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Abstract

Type 1 diabetes (T1D) affects over 200,000 children and is associated with an increased risk 

of cognitive dysfunction. Prior imaging studies suggest the neurological changes underlying this 

risk are multifactorial, including macrostructural, microstructural, and inflammatory changes. 

However, these studies have yet to be integrated, limiting investigation into how these phenomena 

interact. To better understand these complex mechanisms of brain injury, a well-powered, 

prospective, multisite, and multimodal neuroimaging study is needed. We take the first step in 

accomplishing this with a preliminary characterization of multisite, multimodal MRI quality, 

motion, and variability in pediatric T1D. We acquire structural T1 weighted (T1w) MRI, diffusion 

tensor MRI (DTI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS) of 5-7 

participants from each of two sites. First, we assess the contrast-to-noise ratio of the T1w MRI 

and find no differences between sites. Second, we characterize intervolume motion in DTI and 

fMRI and find it to be on the subvoxel level. Third, we investigate variability in regional gray 

matter volumes and local gyrification indices, bundle-wise DTI microstructural measures, and 
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N-acetylaspartate to creatine ratios. We find the T1-based measures to be comparable between 

sites before harmonization and the DTI and MRS-based measures to be comparable after. We find 

a 5-15% coefficient of variation for most measures, suggesting ~150-200 participants per group on 

average are needed to detect a 5% difference across these modalities at 0.9 power. We conclude 

that multisite, multimodal neuroimaging of pediatric T1D is feasible with low motion artifact after 

harmonization of DTI and MRS.
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1. INTRODUCTION

Type 1 diabetes (T1D) affects almost 1.7 million Americans, including over 200,000 

children and adolescents, and is associated with an increased risk of mild to moderate 

cognitive dysfunction [1], [2]. Currently, the neurological changes that underlie this risk are 

thought to be multifactorial. Prior studies have pointed to neuroanatomical macrostructural 

[3], [4], microstructural [5], and inflammatory changes [6], [7], but these studies have yet to 

be integrated into a consistent framework, limiting investigation into how these phenomena 

interact. To better understand these complex mechanisms of brain injury, a well-powered, 

prospective, multisite, and multimodal magnetic resonance imaging (MRI) study is needed.

The success of such a study depends on acquiring high quality images with low motion 

artifact in a pediatric cohort from multiple sites and scanners. This requires pediatric 

participants to remain still in the MRI scanner for the duration of imaging and the 

consideration of interscanner variability that could confound such an analysis [8]. As such, 

in this work, we present a pilot study to assess multisite and multimodal MRI quality, 

motion, and variability; characterize how two common harmonization techniques can reduce 

some interscanner biases in pediatric T1D; and investigate the feasibility of a large-scale 

multisite, multimodal neuroimaging study for pediatric T1D.

We first acquire multimodal neuroimaging, including structural, diffusion, functional, and 

spectroscopic MRI in a small cohort of pediatric T1D participants at two sites, each with 

a different MRI scanner. We explore image contrast, motion artifacts, and how quantitative 

metrics extracted from the images vary within and between the two sites. Last, using these 

results, we perform a sample size analysis to determine the number of T1D participants and 

healthy controls needed to resolve a 5% difference between groups across these modalities at 

scale.

2. METHODS

2.1. Study design and MRI acquisitions

Our study population consists of 12 pediatric participants with T1D imaged across two sites: 

site A (N = 7, 3 male, average age 9.7 years) and site B (N = 5, 1 male, average age 

11.6 years). For each participant, regardless of site, we acquire structural T1 weighted MRI 
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(T1w MRI), resting state functional MRI (fMRI), diffusion tensor MRI (DTI), and magnetic 

resonance spectroscopy (MRS). At site A, all images were acquired on a 3T Philips Achieva 

scanner (Amsterdam, the Netherlands), and at site B, all images were acquired on a 3T 

Siemens Trio TIM scanner (Erlangen, Germany).

The T1w MRI data were acquired at 1.0mm isotropic resolution with an echo time (TE) and 

repetition time (TR) of TE/TR = 2.9ms/6310ms at site A and 3.5ms/2500ms at site B. The 

fMRI data were acquired at resting state with TE/TR = 30ms/2000ms at 2.25x2.25x2.4mm 

(sagittal, coronal, axial) resolution at site A and TE/TR = 30ms/2000ms at 2.51mm isotropic 

resolution at site B. Between 100 and 240 volumes were acquired for each participant. Two 

participants, one at each site, did not complete this acquisition. The DTI data were acquired 

with multishell acquisitions at b = 1000 s/mm2 (32 directions at site A with TE/TR = 70ms/

4600ms at 1.9x1.9x2.0mm resolution and 30 directions at site B with TE/TR = 97.4ms/

3800ms at 2.0mm isotropic resolution) and b = 2000 s/mm2 (32 directions at site A with 

TE/TR = 70ms/4600ms at 1.9x1.9x2.0mm resolution and 30 directions at site B with TE/TR 

= 97.4ms/3800ms at 2.0mm isotropic resolution) phase-encoded in the anterior-to-posterior 

direction with associated b = 0 s/mm2 non-diffusion weighted volumes. Additional b = 

0 s/mm2 non-diffusion weighted volumes phase encoded in the opposite direction were 

acquired as well at each site for susceptibility-induced distortion correction [9], [10]. One 

participant at site A did not complete this acquisition. The MRS data were acquired with a 

2-dimensional point resolved spectroscopy (PRESS) sequence in an axial slice at the level 

of the basal ganglia. Images at site A were acquired with TE = 144ms at 9.58x9.58x15mm 

resolution. Images at site B were acquired with TE = 135ms at 12.5x12.5x10mm resolution.

2.2. Multimodal image processing

For each T1w MRI, we compute gray matter (GM) volumes in 34 frontal regions, 14 parietal 

regions, 22 temporal regions, 16 occipital regions, and 19 deep regions with the spatially 

localized atlas network tiles (SLANT) deep learning framework [11]. During this process, 

SLANT also performs a whole brain, white matter (WM), and ventricle segmentation. The 

volumes of each GM region are subsequently normalized to the intracranial volume. Next, 

we compute the local gyrification index (LGI) in the same frontal, parietal, temporal, and 

occipital cortical regions [12]-[15]. For each resting state fMRI, we compute the median 

voxel-wise intervolume displacement with statistical parametric mapping (SPM) [16]. For 

each DTI, we preprocess the images with the PreQual pipeline [10], extract the b = 1000 

s/mm2 volumes, and fit a tensor model to compute scalar diffusion microstructural fractional 

anisotropy (FA) and mean diffusivity (MD) maps [17]. Next, we extract the b = 2000 s/mm2 

volumes and perform probabilistic tractography [18], generating a whole brain tractogram, 

which is then subsequently parcellated into 32 white matter bundles [19], and compute the 

average FA and MD along each of the bundles [20], [21]. For each MRS, we fit the spectra 

in each voxel with LCModel [22], computing the ratios of the N-acetylaspartate (NAA) 

peaks to the creatine (Cr) peaks. Last, we compute the median voxel-wise NAA/Cr ratio in 

the middle ninth of the slice. These operations are summarized in Figure 1.
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2.3. T1 weighted MRI

To characterize T1w MRI quality, we evaluate the contrast to noise ratio (CNR) of each 

image. With the SLANT segmentations of GM, WM, and the ventricles, we compute the 

average signal in GM, μGM, and WM, μWM, as well as the standard deviation of the 

cerebrospinal fluid (CSF) signal, σCSF. CNR is then computed as:

CNR = μGM − μW M
σCSF

(1)

We compare the distributions of CNR in T1w MRI between participants at both sites with 

the Wilcoxon rank-sum test at 0.05 significance.

Next, we compare the normalized GM volumes quantified with SLANT between the two 

sites for the regions in each cortical lobe and the deep GM regions. To do so, we model the 

GM volumes for each set of regions with a linear mixed effects model at 0.05 significance, 

considering site and region as fixed effects and participants as a random effect. We plot 

the distribution of regional median GM volumes across participants for each site and report 

the p-value for the site effect with Bonferroni correction for five comparisons (four lobes 

and deep GM). Additionally, we compute the coefficient of variation (CoV) for each region 

across participants at each site to better quantify and compare within-site variability. We 

compare the distribution of regional CoV for each site and evaluate for statistical differences 

with the Wilcoxon rank-sum test at 0.05 significance with Bonferroni correction for the 

same five comparisons.

Last, we compare the regional cortical LGIs in the four lobes in the same manner. We model 

the LGI for each set of regions with a linear mixed effects model in the same configuration 

at 0.05 significance, plot the distribution of regional median LGI, and report the p-value for 

the site effect with Bonferroni correction for four comparisons, one for each lobe. We repeat 

the CoV analysis between sites, comparing the distribution of regional CoV at each site with 

the Wilcoxon rank-sum test at 0.05 significance with Bonferroni correction for the same four 

comparisons.

2.4. Resting state functional MRI

To characterize resting state fMRI quality, we evaluate the intervolume motion. We average 

the median voxel-wise intervolume displacement computed with SPM across volumes for 

each participant. We then compare the distribution of average intervolume displacement 

between sites. We evaluate for statistical differences with the Wilcoxon rank-sum test at 0.05 

significance.

2.5. Diffusion tensor MRI

To characterize DTI quality, we first evaluate intervolume motion. Similarly to fMRI, we 

average across volumes the average voxel-wise intervolume displacement computed with the 

eddy preprocessing tool in the PreQual preprocessing pipeline [10], [23]. We then compare 

the distribution of average intervolume displacement between sites with the Wilcoxon rank-

sum test at 0.05 significance.
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Second, we evaluate diffusion microstructure measured along the 32 white matter bundles 

virtually dissected with tractography. Similar to the GM volumes and LGI in T1w MRI, 

we model the average FA and MD along each of the bundles with a linear mixed effects 

model at 0.05 significance, considering site and bundle as fixed effects and participants 

as a random effect, and plot the distribution of bundle-wise median FA and MD across 

participants for each site and report the p-value for the site effect. We perform a similar CoV 

analysis to that described for GM volume and LGI. We compute the CoV for each bundle 

across participants and compare the distributions of bundle-wise CoV for each site with the 

Wilcoxon rank-sum test at 0.05 significance. Last, we utilize the ComBat tool to harmonize 

the bundle-wise microstructural scalars between sites, and repeat the bundle-wise FA, MD, 

and CoV analyses described for the harmonized data [24].

2.6. Magnetic resonance spectroscopy

To characterize MRS, we evaluate the median NAA/Cr ratio in the middle ninth of an axial 

slice through the basal ganglia for each participant. We compare the distributions at each 

site with a Wilcoxon rank-sum test at 0.05 significance. We perform harmonization between 

sites to account for TE differences with a phantom study at site A. We scan a General 

Electric Braino phantom (Boston, USA) with the site A protocol at a TE of both 144ms 

(matching site A) and 135ms (matching site B). We subsequently quantify the median scale 

factor between the NAA/Cr ratios in the 135ms scan and the 144ms scan in the middle 

of the phantom. We multiply this scale factor to the NAA/Cr ratios measured at site A to 

harmonize the TE to that at site B. We compare the harmonized distributions between sites 

in the same manner.

2.7. Sample size calculations

To investigate the feasibility of a large-scale multimodal, multisite neuroimaging study of 

T1D, we investigate the sample sizes needed for each modality to identify a 5% difference 

between a group of participants with T1D and a group of controls. We model the imaging 

measures as continuous response variables from independent control and experimental 

participants with T1D at a ratio of 1 control per case with 0.9 power and 0.05 significance. 

For each modality, we assume the responses are normally distributed and that the true 

difference between the control and experimental means is 5% of the mean values with a 

standard deviation computed by multiplying the mean values by the associated CoV. We 

compute mean values and CoV for this analysis across all participants from this pilot study.

Specifically, for T1w MRI, for each region we compute the average GM volume and LGI 

and the corresponding CoV across our entire pilot study population. We do the same for 

bundle-wise FA and MD in DTI after harmonization and for median NAA/Cr in the middle 

ninth of the slice for MRS after harmonization. Subsequently, for T1w MRI and DTI, we 

compute the sample size required for each region or bundle to identify a 2% through 10% 

difference between groups. We obtain a distribution of sample sizes across regions for each 

percent difference. We do the same for MRS, but compute only one sample size estimate 

per percent difference as there are no regions involved. Last, we plot these estimates and 

visually estimate the sample size needed to resolve, on average, a 5% difference between 

groups across all modalities.
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3. RESULTS

3.1. T1 weighted MRI

The distributions of CNR at both sites are reported in Figure 2a. We find that the CNR 

between sites exhibits no statistically significant difference. We find that participants at both 

sites exhibit a difference in signal between GM and WM that is approximately double the 

standard deviation of CSF signal in the ventricles. We find the spread of CNR at site B 

is larger, but we do not find the absolute CNR values of 1.8 to 2.4 to be unacceptable for 

further analysis.

The distributions of regional normalized GM volume and associated CoVs are reported in 

Figure 3. We find that the volumes exhibit no statistically significant difference between 

sites across regions in the four cortical lobes and deep GM. We find the same for the CoV of 

those regions and that, across all four lobes and deep GM, the median CoV at each site range 

from 5 to 15%.

The distributions of regional LGI and associated CoVs are reported in Figure 4. We find that 

the LGI estimates exhibit no statistically significant differences between sites across the four 

lobes. We find the same for CoV in the temporal parietal and occipital lobes. For CoV in 

the frontal lobe, we find that, despite the statistically significant differences, the results still 

place an estimate of the central CoV between 5 and 15%, in line with the results from the 

other lobes.

3.2. Resting state functional MRI

We find that the average fMRI intervolume movement trends downward between site A and 

site B, but that the maximum average intervolume displacement experienced by participants 

at both sites was on the subvoxel level for acquisitions acquired around 2mm resolution 

(Figure 2b). This indicates to us that movement in pediatric T1D participants during resting 

state fMRI in this pilot study was low.

3.3. Diffusion tensor MRI

As with fMRI, we find that the average DTI intervolume movement trends downward 

between site A and site B, but that the maximum average intervolume displacement is on 

the subvoxel level (Figure 2b). This indicates to us that the pediatric T1D participants in this 

pilot study were able to undergo multishell DTI with low amounts of motion.

The distributions of bundle-wise FA and MD and the associated CoVs are reported in 

Figure 5. We find that, without harmonization, bundle-wise FA exhibited statistically 

significant differences between sites that was eliminated with harmonization (Figure 5a). 

On the other hand, we find that bundle-wise MD did not exhibit statistically significant 

differences between sites both without and with harmonization (Figure 5b). We also find that 

harmonization reduces differences in CoV between sites and that, overall, the CoV estimates 

fall between 2% and 5% (Figure 5a and 5b).
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3.4. Magnetic resonance spectroscopy

The distributions of median NAA/Cr in the middle ninth of an axial slice through the 

basal ganglia among participants at each site are reported in Figure 5c. We find that before 

harmonization the ratios exhibit statistically significant differences between sites and that 

those differences are corrected after harmonization leveraging a phantom study at site A.

3.5. Sample size calculations

The results of the multimodal sample size computations are reported in Figure 6. We 

find that a sample of approximately 150-200 participants with T1D and the same number 

of healthy controls is needed to resolve a 5% difference between groups across all the 

modalities investigated presently at 0.9 power and 0.05 significance.

4. DISCUSSION AND CONCLUSIONS

We present a pilot study for multisite, multimodal neuroimaging feasibility in pediatric T1D 

to better elucidate its complex, multifactorial neuroanatomical effects. We find the T1-based 

measures to be comparable between sites without harmonization and find the DTI and 

MRS-based measures to be comparable after harmonization. We find that acquiring both 

DTI and fMRI is feasible with low motion artifact. We find 5-15% coefficient of variation 

within sites for almost all measures, suggesting a sample size of approximately 150-200 

participants with T1D and the same number of controls are needed on average to detect a 

5% difference across these modalities at 0.9 power. As such, we conclude that multimodal 

neuroimaging of pediatric T1D is feasible at multiple sites with low motion artifact, taking 

into account harmonization of DTI and MRS.

Data strongly implicate diabetic ketoacidosis (DKA) and hyperglycemia in causing cognitive 

declines in children and adults with T1D that may worsen over time [25], [26]. Declines 

in cognitive function may lead to suboptimal T1D management, resulting in a vicious 

cycle that increases risk for poor glycemic control, life-threatening complications, and 

further cognitive declines [27]. The mechanisms underlying neural injury are unclear, and 

a longitudinal cohort study of children with T1D is necessary to characterize associations 

between T1D-related factors and neurocognitive outcomes. Multimodal neuroimaging with 

consideration of site and scanner effects in a large cohort will identify macrostructural, 

microstructural, inflammatory, and functional neuroimaging correlates of impaired cognition 

and will assist in identifying potentially modifiable mechanisms that may ameliorate 

cognitive declines in children with T1D.

The primary limitation of this pilot study is the small sample size. Due to this, the 

comparisons of distributions across participants between sites without further stratification 

are likely underpowered. This includes the CNR, motion, and MRS analyses. Additionally, 

since the regions within one participant’s brain are highly correlated, regional effects had to 

be considered when comparing distributions of values across regions. With a small sample 

size, this can impact the ability of the linear mixed effects model to resolve the site effect. 

However, it is reassuring in both cases that there are no immediate trends suggesting large 

differences between sites.
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On a related note, because the regions are highly correlated, they are likely unable to be 

considered fully independent samples. This indicates the independence assumption in the 

Wilcoxon rank-sum tests used to evaluate differences in CoV between sites may not hold. 

For this pilot study, we selected this approach to facilitate a more interpretable metric, like 

CoV, in order to perform subsequent sample size analyses. In the future, regional effects 

ought to be taken into consideration when analyzing within site variability.

We note that interscanner harmonization is an open problem in neuroimaging. For 

this pilot study, we selected a phantom-based correction for TE effects in MRS 

and the commonly used ComBat method for DTI for their interpretability and ease 

of implementation. However, future directions include leveraging other techniques for 

improved harmonization. For instance, the selected TE ought to be standardized from site 

to site for MRS. Additionally, for DTI, more advanced techniques, like harmonization of 

spherical harmonics-based features or deep learning-based methods, ought to be considered 

[28], [29].

Compared to the other imaging modalities, MRS suffers from low spatial resolution. For 

this pilot study, we approximately localized deep GM structures by utilizing the voxels 

in the middle ninth of the slice through the basal ganglia. However, this necessarily will 

also encompass signal from the ventricles and WM. Future directions include leveraging 

the SLANT segmentations to better separate specific regions of the brain for metabolite 

analysis.

Last, there are other processing techniques beyond those used here that can be investigated 

in context of multimodal imaging in T1D. These include applying distortion correction to 

fMRI prior to analysis and functional connectomics; other methods of segmenting GM from 

T1w MRI including multi-atlas approaches; investigation of other cortical morphometry 

measures like curvature, thickness, and shape; the investigation of multishell DTI micro 

structural scalars, like the neurite orientation dispersion and density imaging measures; and 

structural connectomics.
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Figure 1. 
Multimodal neuroimaging of pediatric T1D at each site. We acquire T1w MRI, DTI, 

resting state fMRI, and MRS. For T1w MRI, we characterize image CNR, gray matter 

volumetrics, and cortical morphometry. For DTI, we characterize intervolume motion and 

diffusion microstructure along white matter bundles identified with tractography. For fMRI, 

we characterize intervolume motion. For MRS, we characterize the NAA/Cr ratio in an axial 

slice through the basal ganglia.
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Figure 2. 
Multimodal image contrast and motion. (a) T1w MRI from the two sites exhibit comparable 

CNR. Statistical significance was evaluated with the Wilcoxon rank-sum test (p < 0.05). 

(b) With scans acquired around 2mm resolution, on average, participants experience 

subvoxel intervolume movement in both DTI and resting state fMRI at both sites. Statistical 

significance was evaluated with the Wilcoxon rank-sum test (p < 0.05).
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Figure 3. 
Regional normalized GM volumes at two sites. (a) On a regional basis, GM volumes are 

comparable between sites. Statistical significance was evaluated with a linear mixed effects 

model with site and region as fixed effects and participants as a random effect. The p-values 

for the site effects are reported with Bonferroni correction for 5 comparisons. (b) On a 

regional basis, the CoV of measurements in the same areas are comparable between sites. 

Statistical significance was evaluated with the Wilcoxon rank-sum test with Bonferroni 

correction for 5 comparisons.
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Figure 4. 
Regional measurements of local gyrification at two sites. (a) On a regional basis, cortical 

gyrification is comparable between sites. Statistical significance was evaluated with a 

linear mixed effects model with site and region as fixed effects and participants as a 

random effect. The p-values for the site effects are reported with Bonferroni correction 

for four comparisons. (b) On a regional basis, the CoV of measurements in the same 

regions are comparable between sites. The statistically significant differences in frontal lobe 

regional CoV still primarily fall within the same 5-15% CoV as the other lobes. Statistical 

significance was evaluated with the Wilcoxon rank-sum test with Bonferroni correction for 

four comparisons.
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Figure 5. 
Bundle-wise measurements of diffusion microstructure and NAA to creatine ratios in a 

slice through the basal ganglia at two sites before and after harmonization. (a) On a 

bundle basis, average FA and the associated CoV are not comparable between sites without 

harmonization. After harmonization, the FA values are comparable, and the differences 

in CoV between sites are reduced and small in absolute value. (b) On a bundle basis 

without harmonization, average MD is comparable between sites, but the associated CoV 

is not. After harmonization, the differences in CoV between sites are reduced and small in 

absolute value. (a and b) Harmonization was performed with the ComBat method. Statistical 

significance for the microstructural scalars was evaluated with a linear mixed effects model 

with site and bundle as fixed effects and participants as a random effect. The p-values for 

the site effects are reported. Statistical significance for the CoV estimates was evaluated with 

the Wilcoxon rank-sum test. (c) NAA/Cr ratios are not comparable between the sites without 

harmonization. Harmonization was performed with a phantom study at site A to correct for 

TE differences. Statistical significance was determined with the Wilcoxon rank-sum test (p < 

0.05).

Cai et al. Page 15

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Power analysis of multimodal, multisite imaging of pediatric T1D. At 0.9 power and 0.05 

significance, a sample size of ~150-200 (red highlight) per group is necessary to detect a 5% 

difference, on average, in the pediatric T1D multimodal measures investigated presently.

Cai et al. Page 16

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	METHODS
	Study design and MRI acquisitions
	Multimodal image processing
	T1 weighted MRI
	Resting state functional MRI
	Diffusion tensor MRI
	Magnetic resonance spectroscopy
	Sample size calculations

	RESULTS
	T1 weighted MRI
	Resting state functional MRI
	Diffusion tensor MRI
	Magnetic resonance spectroscopy
	Sample size calculations

	DISCUSSION AND CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

