.

2.4. Quantum Mechanics Studies

We utilized Gaussian software to calculate some molecular parameters of the most
promising compounds in addition to the natural ligand of the receptor protein. Some
selected molecular parameters are listed in Table 3. It was noted that idraparinux and
fondaparinux have higher electronic energy, heat capacity, and entropy than other com-
pounds, which attests to the electronic and thermal stability of the two drugs compared to
other drugs. Polarizability, dipole moments, and HOMO-LUMO gaps are indicative of the
change in the distribution of electrons over a molecule. It was also noted that idraparinux
and fondaparinux have almost higher polarizability, dipole moment, and HOMO-LUMO
gap values than other compounds.

Table 3. Molecular parameters of the most promising compounds calculated at the B3LYP/6-311G*
level of theory.

Idraparinux Fondaparinux Eptifibatide Heparin Ticagrelor O6K

Electronic energy
(a.u) −7960.687941 −8249.761481 −3439.760925 −5900.496951 −2120.921679 −2006.843019

EE + zero-point
energy (a.u) −7959.503380 −8248.720347 −3438.890071 −5899.677335 −2120.413977 −2006.140527

E (thermal) kcal/mol 804.301 710.103 582.073 558.193 340.739 467.855

Heat capacity
(cal/mol-K) 357.951 342.236 214.894 262.334 130.586 162.591

Entropy(cal/mol-K) 516.009 476.337 321.245 387.736 232.036 268.442

Dipole moment
(Debye) 7.6360 12.3118 8.7425 10.1676 1.4483 6.1357

Polarizability (a.u) 677.106290 639.424008 513.000082 492.779318 332.483453 388.563234

Eg (eV) * 6.62 6.31 4.26 5.73 4.80 4.55

* Eg refers to the energy gap between the HOMO and the LUMO.

It is well known that the outermost orbitals contribute most to the drug–receptor
interactions; therefore, the charge density values of the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) were calculated. The
energy gap between HOMO and LUMO indicates the energy contribution to the covalent
bond formation [35,36]. The graphical representations of the outermost orbitals’ electronic
densities are listed in Table 4.

Table 4. Charge densities of outermost orbitals and MEP map of the most promising compounds
optimized at the B3LYP/6-311G* level of theory.
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2.5. In Vitro Studies 

2.5.1. The SARS-CoV-2 Inhibitory Assay (Cell-Based) 

The attained CC50 for the selected screened anticoagulants (ticagrelor, fondaparinux 

sodium, dabigatran, and heparin) on Vero E6 cells (Figure 9) could pinpoint the safe con-

centrations for each investigated compound to be utilized in other in vitro assessments. 

The dose used to inhibit 50% of SARS-CoV-2 was also calculated for each screened com-

pound by determining inhibitory concentration 50 (IC50), as shown in Figure 9. Notably, 

the attained IC50 values for the screened anticoagulant drugs were outstanding and con-

sistent with their affinities and intrinsic activities calculated from the docking and molec-

ular dynamics studies. 
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sistent with their affinities and intrinsic activities calculated from the docking and molec-
ular dynamics studies. 

The molecular electrostatic potential (MEP) map helps to visualize the molecules’
charge distributions. The electron density mapping changes from high-density electrons
(red color) to lower-density electrons (blue color). As described in Table 4, all promising
compounds show areas of randomly distributed electrons, which may account for their
ability to form multiple H-bonds which in turn enhance their binding energies with the
atoms of the receptor.



Int. J. Mol. Sci. 2022, 23, 12235 14 of 25

2.5. In Vitro Studies
2.5.1. The SARS-CoV-2 Inhibitory Assay (Cell-Based)

The attained CC50 for the selected screened anticoagulants (ticagrelor, fondaparinux
sodium, dabigatran, and heparin) on Vero E6 cells (Figure 9) could pinpoint the safe concen-
trations for each investigated compound to be utilized in other in vitro assessments. The
dose used to inhibit 50% of SARS-CoV-2 was also calculated for each screened compound
by determining inhibitory concentration 50 (IC50), as shown in Figure 9. Notably, the
attained IC50 values for the screened anticoagulant drugs were outstanding and consistent
with their affinities and intrinsic activities calculated from the docking and molecular
dynamics studies.

Figure 9. Cytotoxicity concentration 50 (CC50) and inhibitory concentration 50 (IC50) values for
the screened anticoagulants (ticagrelor, fondaparinux sodium, dabigatran, and heparin), revealing
their intrinsic activity against SARS-CoV-2. IC50 was calculated by the best line drawn between log
concentration and viral inhibition % (triplicate for each concentration) by GraphPad Prism 5 software
shown under the figure of CC50 and IC50.

It is obvious that ticagrelor displays superior intrinsic activity to other drugs with
an IC50 value of 5.6 µM and a safety index of 25.33. Additionally, fondaparinux sodium
and dabigatran showed promising inhibitory activities as well, with IC50 values of 8.6 and
9.4 µM revealing safety indexes of 17.6 and 15.1, respectively. Moreover, heparin displayed
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inhibitory activity with an IC50 value of 105.9 µM and a safety index of 2.474. The CC50,
IC50, and selectivity indexes of the screened compounds are listed in Table 5.

Table 5. Cytotoxicity and inhibitory effects of the screened anticoagulant drugs (ticagrelor, fonda-
parinux sodium, dabigatran, and heparin) against SARS-CoV-2 reveal their safety indexes.

Compound
Cytotoxicity

Concentration (CC50)
µM

Inhibitory
Concentration

(IC50) µM

Safety
Index (SI)

Ticagrelor 141.90 5.60 25.33

Fondaparinux sodium 151.50 8.60 17.60

Dabigatran 141.80 9.40 15.10

Heparin 262.00 105.90 2.47

2.5.2. SARS-CoV-2 Mpro Inhibitory Assay

The inhibitory potential of the outstanding anticoagulant candidates (ticagrelor, fon-
daparinux sodium, dabigatran, and heparin) towards the SARS-CoV-2 Mpro enzyme was
investigated utilizing the SARS-CoV-2 Mpro assay. Moreover, tipranavir was used as a refer-
ence standard. Interestingly, promising SARS-CoV-2 Mpro inhibitory potential was attained
for fondaparinux sodium with an IC50 value of 2.36 µM, surpassing the reference tipranavir
(IC50 = 7.38 µM) by more than three-fold. Furthermore, highly eligible SARS-CoV-2 Mpro

inhibitory potential was attained for dabigatran with an IC50 value of 10.59 µM. However,
ticagrelor and heparin disclosed less weak SARS-CoV-2 Mpro inhibitory potentials with
IC50 values of 47.53 and 152.7 µM, respectively, as depicted in Figure 10.

Figure 10. IC50 values for the outstanding anticoagulant candidates (ticagrelor, fondaparinux sodium,
dabigatran, and heparin) towards the SARS-CoV-2 Mpro enzyme using tipranavir as a reference
standard (triplicate for each concentration).



Int. J. Mol. Sci. 2022, 23, 12235 16 of 25

These results confirm the conclusion obtained from the MD simulations that the fon-
daparinux sodium mechanism of action is mainly because of SARS-CoV-2 Mpro inhibition,
while heparin and ticagrelor may have different mechanisms of action. On the other hand,
the Mpro inhibitory activity of dabigatran refers to the possibility of having more than one
mechanism of action against SARS-CoV-2, besides the apparent Mpro inhibitory activity
as well.

3. Structure–Activity Relationship (SAR) Study

Anticoagulant drugs can be classified according to their chemical structures and/or
mechanism of action [37] into:

• Anticoagulant:

Coumarins: dicoumarol, phenprocoumon, acenocoumarol, warfarin, cyclocumarol,
and ethyl biscoumacetate. Indandiones: phenandione, anisandione, bromindione, and
diphenadione. Injectable: heparin, fondaparinux, and idraparinux. Direct factor Xa
inhibitors: edoxaban, rivaroxaban, apixaban, and betrixaban. Direct thrombin inhibitors
(DTIs): argatroban, ximelagatran, and dabigatran.

• Antiplatelets: aspirin, triflusal, dipyridamole, tirofiban, ticlopidine, clopidogrel, eptifi-
batide, ticagrelor, prasugrel, and cilostazole.

• Miscellaneous: sodium citrate, sulfinpyrazone, ethyl eicosapentaenoic acid, and defibrotide.

Based on the binding strength into the Mpro receptor of SARS-CoV-2 obtained from
the molecular docking studies, we concluded the SAR of the tested anticoagulant drugs.
Interestingly, the following results can be discussed (Figures 1 and 11):

◦ Collectively, among tested anticoagulant drugs, the injectable pentasaccharide antico-
agulant heparin derivatives (compounds 29 and 30), the sulfated mucopolysaccha-
rides anticoagulant (compound 23), as well as the antiplatelets with peptide-based
structure (compound 25) and nucleoside analog (compound 26) showed the best
binding strength against the Mpro of SARS-CoV-2, i.e., even better than the native
co-crystallized O6K ligand (compound 35).

◦ It is worth noting that the direct thrombin inhibitors (DTIs) retaining 4-carbamimidoyl
moiety (compounds 20, 31, and 32) showed better binding affinities than coumarins
and indandione derivatives (compounds 8, 9, 10, and 11) against the Mpro receptor of
SARS-CoV-2.

◦ Moreover, the studied SAR of coumarins revealed that the best activity was at-
tained against the Mpro receptor of SARS-CoV-2 when a 4-hydroxy coumarin scaffold
was attached to another 4-hydroxy coumarin scaffold through a methylene bridge
(compound 7).

◦ However, for indandiones, the best activity was attained when the scaffold was
substituted with the bulky diphenylacetyl group at position 2 (compound 11).

◦ Furthermore, for direct factor Xa inhibitors and anti-platelets, compounds 14 and 21
showed the best binding affinity in their class, respectively.
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Figure 11. SAR study of the examined anticoagulant drugs towards SARS-CoV-2.

4. Materials and Methods
4.1. Molecular Docking Studies

Molecular docking studies were employed using MOE 2019.0102 software [38–41]. A
set of 34 anticoagulant drugs was built and docked against the suggested active pocket
of SARS-CoV-2 Mpro. The main purpose of the studies was to evaluate the drug-protein
interactions for the target compounds (1–34) in comparison to the co-crystallized inhibitor
(O6K) (PDB ID: 6Y2G) [31].
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4.1.1. Validation of the Docking Results

To ensure that the used force field was suitable for the docking process, the co-crystal
ligand (O6K) was redocked within the SARS-CoV-2 Mpro active site [42–45]. The obtained
result showed that the docking procedure successfully regenerated the crystal pose with
an RMSD value of 1.41 Å. The obtained poses are depicted in Figure 12, where the native
ligand is shown in red and the redocked ligand is shown in green [46–49].

Figure 12. Superimposition of the redocked co-crystallized inhibitor O6K (green) over its native one
(red).

4.1.2. The Target Anticoagulant Drugs Preparation

The PubChem database was employed for downloading the anticoagulant drug’s
chemical structure. They were transferred from 2D to their corresponding 3D forms with
respect to their stereochemistry configuration and examined for the atoms’ formal charges
to be ready for docking [50–53]. Then, energy minimization was performed, followed by
partial charge automatic calculation using the CHARMM27 force field [54–57]. Ultimately,
they were imported into a single database along with the native co-crystallized O6K ligand
and saved (MDB file) prior to the docking process within the target SARS-CoV-2 Mpro

pocket, as described earlier [58–61].

4.1.3. Target SARS-CoV-2 Mpro Preparation

The X-ray composition of the Mpro receptor of SARS-CoV-2 was attained by down-
loading from Protein Data Bank (PDB code: 6Y2G) [31]. Hence, the target protein became
ready for the docking studies after considering the following steps: the backbones and
side chains of the target protein were protonated with respect to their 3D geometry, the
corrections were automatically utilized for the atom’s connection and type to check for
any errors, and the receptor potential was fixed as discussed before [62–65]. CHARMM27
was implemented as the selected force field, and the native co-crystallized inhibitor active
pocket was selected, as displayed before [66–69].

4.1.4. Docking of the Anticoagulants to the SARS-CoV-2 Mpro

Our set of 34 selected anticoagulant drugs and the native co-crystallized inhibitor
(O6K) was employed for docking using MOE 2019.0102 software [70–74]. The MDB file
was utilized for automatic docking. The docking methodology protocol was performed as
before [75–78]. After the docking step ended, the attained poses were examined strictly,
and the best pose was chosen for each ligand, as mentioned before in detail [79–82].
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4.2. Molecular Dynamics (MDs) Studies

MD simulation studies were performed employing the Schrödinger LLC Desmond
package [83]. Moreover, the energies of the molecular mechanics generalized Born surface
area (MM-GBSA) were calculated for fondaparinux, idraparinux, and O6K complexes. The
aforementioned MD methodologies are listed in detail in Supplementary Materials (S1 and
S2) [84–86].

4.3. Quantum Mechanics Studies

All structures were optimized using Gaussian 09, Revision C.01 software, and the
B3LYP/3-21G method. The structures were further refined and optimized at B3LYP/6-
31G and B3LYP/6-311G, and finally at B3LYP/6-311G*. No imaginary frequencies for the
B3LYP/6-311G* optimized structures were obtained, confirming that the true local minima
of the corresponding geometries were reached. The three-parameter hybrid exchange–
correlation functional of Becke (B3LYP) [87,88], in combination with the 6-311G*, was
also employed to run TD-DFT calculations. All quantum mechanics computations were
implemented on Swinburne supercomputing facilities, utilizing GAUSSIAN 09 Revision
C.0126 [89].

4.4. In Vitro Studies
4.4.1. MTT Cytotoxicity Assay

Half of the maximal cytotoxic concentrations (CC50) were assessed to obtain the exact
concentration of a compound that caused a rupture to 50% of cells after being treated with
variant doses from the compounds to calculate the safety index (SI) = CC50/IC50 for each
compound. The assay was performed through stock solution preparation of the target
compounds in DMSO/ddH2O (for those in powder form). However, those in solution form
were used directly. The prepared solutions were further diluted with DMEM by attaining
the working solutions. Hence, the MTT methodology was employed to investigate the
cytotoxic activity of the Vero E6 cell extracts, which will be used in other assays. Shortly,
96 well-plates were utilized for cell seeding and incubated at 37 ◦C in 5% CO2 for 24 h
afterward. After one day, the incubated cells were subjected to different concentrations
in triplicates of the investigated compounds. After another 24 h, the supernatant was
dismissed, and sterile 1x phosphate buffer saline (PBS) was used for cell monolayer washing
in triplicates. Thus, 20 µL of 5 mg/mL stock solution was added to each well and then
incubated at 37 ◦C, followed by a medium aspiration for 4 h. So, the formed formazan
crystals were dissolved by 200 µL isopropyl alcohol or DMSO. The formazan solution
absorbance was measured at 540 nm (λmax) using a multi-well plate reader, while the
reference wavelength was 620 nm. The CC50 of each target compound was measured
employing nonlinear regression analysis of GraphPad Prism software [25].

4.4.2. Crystal Violet Assay for the Determination of Inhibitory Concentration 50 (IC50)

The IC50 can be defined as the concentration needed to lower the viral-induced cy-
topathic effect (CPE) by 50% compared to the virus control. Hence, the IC50 for the
investigated compounds was assessed, as formerly depicted [90], with slight modulations.
Shortly, Vero E6 cells were placed and then incubated overnight in a 5% CO2 incubator at
37 ◦C. Thus, 1x PBS was used for cell monolayer washing. Thereafter, an aliquot of the
virus (hCoV-19/Egypt/NRC-03/2020 (Accession Number on GSAID: EPI_ISL_430820))
following the tissue culture infection dose (TCID50) test was incubated with serially diluted
compounds for 1 h. This step was used to determine the virucidal effects of the compounds
before incubation with cells.

The cells were subjected to the virus–compound mix and then co-incubated at each
well for 72 h in 100 µL. The untreated cells infected with the virus were considered “virus
control”, but cells that were neither treated nor infected were considered “cell control”.

Cell fixation was carried out using 100 µL of 10% formaldehyde for 60 min and stained
using 0.5 % crystal violet in distilled water at room temperature for 15 min. Thus, the
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crystal violet dye per well was dissolved using 180 µL of absolute methanol. The color’s
optical density assessment was carried out from 570 to 620 nm with an Anthos Zenyth
200 rt plate reader (Anthos Labtec Instruments, Heerhugowaard, The Netherlands). The
50% inhibitory concentration (IC50) of each tested compound was evaluated by employing
nonlinear regression analysis of GraphPad Prism software.

4.4.3. SARS-CoV-2 Mpro Inhibitory Assay

The 3CL Protease Assay Kit was used to investigate the potential of the candidate
anticoagulants (ticagrelor, fondaparinux sodium, dabigatran, and heparin) towards SARS-
VoV-2 Mpro using DMSO as a solvent and employing the TECAN spark plate reader. The
goal of the current assay was to evaluate the suggested mechanism of action for these
outstanding anticoagulant members against SARS-CoV-2 Mpro. The detailed applied
protocol and methodology are depicted in the Supplementary Materials (S3).

5. Conclusions

Anticoagulant drugs showed very promising results for the discovery of effective
drugs able to inhibit the Mpro of SARS-CoV-2 and reverse one of the major manifestations
of COVID-19 (blood clotting). The 34 FDA-approved anticoagulant drugs were computa-
tionally studied utilizing molecular docking, molecular dynamics, and DFT approaches
in addition to a biological evaluation of the most promising candidates. The molecular
docking results revealed that fondaparinux and idraparinux are the most promising antico-
agulants that can effectively bind to and inhibit the Mpro of SARS-CoV-2. In addition, MD
simulations suggested that both fondaparinux and idraparinux mechanisms of action can
be mainly implemented through SARS-CoV-2 Mpro inhibition, while heparin and ticagrelor
may have different mechanisms of action. Moreover, fondaparinux and idraparinux have
good MM-GBSA binding energies which agree with the docking outputs and support our
claims that the mechanisms of action of these compounds involve the inhibition of the Mpro

of SARS-CoV-2. Furthermore, quantum mechanics studies showed that both fondaparinux
and idraparinux have almost higher polarizability, dipole moment, and HOMO-LUMO
gap values than other compounds, which matches the higher binding energies of the two
compounds over other studied compounds. Therefore, these findings open the door for
proposing and understanding the atomic properties required to improve the binding affin-
ity and strength of effective drug candidates toward SARS-CoV-2. Moreover, a biological
evaluation of promising compounds was performed by carrying out the MTT cytotoxicity
assay and the crystal violet assay to determinate the inhibitory concentration 50 (IC50). It
was clear that ticagrelor displayed the best intrinsic activity with an IC50 value of 5.6 µM
and a safety index of 25.33 against SARS-CoV-2. Fondaparinux sodium and dabigatran
showed promising inhibitory activities as well, with IC50 values of 8.6 and 9.4 µM, revealing
safety indexes of 17.6 and 15.1, respectively. Moreover, the SARS-CoV-2 Mpro inhibitory as-
say confirmed the potential activity of fondaparinux sodium, with an IC50 value of 2.36 µM
surpassing the reference tipranavir (IC50 = 7.38 µM) by more than three-fold. Furthermore,
a highly eligible SARS-CoV-2 Mpro inhibitory potential was attained for dabigatran with an
IC50 value of 10.59 µM. This confirms the conclusion obtained from the MD simulations
that the fondaparinux sodium mechanisms of action mainly exist because of SARS-CoV-2
Mpro inhibition, while heparin and ticagrelor may have different mechanisms of action.
On the other hand, the Mpro inhibitory activity of dabigatran refers to the possibility of
having more than one mechanism of action against SARS-CoV-2, besides the apparent
Mpro inhibitory activity as well. Finally, the SAR study revealed that the injectable pen-
tasaccharide anticoagulant derivatives (fondaparinux and idraparinux) showed the best
binding strength against the Mpro receptor of SARS-CoV-2, even better than the native
O6K inhibitor.
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