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Abstract

Exposures to environmental chemicals during gestation can alter health status later in life. Most 

studies of maternal exposure to chemicals during pregnancy have focused on a single chemical 

exposure observed at high temporal resolution. Recent research has turned to focus on exposure to 

mixtures of multiple chemicals, generally observed at a single time point. We consider statistical 

methods for analyzing data on chemical mixtures that are observed at a high temporal resolution. 

As motivation, we analyze the association between exposure to four ambient air pollutants 

observed weekly throughout gestation and birth weight in a Boston-area prospective birth cohort. 

To explore patterns in the data, we first apply methods for analyzing data on (1) a single chemical 

observed at high temporal resolution, and (2) a mixture measured at a single point in time. 

We highlight the shortcomings of these approaches for temporally-resolved data on exposure to 

chemical mixtures. Second, we propose a novel method, a Bayesian kernel machine regression 

distributed lag model (BKMR-DLM), that simultaneously accounts for nonlinear associations 

and interactions among time-varying measures of exposure to mixtures. BKMR-DLM uses a 

functional weight for each exposure that parameterizes the window of susceptibility corresponding 

to that exposure within a kernel machine framework that captures non-linear and interaction 

effects of the multivariate exposure on the outcome. In a simulation study, we show that the 

proposed method can better estimate the exposure-response function and, in high signal settings, 
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can identify critical windows in time during which exposure has an increased association with the 

outcome. Applying the proposed method to the Boston birth cohort data, we find evidence of a 

negative association between organic carbon and birth weight and that nitrate modifies the organic 

carbon, elemental carbon, and sulfate exposure-response functions.

Keywords

air pollution; chemical mixtures; children’s health; windows of susceptibility; distributed lag 
models; kernel machine regression

1. Introduction.

Humans are inevitably exposed to a complex mixture of chemicals and other pollutants 

throughout the life course beginning with conception (Woodruff, Zota and Schwartz, 2011; 

Wright, 2017). Epidemiological evidence about the toxicity of environmental chemicals 

has traditionally come from studies of a single exposure observed during a single time 

window, such as averaged over a pre-specified time period. The one-chemical-at-a-time and 

one-exposure-window-at-a-time approaches can result in misleading estimates by failing to 

distinguish between the effects of multiple highly correlated chemical exposures (Braun et 

al., 2016) or by incorrectly identifying the time window during which someone is vulnerable 

to a chemical exposure (Wilson et al., 2017a), respectively. It is, therefore, critical that 

statistical methods be able to handle exposure data for mixtures of multiple chemicals for 

which temporally-resolved measurements reflect changing exposure levels throughout the 

life course.

In the study of the risks associated with maternal exposures to air pollution during 

pregnancy and children’s health, there is particular interest in exposure timing. Two primary 

goals of these analyses are to identify windows of susceptibility, which are periods during 

which an exposure can influence a future birth or child’s health outcome, and to estimate 

the exposure-response relationship. Popular statistical methods typically use time-resolved 

measures of exposure, such as average exposure for each week of pregnancy, to identify 

windows of susceptibility. Recent research has identified windows of susceptibility and 

estimated the exposure-response relationship between prenatal air pollution exposure and 

lower birth weight, increased risk of preterm birth, and decreased childhood respiratory 

health, among other outcomes (Chang, Reich and Miranda, 2012; Warren et al., 2013; Leon 

Hsu et al., 2015; Bose et al., 2017; Lee et al., 2018).

Partly due to a dearth of available methods, all of these studies estimate the association 

between time-resolved measurements of a single environmental chemical and a health 

outcome. There exists a gap with respect to methods for analyzing the association between 

health and time-resolved measurements of a chemical mixture. Assessing the relationship 

between time-resolved measures of an environmental mixture and a health outcome is 

complicated by several factors. These include: 1) high correlation among multiple chemical 

exposures at each time point; 2) high temporal correlation among repeated measures of a 

given exposure; 3) potential nonlinear associations between any given chemical exposure 

and the health endpoint; and 4) potential interactions in the health effects of multiple 
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chemicals, either within or across exposure times. Statistical approaches have been proposed 

to address each of these challenges individually. However, no approach that fully captures 

the nonlinear and non-additive effects of temporally-resolved exposure measurements on 

health currently exists.

1.1. Relevant statistical literature.

The proposed work in this paper relates to two active areas of statistical methods 

development. The first area is methods for lagged exposures. These methods relate a scalar 

health outcome to time-resolved measures of an exposure observed prior to assessment of 

the health outcome. The second area is statistical methods to estimate the health effects 

of chemical mixtures. To date, very little research has focused on statistical methods for 

mixtures of time-resolved exposures.

Recent statistical methods developed to estimate the association between maternal exposures 

during pregnancy and a birth outcome have focused on distributed lag models (DLMs). 

In general, a DLM regresses an outcome observed at a single time point on exposures 

observed on an evenly spaced grid over a preceding period of time. The effect of exposure 

on the outcome is typically constrained to vary smoothly in time. This smoothness constraint 

regularizes the model in the presence of high temporal autocorrelation in the exposure 

measures. Recent approaches have formulated the smooth distributed lag effect using 

splines, Gaussian processes and principal components (Warren et al., 2012; Chang et al., 

2015; Warren et al., 2016; Wilson et al., 2017b; Gasparrini et al., 2017; Warren et al., 

2020). Distributed lag nonlinear models (DLNMs) have been proposed to extend the DLM 

to nonlinear associations (Gasparrini, Armstrong and Kenward, 2010; Gasparrini, 2011; 

Gasparrini et al., 2017; Mork and Wilson, 2021). Several DLM methods have been proposed 

for two time-resolved predictors. This includes both additive models (Warren et al., 2013) 

and models with interactions (Chen, Mukherjee and Berrocal, 2019). These DLM methods 

have been developed for at most two pollutants.

For mixtures of more than two chemicals, numerous statistical methods have been proposed 

to estimate the association between exposure observed at a single time point and a health 

outcome. Proposed methods include Bayesian nonparametric shrinkage and selection priors 

(Herring, 2010), clustering approaches (Molitor et al., 2010; Zanobetti et al., 2014; Pearce et 

al., 2014), exposure index methods (Carrico et al., 2015; Park et al., 2014; Keil et al., 2020), 

and exposure-response surface methodology (Bobb et al., 2015). Of particular relevance 

to the current paper is Bayesian kernel machine regression (BKMR), which estimates a 

flexible, high-dimensional exposure-response surface (Bobb et al., 2015). For recent reviews 

of statistical methods for chemicals mixtures see Taylor et al. (2016); Davalos et al. (2017); 

Hamra and Buckley (2018) and Gibson et al. (2019). All of these methods estimate the 

relationship between a health outcome and exposure to a chemical mixture measured at a 

single point in time, or averaged over a single pre-specified exposure window.

For studying the effect of exposure to mixtures of three or more chemicals, methods to 

handle exposures measured at multiple time points have focused on a small number of 

discrete time points. Liu et al. (2018) developed lagged kernel machine regression for 

mixtures observed at multiple points. The approach is appropriate for exposures observed 
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at a small number of times that are common to all individuals in the study (e.g. blood 

biomarkers measured once per trimester). However, it does not scale to finer temporal-

resolution exposure data such as weekly exposure throughout pregnancy. Another limitation 

with respect to the current setting is the approach only estimates interactions among 

exposures at the same time point. It cannot estimate interactions across time. Bello et al. 

(2017) proposed a lagged weighted quantile sum regression model. The approach regresses 

the time-resolved exposures on the outcome to estimate the association but does not account 

for nonlinearities or interactions. No methods have been proposed that fully integrate 

methods for mixtures with those for finely-resolved temporal measures of exposure.

1.2. Our Contribution.

We propose a framework for estimating the relationship between time-resolved measures of 

an environmental mixture and a health outcome. We refer our new framework as a Bayesian 

kernel machine regression distributed lag model (BKMR-DLM). BKMR-DLM uses time-

weighted exposures (Wilson et al., 2017b) to reduce the dimension of the time-resolved 

exposure data and to identify windows of susceptibility. The potentially nonlinear and 

non-additive association between these time-weighted exposures and a health outcome is 

modeled using kernel machine regression. The kernel machine is a penalized estimator that 

can reduce the effect of multicollinearity between the multiple exposures. Taken together, 

the model represents a new form of structured multiple index model (MIM) (Xia, 2008) that 

imposes structure on the weight functions that form linear combinations of covariates that 

then serve as inputs into a nonparametric function. To handle the larger parameter space 

required to account for exposure timing and the parameter constraints necessary for MIMs, 

we propose a new MCMC algorithm for the BKMR framework. Hence, BKMR-DLM 

integrates modern methods for time-resolved measures of exposures and mixtures in a 

coherent Bayesian framework. To our knowledge, this is the first approach to simultaneously 

address nonlinearities, interactions, and exposure timing in a single cohesive model.

Section 2 presents the motivating data and the results of preliminary analyses of 

these data using standard methods. These exploratory analyses introduce notation and 

background, illustrate some general patterns in the data, and illustrate limitations of existing 

methodology. Section 3 presents the proposed methods. Section 4 compares the proposed 

approach to established methods in a simulation study. We show that BLMR-DLM can 

estimate windows of susceptibility to components of a mixture and that BKMR-DLM can 

more accurately estimate exposure-response functions than established DLM or mixtures 

methods applied to exposure summaries. In Section 5 we apply BKMR-DLM to data from 

a birth cohort study conducted in Eastern Massachusetts, USA, to estimate the association 

between weekly maternal exposure to four pollutants and birth weight for gestational age 

z-score (BWGAz). We conclude with a discussion in Section 6.

2. Data, Notation, and Preliminary Analyses.

2.1. Data.

The Asthma Coalition on Community, Environment, and Social Stress (ACCESS) cohort 

(Wright et al., 2008) is a prospective, longitudinal study designed to examine the effects 
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of psychosocial stressors and chemical stressors (e.g., air pollution and other environmental 

influences) on children’s birth and health outcomes. ACCESS includes 955 mother-child 

dyads recruited between August 2002 and January 2007 who continued active follow-up 

after birth in the Boston, MA area. Procedures were approved by the human studies 

committees at Brigham and Womens Hospital and Boston Medical Center.

Previous analyses of the ACCESS cohort identified an association between increased 

maternal exposure to fine particulate matter (PM2.5) averaged over pregnancy and decreased 

birth weight for gestational age z-score (BWGAz), particularly among boys born to obese 

mothers (Lakshmanan et al., 2015). In this paper we consider the association between 

weekly levels of exposure to four components of particulate matter–elemental carbon (EC), 

organic carbon (OC), nitrate, and sulfate–and BWGAz among the same population of boys 

with obese mothers. We include as covariates maternal age at enrollment, an indicator of 

maternal education at high school level or above, maternal pre-pregnancy body mass index, 

indicators of black and Hispanic race/ethnicity, parity, and an indicator of season of birth.

Maternal exposures of EC, OC, nitrate, and sulfate were estimated with a hybrid land use 

regression model that incorporates satellite-derived aerosol optical depth measures and a 

chemical-transport model GEOS-Chem (Di, Koutrakis and Schwartz, 2016). Each mother 

was assigned an average exposure level for each pollutant for each week of pregnancy based 

on the predicted value at her address of residence. We limit our analysis to fullterm infants 

(born at ≥ 37 weeks gestation) and their exposure during the first 37 weeks of pregnancy. A 

total of 109 children had complete exposure, outcome, and covariate data. For completeness, 

we show results for the full cohort in the Supplemental Material (Wilson et al., 2021a).

2.2. Objectives and notation.

Interest focuses on estimating the association between time-resolved measures of a mixture 

of M pollutants and a scalar outcome Y, while controlling for a p-vector of baseline 

covariates Z. We denote the exposures at time t as X1(t),…,XM(t) for t ∈ T. In our analysis 

T = {1, …, 37} is the first 37 weeks of gestation. We assume these quantities are observed for 

a sample of size n with subject indexed by i.

There are two primary objectives: 1) identify windows of susceptibility during which 

exposure to a chemical is associated with a future health outcome and 2) estimate the 

exposure-response relationship while allowing for a nonlinear and non-additive relationship 

between the multiple exposures and the outcome.

2.3. Preliminary analysis with additive DLM.

The Gaussian discrete-time DLM for a single exposure is

Y i = α + ∑
t = 1

T
Xitδ(t) + Zi

Tγ + ϵi, (1)

where δ(t) parameterizes the association between exposure at time t and the outcome. In 

(1), α is the intercept and γ is a p-vector of unknown regression coefficients. The ϵi’s are 

assumed to be iid N(0, σ2). The scalar outcome Yi is assumed to be observed post exposure.
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Constrained DLMs impose smoothness on the distributed lag function δ(t). The smoothness 

constraint can be imposed by modeling δ(t) using splines, Bayesian priors, Gaussian 

processes, or other penalization approaches (Zanobetti et al., 2000; Peng, Dominici and 

Welty, 2009; Heaton and Peng, 2012; Chen et al., 2018). In this paper, we use natural splines 

to impose smoothness on δ(t) and select the degrees of freedom as the value that minimizes 

the Akaike information criterion (AIC).

For multiple exposures, an additive DLM is

Y i = α + ∑
m = 1

M
∑
t = 1

T
Ximtδm(t) + Zi

Tγ + ϵi . (2)

Figure 1 shows results from the additive DLM analysis of the ACCESS data. We found 

suggestive evidence of susceptibility windows in weeks 29-33 for nitrate, in weeks 9-12 for 

OC, and in weeks 9-13 in sulfate. Susceptibility windows are defined as times when the 

pointwise 95% confidence interval does not contain zero. There was moderate evidence of a 

cumulative effect, representing the change in birth weight associated with a one unit increase 

in exposure at every time point, for sulfate (p-value= 0.07) but not for any other pollutant.

An additive DLM is appealing because it is easy to visualize and interpret, but does not 

allow for nonlinear associations or interactions among exposures. An additive DLNM allows 

for nonlinear associations but not interactions. Moreover, the nonlinear extension makes 

identification of critical windows more complicated, as the definition of a window depends 

on the level of the exposure.

2.4. Preliminary mixtures analysis with BKMR.

BKMR is a popular approach to estimate the association between multiple scalar exposures 

and a health outcome. BKMR allows for nonlinear associations and interactions among 

exposures.

For M scalar exposures Ei = (Ei1,…,EiM)T, a BKMR model takes the form

Y i = ℎ(Ei1, …, EiM) + Zi
Tγ + ϵi . (3)

The function h(·) is a potentially nonlinear and non-additive exposure-response function.

BKMR assumes that the exposure-response function ℎ :ℝM ℝ resides in the functional 

space ℋK that is uniquely defined by the positive semidefinite reproducing kernel 

K :ℝM × ℝM ℝ. The function h(·) can be represented with a positive-definite kernel 

function K(·, ·) and coefficients {αi}i = 1
n  as ℎ(E) = ∑i = 1

n K(E, Ei)αi. According to Mercer’s 

Theorem (Cristianini and Shawe-Taylor, 2000), the kernel K(·, ·) implicitly specifies a basis 

expansion. For example, the Gaussian kernel corresponds to the set of Gaussian radial basis 

functions.
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Using the kernel representation of h(·), Liu, Lin and Ghosh (2007) showed that the 

regression model in (15) is equivalent to the hierarchical model

Y i ∼ N(ℎi + Zi
Tγ, σ2)

h = (ℎ1, …, ℎn)T ∼ N(0, σ2τ2K),
(4)

where K is an n×n matrix with i, j element Kij = K(Ei, Ej). For a Gaussian kernel 

Kij = exp[ − ∑m = 1
M ρm(Eim − Ejm)2].

In our preliminary mixtures analysis with BKMR, we take Eim to be the average exposure 

level for pollutant m over the first 37 weeks of pregnancy. All time points are given equal 

weight in the model. Hence, BKMR does not account for exposure timing. We fit the model 

with a Gaussian kernel as implemented in the R package bkmr (Bobb, 2017; Bobb et al., 

2018) using the default hyperparameters for all prior distributions.

Figure 2 shows results from applying BKMR to the ACCESS data using average exposures 

of each pollutant over the first 37 weeks of gestation. Each panel shows the estimated 

exposure-response surface between one pollutant and BWGAZ while holding the other 

three pollutants fixed at their median value. Hence, the figure shows negative associations 

between OC, EC, sulfate and BWGAZ but a positive association with nitrate. All of 

the intervals contain the null association. Supplemental Figure S1 shows that there is no 

evidence of interaction between pairs of pollutants (Wilson et al., 2021a).

3. BKMR-DLM Model Specification.

The BKMR approach outlined in Section 2.4 centers on specification of a kernel function 

that has as inputs scalar measures of the exposures. Replacing the scalar exposures Ei1,…

EiM with the time-resolved exposures {Xi1(1),…,Xi1(T), Xi2(1),…XiM(T)} poses two major 

challenges. First, there is a dimensionality issue. This comes from replacing the vector 

of M scalar exposures with the M × T exposure measures. Second, the model does not 

impose any structure with respect to how the effect of an exposure varies over time. This 

structure is needed both to conform with our biological understanding that the exposure 

effect in proximal weeks should be similar and to add stability in the presence of temporal 

autocorrelation.

The central concept of the proposed approach is to include the time-resolved exposures 

into the kernel function and add structure with a weight function. The weight function 

up- and down-weights time periods so that they have a larger or smaller influence on the 

exposure-response function. The weight function can be interpreted in a fashion similar to 

that of a traditional DLM. Up-weighted time periods define the window of susceptibility.

The weight function for exposure m is wm(t) and is defined over the domain T. The 

weighted exposure is Eim = ∫TXim(t)wm(t)dt, where Xi(t) is a functional representation of the 

exposure. We replace the scalar predictor in the kernel function with the weighted exposure. 

The Gaussian kernel is then
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Kij = exp − ∑
m = 1

M
ρm ∫

T
Xim(t)wm(t)dt − ∫

T
Xjm(t)wm(t)dt

2
. (5)

In addition to the Gaussian kernel we also implement a polynomial kernel. This provides a 

more parsimonious representation of the exposure-response function. The polynomial kernel 

is less flexible but potentially more efficient when the simpler structure holds (Liu, Lin and 

Ghosh, 2007). The polynomial kernel of order d is

Kij = 1 + ∑
m = 1

M
ρmEimEjm

d

= 1 + ∑
m = 1

M
ρm ∫

T
Xim(t)wm(t)dt ∫

T
Xjm(t)wm(t)dt

d
.

(6)

For either kernel, the sign of the weights wm(t) is not identifiable as it could be replaced 

with −wm(t) and result in the same likelihood. The magnitude of ρm and wm(t) are not 

individually identifiable as they could be scaled by the same factor and result in equal 

likelihood. We impose the identifiability constraints ∫Twm(t)dt > 0 to identify the sign of 

wm(t) and ∫T[wm(t)]2dt = 1 to identify the magnitude of wm(t) and ρm. Under these two 

constraints, both ρm and wm(t) are identifiable.

3.1. Relation to DLM and BKMR.

The weight function approach used in BKMR-DLM is closely related to DLMs and 

functional regression methods. In order to see the connection, we write a DLM for a single 

exposure as

Y i = α + β∫
T

Xi(t)w(t)dt + Zi
Tγ + ϵi . (7)

The model can be viewed as a linear regression model using the weighted exposure 

Ei = ∫TXi(t)w(t)dt as a scalar covariate: Y i = α + βEi + Zi
Tγ + ϵi. This is equivalent to the 

functional DLM Y i = α + ∫TXi(t)δ(t)dt + Zi
Tγ + ϵi with functional predictor δ(t) = βw(t). With 

a linear kernel and a single predictor the BKMR-DLM approach reduces to this basic DLM.

When w(t) is constant over time, BKMR-DLM is equivalent to a BKMR model that uses 

pregnancy-averaged exposure as a predictor. When w(t) varies over time, BKMR-DLM 

up- or down-weights exposures during certain time periods. The up-weighted time periods 

represent windows of susceptibility to exposure.
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3.2. Parameterization of the weight function.

For each exposure, we parameterize both Xim(t) and wm(t) using a basis 

function representation (Morris, 2015). We assume Xim(t) = ∑l = 1
Lm ξimlψml(t) and 

wm(t) = ∑l = 1
Lm θmlψml(t). Both Xim(t) and wm(t) are parameterized with the same orthonormal 

basis {ψml(t)}l = 1
Lm . The regression coefficients for Xim(t) and wm(t) are {ξiml}l = 1

Lm  and 

{θml}l = 1
Lm , respectively. The mth weighted exposure for individual i can then be rewritten 

as Eim = ξim
T θm where θm = [θm1,…, θmLm]T and ξim = [ξim1,…, ξimLm]T. We estimate ξim 

using ordinary least squares which gives Eim = Xim
T Ψmθm, where Xim

T  is the row-vector of 

observed exposures for chemical m and person i and Ψm is the design matrix of orthonormal 

basis functions.

Using an orthonormal basis, the constraint ∫T[wm(t)]2dt = 1 is satisfied if and only if ∣θm∣ 

= 1. The constraint ∫Twm(t)dt ≥ 0 is satisfied for a set of observed times if and only if 

1TΨmθm ≥ 0, where 1 is a vector of ones. As such, the constraints on wm(t) are now 

constraints on θm. The constrained parameter space is half of a unit Km-ball on one side of a 

hyperplane defined by 1TΨmθm = 0.

Using the weighted exposures as inputs, the Gaussian kernel function in (5) is

Kij = exp − ∑
m = 1

M
ρm{(Xim − Xjm)TΨmθm}2 , (8)

and the polynomial kernel in (6) is

Kij = 1 + ∑
m = 1

M
ρm(XimΨmθm)(XjmΨmθm)

d
. (9)

The parameters ρm and θm represent the importance and the timing of exposure m, 

respectively. To ease computation, we reparameterize the model in terms of θm
∗ = θmρm

−1 ∕ 2. 

The Gaussian kernel in (5) is then

Kij = exp − ∑
m = 1

M
{(Xim − Xjm)TΨmθm

∗ }2 . (10)

The polynomial kernel in (6) can be written as

Kij = 1 + ∑
m = 1

M
(XimΨmθm

∗ )(XjmΨmθm
∗ )

d
. (11)
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Using this formulation, both ρm and θm are identified by θm
∗  as ρm

−1 ∕ 2 = ‖θm
∗ ‖ and 

θm = ρm
1 ∕ 2θm

∗ sign{∫Twm(t)dt}. Hence, we can estimate the full model parameterized in terms 

of θ* and then partition the posterior sample of θm
∗  into ρm and θm, where θm describes the 

weight function wm(t).

To induce smoothness in the weight function we use the eigenfunctions of the covariance 

matrix of smoothed exposures. We pre-smooth each exposure with a parsimonious natural 

spline bases and then use the eigenfunctions of the covariance matrix of the smoothed 

exposures in the model as specified above. Ideally a rich basis expansion would be used. 

This will increase the resolution with which a critical window can be identified. In practice, 

we have found that the method performs best with a parsimonious basis. We used natural 

splines with 4 degrees of freedom. Increasing the degrees of freedom results in increased 

variance of the estimated weight functions and is to only be supported in unrealistically high 

signal-to-noise settings.

3.3. Prior specification and posterior computation.

We use as a prior for θm, m = 1, … , M, a uniform distribution over its parameter 

space, which can be written as p(θm) ∝ exp −θm
T θm ∕ 2 1(θm

T θm = 1)1(1Lm
T θm > 0), where 

1( ⋅ ) is an indicator function. We then let ρm ∕ κm ∼ χ1
2 for fixed value κm. It follows 

that θm
∗ = ρm

1 ∕ 2θm ∼ N(0, νmκmILm), with νm ∼ χ1
2. We complete the prior specification by 

assuming a flat prior on γ, σ−2 ~ gamma(a1, b1), and log(τ2) ~ N(0, b).

Bobb et al. (2015) updated each of the M parameters in the kernel function independently 

with Metropolis-Hastings. This approach is unappealing for our model as we have ∑m = 1
M Lm

parameters in the kernel function and potentially high correlation among parameters due 

to the temporal correlation in the exposures. We first integrate h, γ and σ−2 out of (4) to 

obtain the marginalized posterior p(θ1
∗, …, θM

∗ , τ2, ν1, …, νM ∣ Y). Then, our MCMC algorithm 

iteratively samples each θm
∗  as a block using an elliptical slice sampler (Murray, Adams and 

MacKay, 2009) and the kernel of the marginalized posterior. Then we sample τ−2 using 

random walk Metropolis-Hastings using the same marginalized posterior. Finally, we use a 

Gibbs sampler to simulate σ−2, γ, and ν1, … , νM from their respective full conditionals. 

Supplemental Section B provides additional details, full conditionals, and the full algorithm 

(Wilson et al., 2021a).

3.4. Posterior inference for w(t).

Windows of susceptibility during which there is an increased association between exposure 

and outcome are identified using the estimated weight function. Let θm
∗ (r) for r = 1, … , R 

be the posterior sample of size R. We can identify θm
(r) = θm

∗ (r)‖θm
∗ (r)‖−1sign(1Lm

T θm
∗ (r)) and 

wm(r)(t) = ∑l = 1
Lm θml

(r)ψml(t). The credible interval provides valid pointwise posterior inference 

for w(t) and can be used to identify windows of susceptibility. However, the posterior mean 
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does not satisfy the constraint ∫T[w(t)]2dt = 1. We use the point estimate projected onto the 

parameter space of θm:wm(t) = Xim
∗ Tθm with θm = θ̄m‖θ̄m‖−2 and θ̄m is the posterior mean. 

The resulting estimator, equivalent to the Bayes estimate with respect to the loss function 

L(θm, θm) = [(θm − θm)T (θm − θm)] ∕ 1{‖θm‖ = 1}, is a central estimate in the parameter space 

of θm.

Estimates of h(·) for the observed exposure levels can be obtained by sampling from the 

conditional distribution of h from (4) (Bobb et al., 2015). Full details are in Supplemental 

Section B (Wilson et al., 2021a).

4. Simulation Study.

4.1. Simulation design.

We evaluate the effectiveness of BKMR-DLM and compare its operating characteristics to 

those of alternative approaches in two simulation scenarios. In scenario A we consider two 

exposures and provide a more in depth look at nonlinear exposure-response estimation and 

interaction detection. In scenario B we include five exposures and evaluate performance 

for critical window identification and exposure-response estimation with higher-order 

interactions.

We consider BKMR-DLM with a Gaussian kernel (BKMR-DLM) and with a quadratic 

kernel (polynomial kernel with d=2; BKMR-DLM-quad). We parameterize the weight 

functions using a natural spline with four degrees of freedom. For comparison, we also 

include: 1) BKMR using mean exposure over pregnancy; 2) an additive DLM with natural 

splines; and 3) an additive DLNM with penalized splines.

We used real exposure data taken from one Boston, MA, USA monitor and birth dates 

simulated uniformly between the years 2007 and 2014. We use data for 5 pollutants: 

PM2.5, nitrogen dioxide (NO2), carbon dioxide (CO), ozone (O3), and sulfur dioxide (SO2) 

(enumerated m = 1, … , 5 in that order). We simulated births at randomly selected birth 

dates. For each birth we constructed weekly average exposures for the 37 weeks prior to the 

simulated birth. This simulation strategy yields a realistic correlation structure both within 

and across pregnancies.

For both scenarios, we simulated the outcomes using the model

yi = ℎi + Zi
Tγ + ϵi . (12)

We simulated Zi
T = (Zi1, …, Zi5) and γ = (γ1, … , γ5)T as independent standard normal 

random variables. The random error ϵi was simulated as mean zero normal error with 

standard deviation equal to 3, 7.5, and 15, which represent approximately a 1:2, 1:5, and 

1:10 ratio between the standard deviation of h and ϵ, respectively. Finally, we considered 

sample sizes of n = 100 and n = 500 and evaluated model performance based on 200 

simulated data sets.
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We simulated the exposure effect hi by first creating weighted exposures. The simulated 

weight functions were a normal density function peaking mid-pregnancy (w1) and a 

logistic link function identifying a window in the second half of gestation (w2). These 

represent two biologically plausible ways in which the strength of association may vary over 

pregnancy. Both weight functions were truncated to span 37 weeks and scaled to meet the 

∫T[w(t)]2dt = 1 constraint (see supplemental Figure S2 for a visualization (Wilson et al., 

2021a)).

In scenario A we included two exposures (PM2.5 and NO2) in both the data generating 

mechanism and the models fit to the simulated dataset. The simulated exposure-response 

function for scenario A was

ℎi = 3 ∕ [1 + exp( − 2E1
s)] + 2E2

s1(E2
s > 0) − E1

sE2
s

(13)

where E1
s and E2

s were scaled and centered versions of the weighted exposures using w1 and 

w2, respectively.

In scenario B, we included three exposures and all two-way and threeway interactions 

between the three active exposures in the data generating mechanism. The exposure-

response function was

ℎi = Ei1
s + Ei2

s + Ei3
s + Ei1

s Ei2
s + Ei1

s Ei3
s + Ei2

s Ei3
s + Ei1

s Ei2
s Ei3

s . (14)

This included a third active exposure, CO. We let w3 = w2 and E3
s be the scaled centered 

version of the weighted exposure. We included five exposure in the regression models fit to 

the simulated datasets, including O3 and SO2 that had no association with the outcome.

All models were misspecified. BKMR-DLM was the only model that accounted for 

exposure-timing, nonlinearity, and interactions. However, the natural spline basis that we 

employed (4 degrees of freedom) was not sufficiently flexible to model the simulated weight 

functions and the quadratic kernel was not sufficiently flexible to accurately represent the 

true exposure-response function in scenario A or the three-way interaction in scenario B.

4.2. Evaluation criteria.

We evaluated the ability of each model to estimate the exposure-response function by 

calculating root mean square error (RMSE) and 95% interval coverage for h. To evaluate 

interactions in scenario A, we estimate the posterior probability that an interquartile (IQR) 

change in PM2.5 at the 75th percentile of NO2 is less than an IQR change of PM2.5 at the 

25th percentile of NO2. We evaluated each method’s ability to estimate critical windows 

by using the pointwise RMSE for the weight function and 95% interval coverage for the 

weight functions. In scenario B, we calculated the proportion of times a critical window was 

identified for the three active exposure variables and for the two inactive exposure variables. 

Critical windows were identified as time points where the 95% interval does not contain 
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zero. We also present the precision of critical window identification, which is number of 

correct windows identified divided by total number of windows identified.

To compare the results of DLM and DLNM to the true simulated weight functions, we 

normalized the estimates to match the constraints imposed on the true weight functions. For 

DLNM, where the distributed lag function varies smoothly with concentration and windows 

may only be identified at some concentrations but not at others, we selected the cross-section 

of the DLNM that shows the association at the mean exposure level for each pollutant and 

used that cross section to identify windows.

4.3. Simulation results.

Tables 1 and 2 compare the performance of the five approaches for Scenarios A and 

B, respectively. BKMR-DLM-quad performed best in terms of inference on the exposure-

response function h. For both scenarios, BKMR-DLM-quad had the lowest RMSE on h at 

the larger sample sizes and larger signal-to-noise levels. BKMR-DLM-quad had coverage 

for h close to the nominal level, ranging from 0.91 to 0.99 across the settings. In the lower 

signal-to-noise and smaller sample sizes, BKMR with average exposure had lower RMSE on 

h but interval coverage for h was well below the nominal level and ranged from 0.41 to 0.93.

BKMR-DLM with the Gaussian kernel also performed well but yielded less efficient 

estimates of the exposure-response function in the more challenging scenarios. DLM and 

DLNM had low interval coverage and had larger RMSE for h than BKMR-DLM with a 

quadratic kernel.

BKMR-DLM-quad was best able to identify an interaction effect. The mean posterior 

probability that there was an interaction was 0.963 for scenario A with n = 500 and high 

signal-to-noise. The model detected an interaction with high posterior probability in almost 

all simulated data sets. Performance decreased at smaller sample sizes and lower signal-to-

noise ratios. In comparison, BKMR and BKMR-DLM with a Gaussian kernel had mean 

posterior probability of about 0.5 and low frequency of detecting an interaction. Additive 

DLM and DLNM are not capable of identifying an interaction.

In scenario A with only two pollutants, BKMR-DLM and BKMR-DLM-quad were best able 

to estimate the weight function that characterizes which times have the strongest association 

with the outcome. Specifically, BKMR-DLM and BKMR-DLM-quad had the lowest RMSE 

for the weights (Tables 1). Supplemental Figures S2-S5 show the true weight functions and 

the estimated weight functions for the first 100 simulated data sets in scenario A (Wilson 

et al., 2021a). Both approaches estimated the general pattern but over-smooth the weight 

function for the first exposure due to the fact that the spline basis used is not sufficiently 

flexible to match the peak of the window in the middle of pregnancy. For this scenario, 

all of the methods yielded interval coverage for the weights between 0.8 and 0.9. For 

the two BKMR-DLM approaches, this is due to the lack of flexibility of the spline. For 

DLM and DLNM, this is due to failure to account for interactions. In scenario B with 

five exposures, BKMR-DLM and BKMR-DLM-quad had the lowest RMSE for the weight 

function estimators.
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Table 2 compares the critical window identification for scenario B. DLM and DLNM had 

the highest frequency of detecting windows in all settings. This came at the cost of a high 

frequency of detecting false windows. The precision for DLM and DLNM was between 0.6 

and 0.7 for all settings. These methods identified a window on an exposure that was not 

associated with the outcome almost as frequently as they identified a window where there 

truly was one. In comparison, BKMR-DLM-quad had fairly high probability of detecting 

correct critical windows in the larger sample size and high signal-to-noise setting while 

maintaining a very low selection rate for incorrect exposures. This resulting in a very 

high precision above 0.99. The true window identification rates with BKMR-DLM with 

a quadratic and Gaussian kernel decreased for the lower sample size and signal-to-noise 

settings but the approaches maintain very high precision. Hence, the lower critical window 

identification rates come with a greater assurance that the windows identified are not 

spurious.

4.4. Supplementary results and discussion of sensitivity.

We include additional scenarios C and D in the Supplemental Material (Wilson et al., 

2021a). Scenario C is similar to scenario A but has a smoother true weight function. This 

weight function can be perfectly modeled with a natural spline with four degrees of freedom. 

Both BKMR-DLM and BKMR-DLM-quad perform better with a smoother weight function. 

Using a more flexible basis expansion for the weight functions resulted in higher variance 

estimates and generally did not perform as well in the simulations. Scenario D is similar to 

scenario B but includes nonlinear effects and only two-way interaction. Results are similar 

to scenario B.

4.5. Summary and key takeaways.

Table 3 summarizes methods that can be applied in this setting and the advantages and 

disadvantages of each approach. BKMR and additive DLM methods fail to account for 

either exposure timing, nonlinear associations, or interactions. BKMR-DLM is the first 

method designed to address all three features of the data.

BKMR-DLM with the quadratic kernel was best able to estimate the exposure-response 

relationship in larger sample size and larger signal settings and was the only method that 

consistently identified interactions among exposures. Even when BKMR-DLM was unable 

to identify critical windows, accounting for the timing using the flexible weight functions 

improved exposure-response function estimation. In lower signal settings, BKMR applied to 

pregnancy averages was better able to estimate the exposure-response relationship.

Identifying critical windows is challenging. The additive DLM had the most power to 

identify windows. This came at the cost of identifying an incorrect window about as often 

as identifying a correct window. BKMR-DLM had lower frequency of identifying critical 

windows but maintained high precision and almost never identified incorrect windows. Even 

when BKMR-DLM was unable to identify a critical window, the approach was able to 

use information on exposure timing to improve exposure-response estimation compared to 

BKMR with average pregnancy exposures.
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5. Data Analysis.

We applied BKMR-DLM to analyze BWGAz in the ACCESS cohort. This analysis uses 

data from the same 109 dyads and four pollutants (nitrate, OC, EC and sulfate) that were 

analysed using an additive DLM and BKMR based on pregnancy-average exposures in 

Section 2. All covariates listed in Section 2 were included in each model. We applied the 

BKMR-DLM with quadratic kernel. Specifically, the model is

Y i = ℎ(Ei1, Ei2, Ei3, Ei4) + Zi
Tγ + ϵi, (15)

where each subject-specific exposure above is defined as Eim = ∫TXim(t)wm(t)dt for m = 1, 

…, 4 (1 = nitrate, 2 = OC, 3 = EC, 4 = sulfate). We estimate h(·) with a quadratic kernel 

as in (6) and parameterize the weight functions using natural splines with four degrees of 

freedom. Compared to DLM analysis in Section 2.3, the exposure-response function allows 

for interactions and nonlinear associations. Compared to the BKMR model in Section 2.4, 

the input to the exposure-response function is the four vectors of repeated measures of 

exposures rather than the four scalar pregnancy average exposures. The confounder model 

Zi
Tγ is the same in all three models.

Figure 3 shows the estimated weight functions from BKMR-DLM. No windows were 

identified. The estimated weight functions do identify periods of time of increased 

association with the outcome by illustrating periods of time where there is a “bump” in 

the weight function. This increased association is centered at week 12 for OC, which 

aligns with the critical window for OC identified in the additive DLM analysis in Section 

2.3. Because the weight function is constrained to meet the identifiability constraints, the 

sign and magnitude of the weight function do not necessarily correspond to the sign and 

magnitude of the association. The difference in sign of the weight function compared to that 

from the additive DLM is, therefore, not indicative of contradicting results.

Figure 4 shows estimates of the exposure-response function from BKMR-DLM. The 

diagonal shows h as a function of weighted exposure for one pollutant at the median value 

of the weighted exposures for the other pollutants. We found some evidence of a negative 

association between OC and BWGAz. Figure 2 shows a similar estimated association using 

BKMR with 37-week averaged exposures. The off-diagonals show the posterior mean of h at 

different quantiles of one co-pollutant and the median of the other two co-pollutants. There 

was slight evidence that nitrate modifies the OC, EC, and sulfate exposure-response function 

and that sulfate may modify the OC exposure-response relationship. This interaction was 

not detected by BKMR using average exposures (Supplemental Figure S1 (Wilson et al., 

2021a)).

Figure 5 shows results for univariate DLM analyses of OC, EC and sulfate stratified by 

nitrate. In this model, we dichotomize Nitrate at the median pregnancy averaged exposure. 

For each exposure, we included an interaction between the DLM and an indicator of whether 

pregnancy averaged exposure to nitrate was above or below the median exposure for the 

cohort. This simpler analysis supports the conclusion that there may be an association 

between OC, EC, and sulfate at higher levels of nitrate. Windows of susceptibility associated 
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with OC, EC and sulfate are only observed at higher levels of co-exposure to nitrate. No 

association between OC, EC and sulfate and BWGAz is observed at lower levels of nitrate.

The data analysis presented is likely under-powered. Using BKMR-DLM, we were able 

to find some evidence of effect modification. This identified three (of the 12 possible) 

two-way interactions to further investigate. By applying the simpler stratified DLM model 

to these three combinations we were able to identify windows that were not identified with 

the existing methods. This two-step approach on a small data set can be used to generate 

hypotheses for further analysis in larger cohorts. For example, the National Institutes of 

Health (NIH) Environmental Influences on Child Health Outcomes (ECHO) program aims 

to jointly analyze pooled data from multiple birth cohorts. Such consortium efforts could 

potentially validate findings found using advanced methods like BKMR-DLM in small 

cohorts.

Supplemental material Section F presents a BKMR-DLM analysis of the full cohort without 

limiting the subset of male babies with obese mothers (Wilson et al., 2021a). No critical 

windows are identified and there is weak evidence of a positive association between nitrate 

and BWGAz.

6. Discussion.

In this paper we consider multiple strategies for quantifying the association between 

time-resolved measures of an environmental mixture and a prospectively assessed health 

outcome. In this setting there are three key challenges: accounting for exposure timing, 

accounting for nonlinear associations, and accounting for interactions.

We proposed BKMR-DLM to estimate the association between time-resolved measures 

of multiple exposures and an outcome. To our knowledge, this is the first approach that 

accounts for exposure timing, interactions among exposures, and nonlinear associations–

thereby more comprehensively modeling the underlying complexity of the relationships. 

The approach uses time-weighted exposures in a kernel machine regression framework. 

The weight-functions identify windows of susceptibility during which there is an increased 

association between exposure and outcome. Such information will be important as 

developmental processes are both timed and linked to windows of susceptibility; thus 

exposure timing provides hints to biologic mechanisms underlying health effects. By using 

kernel machine regression we allow for nonlinear associations and interactions among the 

multiple weighted exposures.

We compared the relative advantages and disadvantages of the proposed approach and 

simpler approaches through simulation and a case study involving prenatal exposures to 

multiple air pollutants and birth weight. In a simulation study, we showed that BKMR-DLM 

with a quadratic kernel function was best able to estimate the exposure-response relationship 

in most situations. Importantly, even in situations where BKMR-DLM was not powered 

to unambiguously identify critical windows, including the weighted exposure resulted in 

improved performance over BKMR using pregnancy average exposure. This was realized 

through lower RMSE and/or interval coverage closer to the nominal level.
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We applied a strategy of combining the use of BKMR-DLM to identify potential interactions 

and DLM to identify windows of susceptibility to analyze data on prenatal exposure to an 

air pollution mixture and birth weight in the ACCESS cohort. In a sample of 109 boys 

born to obese mothers, we estimated the association between four ambient pollutants and 

birth weight using BKMR-DLM as a screening method to identify potential interactions 

between time-resolved exposures. We then performed a stratified DLM analysis to confirm 

that the findings from the primary BKMR-DLM analysis were not driven solely by modeling 

assumptions. The fact that the simpler stratified DLM analysis yielded similar results does 

not diminish the utility of BKMR-DLM, as BKMR-DLM was used to identify which 

specific pairs of pollutants to further investigate with the stratified DLM. Using a stratified 

DLM alone would require estimating an unacceptably large number of models when the 

number of pollutants is large.

There are both limitations and potential future extensions of BKMR-DLM. A first limitation 

is that the proposed computational approach relies on repeated n × n matrix inversion, 

which is computational expensive for large sample sizes. Second, at smaller sample sizes 

and a lower signal-to-noise ratio the proposed approach lacks power to identify critical 

windows. Advances in computational approaches for BKMR methods that are currently 

under development have great promise to scale the approach to larger datasets for which 

BKMR-DLM will have increased power to detect critical windows. A third limitation is 

that BKMR-DLM requires complete exposure data and exposure histories of the same 

length. We therefore limit the exposure data to the first 37 weeks of gestation and include 

only full term births. This is currently the standard approach in DLM analyses of pre-

pregancy exposure data. If exposure is associated with gestational age at birth, including 

only full term births is conditioning on a mediator and could cause bias. Future research 

should pursue methods that can handle exposure data of different lengths to accommodate 

varying gestational ages, including preterm births. Another area for future research is the 

development of alternative constraints on the weight functions. In this paper we allow 

each weight function to take positive and negative values. This allows for an effect to be 

protective at some times and detrimental in other time periods, which has been shown to be 

the case for some exposures (Bauer et al., 2017; Claus Henn et al., 2018; Liu et al., 2018). In 

cases in which the substantive question involves exposures that are likely to have effects that 

do not change direction over the time windows under study, an alternative approach would 

be to implement a positivity constraint on the weights, w(t) > 0 ∀t ∈ T. This would result 

in the effect being in the same direction at all time points and may increase the model’s 

power to detect windows if the assumption is valid. Finally, data on mixtures observed at 

repeated time points results in exposure measures that are highly correlated. In cases where 

the correlation among exposures is extremely high, BKMR-DLM and most other approaches 

will have limited ability to differentiate the effects of the individual exposures.

Both the estimation of health effects associated with multi-pollutant mixtures and the 

identification of windows of susceptibility are important areas of environmental health 

research. BKMR-DLM integrates these two important areas of research by simultaneously 

estimating windows of susceptibility and multi-pollutant exposure-response functions.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements.

This work was supported in part by NIH grants R01ES028811, R01ES013744, P30ES000002, P30ES023515, and 
UH3OD023337 and US EPA grant RD-83587201. Its contents are solely the responsibility of the grantee and do 
not necessarily represent the official views of the US EPA. Further, US EPA does not endorse the purchase of any 
commercial products or services mentioned in the publication. The ACCESS cohort has been supported by NIH 
grants R01ES010932, U01HL072494, and R01HL080674. This work utilized the RMACC Summit supercomputer, 
which is supported by the NSF (awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder and 
Colorado State University.

References.

Bauer JA, Claus Henn B, Austin C, Zoni S, Fedrighi C, Cagna G, Placidi D, White RF, Yang Q, 
Coull BA, Smith D, Lucchini RG, Wright RO and Arora M (2017). Manganese in teeth and 
neurobehavior: Sex-specific windows of susceptibility. Environment International 108 299–308. 
[PubMed: 28941415] 

Bello GA, Arora M, Austin C, Horton MK, Wright RO and Gennings C (2017). Extending the 
Distributed Lag Model framework to handle chemical mixtures. Environmental Research 156 253–
264. [PubMed: 28371754] 

Bobb JF (2017). bkmr: Bayesian Kernel Machine Regression.

Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, Godleski JJ and Coull 
BA (2015). Bayesian kernel machine regression for estimating the health effects of multi-pollutant 
mixtures. Biostatistics 16 493–508. [PubMed: 25532525] 

Bobb JF, Claus Henn B, Valeri L and Coull BA (2018). Statistical software for analyzing the health 
effects of multiple concurrent exposures via Bayesian kernel machine regression. Environmental 
Health 17 67. [PubMed: 30126431] 

Bose S, Chiu Y-HM, Hsu H-HL, Di Q, Rosa MJ, Lee A, Kloog I, Wilson A, Schwartz J, Wright 
RO, Cohen S, Coull BA and Wright RJ (2017). Prenatal Nitrate Exposure and Childhood Asthma. 
Influence of Maternal Prenatal Stress and Fetal Sex. American Journal of Respiratory and Critical 
Care Medicine 196 1396–1403. [PubMed: 28661182] 

Braun JM, Gennings C, Hauser R and Webster TF (2016). What Can Epidemiological Studies Tell Us 
about the Impact of Chemical Mixtures on Human Health? Environmental Health Perspectives 124 
A6–A9. [PubMed: 26720830] 

Carrico C, Gennings C, Wheeler DC and Factor-Litvak P (2015). Characterization of Weighted 
Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. Journal of 
Agricultural, Biological, and Environmental Statistics 20 100–120. [PubMed: 30505142] 

Chang HH, Reich BJ and Miranda ML (2012). Time-to-Event Analysis of Fine Particle Air Pollution 
and Preterm Birth: Results From North Carolina, 20012005. American Journal of Epidemiology 175 
91–98. [PubMed: 22167746] 

Chang HH, Warren JL, Darrow LA, Reich BJ and Waller LA (2015). Assessment of critical exposure 
and outcome windows in time-to-event analysis with application to air pollution and preterm birth 
study. Biostatistics 16 509–521. [PubMed: 25572998] 

Chen Y-H, Mukherjee B and Berrocal VJ (2019). Distributed lag interaction models with two 
pollutants. Journal of the Royal Statistical Society: Series C (Applied Statistics) 68 79–97. 
[PubMed: 30636815] 

Chen Y-H, Mukherjee B, Adar SD, Berrocal VJ and Coull BA (2018). Robust distributed lag models 
using data adaptive shrinkage. Biostatistics 19 461–478. [PubMed: 29040386] 

Claus Henn B, Austin C, Coull BA, Schnaas L, Gennings C, Horton MK, Hernández-Ávila M, Hu H, 
Téllez-Rojo MM, Wright RO and Arora M (2018). Uncovering neurodevelopmental windows of 
susceptibility to manganese exposure using dentine microspatial analyses. Environmental Research 
161 588–598. [PubMed: 29247915] 

Wilson et al. Page 18

Ann Appl Stat. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cristianini N and Shawe-Taylor J (2000). An introduction to support vector machines and other 
kernel-based learning methods. Cambridge University Press.

Davalos AD, Luben TJ, Herring AH and Sacks JD (2017). Current approaches used in epidemiologic 
studies to examine short-term multipollutant air pollution exposures. Annals of Epidemiology 27 
145–153. [PubMed: 28040377] 

Di Q, Koutrakis P and Schwartz J (2016). A hybrid prediction model for PM2.5 mass and components 
using a chemical transport model and land use regression. Atmospheric Environment 131 390–
399.

Gasparrini A (2011). Distributed Lag Linear and Non-Linear Models in R : The Package dlnm. Journal 
of Statistical Software 43 1–20.

Gasparrini A, Armstrong B and Kenward MG (2010). Distributed lag nonlinear models. Statistics in 
Medicine 29 2224–2234. [PubMed: 20812303] 

Gasparrini A, Scheipl F, Armstrong B and Kenward MG (2017). A penalized framework for 
distributed lag non-linear models. Biometrics 73 938–948. [PubMed: 28134978] 

Gibson EA, Nunez Y, Abuawad A, Zota AR, Renzetti S, Devick KL, Gennings C, Goldsmith J, 
Coull BA and Kioumourtzoglou M-A (2019). An overview of methods to address distinct research 
questions on environmental mixtures: an application to persistent organic pollutants and leukocyte 
telomere length. Environmental Health 18 76. [PubMed: 31462251] 

Hamra GB and Buckley JP (2018). Environmental Exposure Mixtures: Questions and Methods to 
Address Them. Current Epidemiology Reports 5 160–165. [PubMed: 30643709] 

Heaton MJ and Peng RD (2012). Flexible Distributed Lag Models Using Random Functions 
With Application to Estimating Mortality Displacement From Heat-Related Deaths. Journal of 
Agricultural, Biological, and Environmental Statistics 17 313–331. [PubMed: 23125520] 

Herring AH (2010). Nonparametric Bayes Shrinkage for Assessing Exposures to Mixtures Subject to 
Limits of Detection. Epidemiology 21 S71–S76. [PubMed: 20526202] 

Keil AP, Buckley JP, OBrien KM, Ferguson KK, Zhao S and White AJ (2020). A Quantile-Based 
g-Computation Approach to Addressing the Effects of Exposure Mixtures. Environmental Health 
Perspectives 128 047004.

Lakshmanan A, Chiu Y-HM, Coull BA, Just AC, Maxwell SL, Schwartz J, Gryparis A, Kloog I, 
Wright RJ and Wright RO (2015). Associations between prenatal traffic-related air pollution 
exposure and birth weight: Modification by sex and maternal pre-pregnancy body mass index. 
Environmental Research 137 268–277. [PubMed: 25601728] 

Lee A, Leon Hsu H-H, Mathilda Chiu Y-H, Bose S, Rosa MJ, Kloog I, Wilson A, Schwartz J, 
Cohen S, Coull BA, Wright RO and Wright RJ (2018). Prenatal fine particulate exposure and 
early childhood asthma: Effect of maternal stress and fetal sex. Journal of Allergy and Clinical 
Immunology 141 1880–1886. [PubMed: 28801196] 

Leon Hsu H-H, Mathilda Chiu Y-H, Coull BA, Kloog I, Schwartz J, Lee A, Wright RO and Wright 
RJ (2015). Prenatal Particulate Air Pollution and Asthma Onset in Urban Children. Identifying 
Sensitive Windows and Sex Differences. American Journal of Respiratory and Critical Care 
Medicine 192 1052–1059. [PubMed: 26176842] 

Liu D, Lin X and Ghosh D (2007). Semiparametric Regression of Multidimensional Genetic Pathway 
Data: Least-Squares Kernel Machines and Linear Mixed Models. Biometrics 63 1079–1088. 
[PubMed: 18078480] 

Liu SH, Bobb JF, Lee KH, Gennings C, Claus Henn B, Bellinger D, Austin C, Schnaas L, Tellez-Rojo 
MM, Hu H, Wright RO, Arora M and Coull BA (2018). Lagged kernel machine regression for 
identifying time windows of susceptibility to exposures of complex mixtures. Biostatistics 19 
325–341. [PubMed: 28968676] 

Molitor J, Papathomas M, Jerrett M and Richardson S (2010). Bayesian profile regression with 
an application to the National survey of children’s health. Biostatistics 11 484–498. [PubMed: 
20350957] 

Mork D and Wilson A (2021). Treed distributed lag nonlinear models. Biostatistics.

Morris JS (2015). Functional Regression. Annual Review of Statistics and Its Application 2 321–359.

Murray I, Adams RP and MacKay DJC (2009). Elliptical slice sampling. Journal of Machine Learning 
Research: W&CP 9 541–548.

Wilson et al. Page 19

Ann Appl Stat. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Park SK, Tao Y, Meeker JD, Harlow SD and Mukherjee B (2014). Environmental Risk Score as a New 
Tool to Examine Multi-Pollutants in Epidemiologic Research: An Example from the NHANES 
Study Using Serum Lipid Levels. PLoS ONE 9 e98632. [PubMed: 24901996] 

Pearce JL, Waller LA, Chang HH, Klein M, Mulholland JA, Sarnat JA, Sarnat SE, Strickland MJ and 
Tolbert PE (2014). Using self-organizing maps to develop ambient air quality classifications: a 
time series example. Environmental Health 13 56. [PubMed: 24990361] 

Peng RD, Dominici F and Welty LJ (2009). A Bayesian hierarchical distributed lag model for 
estimating the time course of risk of hospitalization associated with particulate matter air pollution. 
Journal of the Royal Statistical Society: Series C (Applied Statistics) 58 3–24.

Taylor KW, Joubert BR, Braun JM, Dilworth C, Gennings C, Hauser R, Heindel JJ, Rider CV, Webster 
TF and Carlin DJ (2016). Statistical Approaches for Assessing Health Effects of Environmental 
Chemical Mixtures in Epidemiology: Lessons from an Innovative Workshop. Environmental 
Health Perspectives 124 227–229.

Warren J, Fuentes M, Herring A and Langlois P (2012). Spatial-Temporal Modeling of the Association 
between Air Pollution Exposure and Preterm Birth: Identifying Critical Windows of Exposure. 
Biometrics 68 1157–1167. [PubMed: 22568640] 

Warren JL, Fuentes M, Herring AH and Langlois PH (2013). Air Pollution Metric Analysis While 
Determining Susceptible Periods of Pregnancy for Low Birth Weight. ISRN Obstetrics and 
Gynecology 2013 1–9.

Warren JL, Stingone JA, Herring AH, Luben TJ, Fuentes M, Aylsworth AS, Langlois PH, Botto LD, 
Correa A and Olshan AF (2016). Bayesian multinomial probit modeling of daily windows of 
susceptibility for maternal PM 2.5 exposure and congenital heart defects. Statistics in Medicine 35 
2786–2801. [PubMed: 26853919] 

Warren JL, Kong W, Luben TJ and Chang HH (2020). Critical window variable selection: estimating 
the impact of air pollution on very preterm birth. Biostatistics 21 790–806. [PubMed: 30958877] 

Wilson A, Chiu Y-HM, Hsu H-HL, Wright RO, Wright RJ and Coull BA (2017a). Potential for Bias 
When Estimating Critical Windows for Air Pollution in Childrens Health. American Journal of 
Epidemiology 186 1281–1289. [PubMed: 29206986] 

Wilson A, Chiu Y-HM, Hsu H-HL, Wright RO, Wright RJ and Coull BA (2017b). Bayesian 
distributed lag interaction models to identify perinatal windows of vulnerability in childrens 
health. Biostatistics 18 537–552. [PubMed: 28334179] 

Wilson A, Hsu H-HL, Chiu Y-HM, Wright RO, Wright RJ and Coull BA (2021a). Supplement to 
“Kernel Machine and Distributed Lag Models for Assessing Critical Windows to Exposure to 
Time-Varying Multipollutant Mixtures in Childrens’ Health”.

Wilson A, Hsu H-HL, Chiu Y-HM, Wright RO, Wright RJ and Coull BA (2021b). R-code for 
“Kernel Machine and Distributed Lag Models for Assessing Critical Windows to Exposure to 
Time-Varying Multipollutant Mixtures in Childrens’ Health”.

Woodruff TJ, Zota AR and Schwartz JM (2011). Environmental Chemicals in Pregnant Women in the 
United States: NHANES 20032004. Environmental Health Perspectives 119 878–885. [PubMed: 
21233055] 

Wright RO (2017). Environment, susceptibility windows, development, and child health. Current 
Opinion in Pediatrics 29 211–217. [PubMed: 28107208] 

Wright RJ, Suglia SF, Levy J, Fortun K, Shields A, Subramanian S and Wright R (2008). 
Transdisciplinary research strategies for understanding socially patterned disease: the Asthma 
Coalition on Community, Environment, and Social Stress (ACCESS) project as a case study. 
Ciência & Saúde Coletiva 13 1729–1742. [PubMed: 18833350] 

Xia Y (2008). A multiple-index model and dimension reduction. Journal of the American Statistical 
Association 103 1631–1640.

Zanobetti A, Wand MP, Schwartz J and Ryan LM (2000). Generalized additive distributed lag models: 
quantifying mortality displacement. Biostatistics (Oxford, England) 1 279–92.

Zanobetti A, Austin E, Coull BA, Schwartz J and Koutrakis P (2014). Health effects of multi-pollutant 
profiles. Environment International 71 13–19. [PubMed: 24950160] 

Wilson et al. Page 20

Ann Appl Stat. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 1: 
Estimated distributed lag function between exposures and birth weight for gestational age 

z-score in ACCESS using the additive DLMs. This is δ (t) estimated from (1). The function 

represents the estimated expected change in BWGAz per one standard deviation change in 

exposure (y-axis) as a function of gestational week (x-axis).
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Fig 2: 
Estimated exposure-response function with BKMR. The exposure-response function is 

shown for each pollutant at the median value of all other pollutants. The x-axis is mean 

exposure over the first 37 weeks of gestation using exposure values standardized to have 

mean zero and variance one.
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Fig 3: 
Estimated weight functions from the analysis of BWGAz in ACCESS with BKMR-DLM 

using a quadratic kernel. The weight function is constrained and does not reflect the 

magnitude of the association or the direction of the association. It only reflects the timing of 

the association.
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Fig 4: 
Cross sections of the estimated exposure-response function (ℎ) from BKMR-DLM with a 

quadratic kernel. The panels on the diagonal show the main effect, which is the association 

between a weighted exposure (x-axis) and the outcome at the median level of all other 

weighted exposures. The dashed line represents the posterior mean and the shaded ribbon 

represents the 0.95 credible interval. The off-diagonals show the exposure-response function 

at different quantiles of a single co-exposure. For example, the top right panel shows the 

sulfate exposure-response relationship at different quantiles of nitrate and median levels of 

OC and EC. A fanning or deviation from parallel lines in the exposure-response relationship 

represents evidence of an interaction.
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Fig 5: 
Estimated distributed lag function between exposures and birth weight for gestational age 

z-score in ACCESS using the stratified DLMs. The DLM for each exposure is stratified by 

mean nitrate level over pregnancy (below and above median nitrate value). The function 

represents the estimated expected difference in BWGAz per one standard deviation increase 

in exposure (y-axis) as a function of gestational week (x-axis).
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Table 1

Simulation results for scenario A with two active exposures. The table shows (from left to right) RMSE for 

the exposure-response function and 0.95 interval coverage for the exposure-response function, the average 

pointwise RMSE and pointwise 0.95 coverage for the two weight functions, and the probability that an 

interaction is detected by comparing the difference in an IQR change in PM2.5 at the 75th and 25th percentile 

of NO2. A probability of an interaction near 1 indicates the model consistently finds evidence of an interaction 

and a probability near 0.5 indicates no evidence of interaction.

Model RMSE h Coverage h RMSE w(t) Coverage w(t) Pr(interact)

n = 100, noise: sd(ϵ) = 3.0

BKMR 1.352 0.596 0.703 NA 0.498

BKMR-DLM 1.241 0.975 0.603 0.887 0.502

BKMR-DLM-quad 1.038 0.915 0.546 0.891 0.647

DLM 1.205 0.857 0.896 0.865 NA

DLNM 1.186 0.828 0.945 0.872 NA

n = 100, noise: sd(ϵ) = 7.5

BKMR 1.676 0.821 0.703 NA 0.496

BKMR-DLM 2.951 0.987 0.725 0.901 0.517

BKMR-DLM-quad 1.767 0.975 0.701 0.895 0.530

DLM 2.371 0.921 1.144 0.823 NA

DLNM 2.224 0.903 1.127 0.845 NA

n = 100, noise: sd(ϵ) = 15.0

BKMR 2.283 0.927 0.703 NA 0.497

BKMR-DLM 5.263 0.994 0.742 0.905 0.508

BKMR-DLM-quad 2.942 0.994 0.746 0.895 0.516

DLM 4.560 0.930 1.248 0.798 NA

DLNM 4.098 0.922 1.227 0.823 NA

n = 500, noise: sd(ϵ) = 3.0

BKMR 1.234 0.413 0.703 NA 0.479

BKMR-DLM 0.639 0.928 0.469 0.822 0.506

BKMR-DLM-quad 0.621 0.847 0.441 0.814 0.963

DLM 0.881 0.681 0.712 0.883 NA

DLNM 0.792 0.848 0.836 0.926 NA

n = 500, noise: sd(ϵ) = 7.5

BKMR 1.417 0.582 0.703 NA 0.478

BKMR-DLM 1.371 0.990 0.644 0.886 0.494

BKMR-DLM-quad 1.124 0.918 0.569 0.885 0.617

DLM 1.332 0.847 0.929 0.851 NA

DLNM 1.394 0.881 0.964 0.894 NA

n = 500, noise: sd(ϵ) = 15.0

BKMR 1.662 0.762 0.703 NA 0.479

BKMR-DLM 2.567 0.999 0.721 0.900 0.519
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Model RMSE h Coverage h RMSE w(t) Coverage w(t) Pr(interact)

BKMR-DLM-quad 1.677 0.970 0.689 0.893 0.538

DLM 2.245 0.902 1.108 0.811 NA

DLNM 2.396 0.910 1.119 0.855 NA
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Table 3

Summary of methods and performance. The first three columns show what data features the method accounts 

for by design. The last three columns summarize relative performance of the methods and indicates the 

recommended method based on study objectives of estimating the exposure-response function (ER) and 

detecting interactions among exposures. These recommendations are based on the simulation study results.

Method

Method accounts for by design Method recommended use

exposure
timing

inter-
actions

non-
linearity

detecting
interactions

Estimating ER

wk signal*
modest n

st signal*
large n

Add. DLM ✓

Add. DLNM ✓ ✓

BKMR ✓ ✓ ✓

BKMR-DLM ✓ ✓ ✓ ✓ ✓

*
denotes weaker signal and stronger signal, respectively.

ER: exposure-response
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