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Simple Summary: The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major agricultural
insect pest species worldwide. The sterile insect technique (SIT), as a component of area-wide
integrated management (AW-IPM) programmes, is currently used to control populations of this pest.
SIT is based on the mass production and release of sexually sterile insects, ideally males, over a target
area. Male-only releases can be achieved by using genetic sexing strains (GSS) such as the medfly
VIENNA 8 GSS. Females of this strain are homozygous for a mutation in the temperature-sensitive lethal
(tsl) gene, which kills them when exposed to high temperatures during the embryonic stage. In the
present study, we employed a temperature-sensitive lethal test (TSLT) to determine the temperature
sensitivity or tolerance of twenty-seven Ceratitis capitata wild-type, genetic sexing, and tsl mutant
strains. Significant differences were detected among the strains studied with respect to egg hatching,
pupal, and adult recovery rates. We discussed our findings in the context of SIT applications and
climate change.

Abstract: Area-wide integrated pest management (AW-IPM) programmes with a sterile insect tech-
nique component (SIT) are used to control populations of insect pests worldwide, including the
Mediterranean fruit fly, Ceratitis capitata. SIT consists of the mass rearing, radiation-induced steril-
ization, handling, and release of sterile insects over the target area. Although SIT can be performed
by using both sterile males and females, male-only releases significantly increase the efficiency and
cost-effectiveness of SIT applications. Male-only releases can be achieved by using genetic sexing
strains (GSS). The medfly VIENNA 8 GSS is based on two selectable markers, the white pupae (wp)
gene, and the temperature-sensitive lethal (tsl) genes. The latter allows the elimination of females
by exposing embryos to elevated temperatures. This study assessed the temperature sensitivity of
twenty-seven medfly strains through a TSLT. Our results indicated significant differences among
the strains regarding egg hatching as well as pupal and adult recovery rates due to the presence or
absence of the tsl mutation and/or the genetic background of the strains. Our findings are discussed
in the context of SIT applications, the importance of the tsl gene for developing genetic sexing strains,
and climate change.

Keywords: Mediterranean fruit fly; sterile insect technique; temperature-sensitive lethal; white
pupae; Tephritidae; Diptera
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1. Introduction

The Mediterranean fruit fly, Ceratitis capitata (Wiedemann, 1824), also called “medfly”,
is a member of the Tephritidae family in the order Diptera and is considered one of the
most harmful species for agriculture worldwide. It is a cosmopolitan, highly polyphagous,
and carpophagous species, and its presence has been documented in more than 260 species
of fruits and vegetables of major economic interest [1,2]. Medfly’s rapid invasion in five
different continents and its extensive destructive potential have fueled intensive control
programmes aiming to restrict the distribution of the pest in the invaded areas [3,4]. Several
methods have been developed to control medfly populations including the sterile insect
technique (SIT) [5–7].

As a component of area-wide integrated pest management programmes (AW-IPM), the
sterile insect technique has been used to control populations of insect pests and disease vectors
worldwide [8]. SIT is based on the mass production and release of irradiation-induced sterile
flies over a target area to suppress wild populations of a target species [5,7]. During the last
decades, AW-IPM programmes with an SIT component have been developed and implemented
to control populations of insect pest species, including medfly, in several parts of the world with
the purpose of suppression, prevention, containment, or eradication strategies [9–13].

Several studies have shown that the mass production and release of sterile males
only, increase the efficiency and cost-effectiveness of SIT applications significantly. This
is because: (a) costs associated with the mass production, handling, release, and post-
release monitoring activities are reduced, as there is no production, handling, and release
of females, (b) released sterile males are not engaged in mating with sterile females and
are only seeking wild females, and (c) avoiding releases of sterile females prevents further
damage of fruits and vegetables [14–17]. An efficient and robust way to separate males
from females is through developing and using genetic sexing strains (GSS) [17].

Two GSS are currently used in mass rearing facilities to produce sterile males for SIT
applications against medfly, namely VIENNA 7 and VIENNA 8 [18]. Both of them have
been constructed using classical genetic approaches and carry two recessive selectable
markers, the white pupae (wp) and the temperature-sensitive lethal (tsl) genes, which are
localized on the right arm of chromosome 5 [17]. The females of the VIENNA 7 and
VIENNA 8 GSS are homozygous for the mutant alleles of the wp and tsl genes, emerge
from white puparia, and die when exposed as 24-h-old embryos to elevated temperatures
(34–35 ◦C) for 24 h. The GSS males are heterozygous on both genetic loci, with wild-
type alleles linked to the Y chromosome and the male determining region through an
irradiation-induced translocation. They emerge from brown puparia and survive when
exposed to high temperatures [17,19] (Figure 1). The only difference between VIENNA 7
and VIENNA 8 GSS lies in the translocation. VIENNA 7 and VIENNA 8 GSS carry the
translocation at position T(Y;5)52A and T(Y;5)58B, respectively (translocation breakpoints
determined based on trichogen polytene chromosome maps) [17,19]. Due to chromosomal
translocation, GSS are considered semi-sterile presenting reduced productivity, which
depends on how the Y-autosome translocation segregates during gametogenesis. Alternate
segregation produces genetically balanced progeny, while adjacent-1 segregation produces
unbalanced progeny due to deletions and triplications. Progeny with deletions usually die
at the embryonic stage. However, those with triplications may survive even up to the pupal
or the adult stage, which may explain the difference in the productivity levels observed
between different GSS [17].
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Figure 1. Schematic representation of a Ceratitis capitata VIENNA GSS. GSS females are homozygous 

for the mutant alleles of the wp and tsl gene markers, while GSS males are heterozygous at both loci 

with the wild-type alleles of the two markers linked to the male determining region of the Y chro-

mosome (MoY) through an irradiation-induced T(Y;5) translocation. 
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accumulation of recombinants during mass-rearing, can result in the loss of their genetic 

sexing properties [17,19]. In medfly, this problem has been addressed by: (a) the develop-

ment and implementation of a “filter rearing system”, which removes the recombinants 

and thus maintains the genetic integrity of the GSS [15,20] and (b) the development of the 

In(5)50C;59C inversion on chromosome 5 (inversion breakpoints determined based on 

trichogen polytene chromosome maps), which is also known as “D53 inversion”), that 

carries the wp and tsl selectable markers. Inversions are known suppressors of genetic re-

combination and the incorporation of the D53 inversion in the VIENNA GSS has signifi-

cantly increased their genetic stability [17,19]. 
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VIENNA 8 GSS at different facilities worldwide [18]. Despite their common origin, the 
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may have resulted in altered phenotypic properties, with respect to sex separation and 

male recovery rates upon heat treatment, both being critical for the mass production of 
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(1:3) with water being provided separately. Larvae were reared on a carrot diet as de-
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Figure 1. Schematic representation of a Ceratitis capitata VIENNA GSS. GSS females are homozygous
for the mutant alleles of the wp and tsl gene markers, while GSS males are heterozygous at both
loci with the wild-type alleles of the two markers linked to the male determining region of the Y
chromosome (MoY) through an irradiation-induced T(Y;5) translocation.

Recombination phenomena may affect the genetic stability of a GSS and, through the
accumulation of recombinants during mass-rearing, can result in the loss of their genetic
sexing properties [17,19]. In medfly, this problem has been addressed by: (a) the develop-
ment and implementation of a “filter rearing system”, which removes the recombinants
and thus maintains the genetic integrity of the GSS [15,20] and (b) the development of the
In(5)50C;59C inversion on chromosome 5 (inversion breakpoints determined based on tri-
chogen polytene chromosome maps), which is also known as “D53 inversion”), that carries
the wp and tsl selectable markers. Inversions are known suppressors of genetic recombi-
nation and the incorporation of the D53 inversion in the VIENNA GSS has significantly
increased their genetic stability [17,19].

A recent study assessed the genetic stability and rearing efficiency of VIENNA 7 and
VIENNA 8 GSS at different facilities worldwide [18]. Despite their common origin, the
strains showed differences in egg hatching, pupal recovery, adult emergence rates, and
male tolerance to elevated temperatures [18]. The causal factor(s) for these differences could
be environmental and/or genetic. The productivity of the GSS may vary in laboratories and
mass-rearing facilities due to different rearing practices, including the type of diet and type
of translocation and its segregation behaviour during gametogenesis [17,18]. Long-term
colony maintenance and inbreeding and the refreshment of mass-rearing colonies with
wild genetic material followed by adaptation in the given rearing conditions may have
resulted in altered phenotypic properties, with respect to sex separation and male recovery
rates upon heat treatment, both being critical for the mass production of high-quality males
for SIT applications [17,18]. Thus, in this study, we assess the temperature sensitivity and
recovery rates of several wild-type, mutant, and GSS medfly strains under small-scale,
laboratory rearing conditions.

2. Materials and Methods
2.1. Ceratitis Capitata Strains and Rearing Conditions

All strains were maintained under small-scale, laboratory rearing conditions at 24 ± 2 ◦C,
55 ± 10% RH, and 14/10 h light/dark cycle at IAEA Insect Pest Control laboratories
(Seibersdorf, Austria). Adults were placed in 20 × 20 × 30 cm cages and fed on yeast:
sugar (1:3) with water being provided separately. Larvae were reared on a carrot diet as
described previously [21] with minor modifications: 2.5 kg carrot powder (Van Drunen
Farms, Momence, IL., USA), 7 kg cooked frozen baby carrots (Ardo, Ardooie, Belgium),
840 g yeast hydrolysate enzymatic (MP BiomedicalsTM), 80 g sodium benzoate, water up
to 10 L while the pH was adjusted to 4.3–4.4 with 115 ml of hydrochloric acid 32%. As
shown in Table 1, twenty-seven strains were used in the present study, classified into three
groups: “wild type” strains (No. 1–9), “GSS” (No. 10–20), with females being homozygous
and males being heterozygous for the tsl mutant allele, respectively, and “mutant” strains
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(No. 21–27) with all individuals being homozygous for the tsl mutant allele. The GSS strains
were constructed by crossing males from the translocation lines (VIENNA 7, VIENNA 8)
with females from the wp tsl mutant strain. VIENNA 7 and VIENNA 8 GSS have been
reconstructed in different years and/or places; this is indicated in their names. Additional
characteristics for some of these strains are presented in Table 1 as footnotes.

Table 1. Ceratitis capitata strains used in the present study.

Strain Group

1 EgII FF21 a wild-type
2 EgII FF26 a wild-type
3 Benakeion Volos FF26 wild-type
4 Seibersdorf (SEIB) FF26 wild-type
5 Argentina FF26 wild-type
6 Benakeion TR 34 FF26 b wild-type
7 Benakeion TR 35 FF26 b wild-type
8 Benakeion TR 34S FF26 c wild-type
9 Benakeion TR 35S FF26 c wild-type
10 VIENNA 8 2010 FF26 d GSS
11 VIENNA 8 2018 FF26 d GSS
12 VIENNA 8 2019 FF26 d GSS
13 VIENNA 8 Sr2 FF26 e GSS
14 VIENNA 8 “El Pino” FF26 GSS
15 VIENNA 8 Israel FF26 GSS
16 VIENNA 8 Argentina FF26 GSS
17 VIENNA 7 2017 FF26 d GSS
18 VIENNA 7 2018 FF26 d GSS
19 VIENNA 7 2019 FF26 d GSS
20 VIENNA 7 2020 FF26 d GSS
21 wp tsl FF21 a mutant
22 wp tsl FF26 a mutant
23 wp tsl (EgII) FF21 a mutant
24 wp tsl (EgII) FF26 a mutant
25 D53-3-28 FF21 a mutant
26 D53-3-28 FF26 a mutant
27 D53-1 FF26 mutant

a Strains were kept as parallel cultures in two rooms, FF21 and FF26, at the IPCL under the same rearing conditions
for backup purposes. b The Benakeion TR 34 and Benakeion TR 35 strains were established with Benakeion strain
survivors of TSLT conducted at 34 ◦C and 35 ◦C, respectively. c The Benakeion TR 34S and Benakeion TR 35S
strains were established with Benakeion TR and Benakeion TR 35 strain survivors of TSLT performed at the next
generation at 34 ◦C and 35 ◦C, respectively. d VIENNA 7 and VIENNA 8 GSS, generated in the respective years.
e VIENNA 8 GSS, carrying the Sr2 dominant mutation, a homozygous lethal mutation that leads to the expression
of a third stripe on the fly’s abdomen [22].

2.2. Temperature-Sensitive Lethal Test

The TSLT was performed as previously described [18] with the only difference that
the GSS and the mutant strains were tested in all six temperatures (25, 31, 32, 33, 34, and
35 ◦C) while the wild-type strains were only assessed at 25, 34 and 35 ◦C (“short TSLT”).
Each TSLT was performed with 100 eggs per temperature and replicated three times by
collecting eggs over three consecutive days. In total, 1800 eggs (100 eggs × 3 replicates
× 6 temperatures) were used for the “TSLT”, while 900 eggs were used for the “short TSLT”.
All eggs were collected within five hours from adult cages containing 5 to 7 days old adults.
After collection, eggs were placed on black strips (100 eggs/strip) on top of 90 × 15 mm
Petri dishes with larval carrot diet and held at 25 ◦C for 24 h. After 24 h incubation, each
batch was kept at one of the six different temperatures (25, 31, 32, 33, 34, and 35 ◦C). After
the heat treatment, all eggs were left at 25 ◦C to complete their development. Egg hatching,
pupal recovery, and adult emergence rates were determined 5, 15, and 23 days post egg
collection, respectively (Figure 2). Egg hatching was calculated for each replicate using
the number of collected embryos (100) as a reference and the number of empty eggshells
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after five days. Pupal recovery was calculated using the number of pupae obtained divided
by the hatched eggs. The adult recovery rate was calculated using the number of eclosed
adults divided by the number of pupae.
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Figure 2. TSLT workflow. For each temperature test, 300 freshly collected eggs were used and
incubated at 25 ◦C for 24 h. After that, heat treatments were conducted for 24 h, and the egg hatching,
pupal recovery, and adult emergence rates were determined.

2.3. Statistical Analysis

All statistical analyses were performed using R version 4.0.5 (R Core Team 2021). Egg
hatching, pupal recovery, and adult emergence rates represent recovery ratios. There-
fore, all datasets were analyzed using a GLM-binomial family and a logit link func-
tion [23]. For the recovery rates, the following parameters were measured: a) egg hatching,
b) pupae recovery, and c) adult recovery, as the number of adults emerged from the total
number of pupae. The generalized linear models (GLM) overdispersion was checked with
the DHARMA package [24]. DHARMA tests if the simulated dispersion is equal to the
observed dispersion and supports the visual inspection of the residuals. Overdispersion
of the GLM-binomial models was addressed with a quasi-binomial model using a logit
link function [25]. Analysis of deviance was performed with a Chi-squared test for GLM-
Binomial models and an F-test for GLM-quasi-binomial models [26]. Half-normal plots
with simulation envelopes were used to inspect the goodness-of-fit of the models [27]
visually. The pairwise comparisons of the fitted model estimates were calculated with the
‘estimated marginal means’ (emmeans) package [28]. For all data, the significance level was
set to α = 0.05.

3. Results
3.1. Egg Hatching at 25 ◦C, 34 ◦C, and 35 ◦C

Statistically significant differences were detected among the strains for egg hatching
at the rearing temperature of 25 ◦C (F = 24.851, df = 26, p < 2.2 x 10-16) (Figure 3; Table S1).
Regarding the wild-type strains, egg hatching ranged from 85.11 ± 2.76% for Benakeion
TR 34S to 98 ± 1% for EgII FF26 at 25 ◦C. In the case of GSS, egg hatching at 25 ◦C had
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its lowest value at 65.22 ± 4.12% for VIENNA 8 2010 and reached up to 92 ± 2.40% for
VIENNA 8 Israel. The respective values for the mutant strains were 86.22 ± 2.91% for wp
tsl FF26 and 96.11 ± 4.04 for D53-3-28 FF26. Significant differences were also observed
among all strains when embryos were exposed for 24 h at both 34 ◦C (F = 48.767, df = 26,
p < 2.2 x 10-16) and 35 ◦C (F = 40.615, df = 26, p < 2.2 x 10-16) (Figure 3). Heat exposure at
34 ◦C had moderate effects on egg hatching for the wild-type strains and more pronounced
ones in the case of the GSS and mutant strains. Mutant strains had a hatching rate of zero
or close to zero at 34 or 35 ◦C, which manifests the thermosensitivity of the tsl mutant allele
present in these strains, except for the D53-3-28 FF21 and D53-3-28 FF26 strains. Similarly,
recovery of females was reduced in the GSS as they were homozygous for the tsl mutant
allele (Table S1). Pairwise comparisons of each strain are shown in Table S2.
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Figure 3. Egg hatching rates of twenty-seven Ceratitis capitata wild-type, mutant, and GSS strains.
Egg hatching rates of strains reared at 25 ◦C without heat-shock treatment and after 24 h heat-shock
treatment at 34 ◦C and 35 ◦C are shown. Dots represent outliers, while dashes represent the absence
of variance in the data.

3.2. Pupal Recovery at 25 ◦C, 34 ◦C, and 35 ◦C

Pupal recovery rates were assessed based on the hatched larvae for all strains evalu-
ated. Statistically significant differences were detected among all strains tested in respect
to pupal recovery at 25 ◦C (F = 12.944, df = 25, p < 2.2 x 10-16) and ranged between
50.11 ± 9.1% for VIENNA 8 2018 and 93.22 ± 3.53% for D53-3-28 FF21 (Figure 4; Table
S1). The low pupal recovery of the GSSs was attributed to their semi-sterility. Signifi-
cant differences were also observed when embryos were exposed for 24 h at both 34 ◦C
(F = 6.241, df = 24, p = 5.011 x 10-14) and 35 ◦C (F = 5.5303, df = 22, p = 2.266 x 10-11) (Figure 4;
Table S1). The highest pupal recovery rates among wild-type strains were observed in EgII
FF26 (59.78 ± 13.54%), while the lowest was observed in Benakeion Volos (10.56 ± 5.41%),
when embryos were exposed at 34 ◦C. VIENNA 8 Argentina and VIENNA 8 2018 had the
highest and lowest pupal recovery at 34 ◦C among the GSSs, respectively, while in the
case of the tsl mutant strains, heat-shock at 34 ◦C had detrimental effects in all strains with
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0 or close to 0 pupal recovery (Table S1). As mentioned above, D53-3-28 FF21 and
D53-3-28 FF26 were the only tsl mutant strains that exhibited an abnormal pattern and
behaved unlike their mutant classification. Pairwise comparisons of each strain are shown
in Table S3, indicating statistically significant differences among the wild-type strains, GSS,
and mutant strains.

Insects 2022, 13, x FOR PEER REVIEW 7 of 13 
 

 

p = 5.011 x 10-14) and 35 °C (F = 5.5303, df = 22, p = 2.266 x 10-11) (Figure 4; Table S1). The 

highest pupal recovery rates among wild-type strains were observed in EgII FF26 (59.78 ± 

13.54%), while the lowest was observed in Benakeion Volos (10.56 ± 5.41%), when embryos 

were exposed at 34 °C. VIENNA 8 Argentina and VIENNA 8 2018 had the highest and 

lowest pupal recovery at 34 °C among the GSSs, respectively, while in the case of the tsl 

mutant strains, heat-shock at 34 °C had detrimental effects in all strains with 0 or close to 

0 pupal recovery (Table S1). As mentioned above, D53-3-28 FF21 and D53-3-28 FF26 were 

the only tsl mutant strains that exhibited an abnormal pattern and behaved unlike their 

mutant classification. Pairwise comparisons of each strain are shown in Table S3, indicat-

ing statistically significant differences among the wild-type strains, GSS, and mutant 

strains. 

 
Figure 4. Larval to pupal recovery rates of twenty-seven Ceratitis capitata wild-type, mutant, and 

GSS strains. Pupal recovery rates of strains reared at 25 °C without heat-shock treatment and after 

24 h heat-shock treatment at 34 °C and 35 °C are shown. Dots represent outliers, while dashes rep-

resent the absence of variance in the data. In the case of wp tsl (EgII) FF21, wp tsl FF21, and D53-1 

FF26, the missing data are due to undefined ratios (denominator was 0). 

3.3. Adult Recovery at 25 °C, 34 °C, and 35 °C 

Similar to what was observed for egg hatching and pupal recovery, statistically sig-

nificant differences were also found among the strains studied with respect to adult re-

covery at 25 °C (F = 6.937, df = 25, p < 2.2 x 10-16; Figure 5; Table S1). Significant differences 

were also detected in the adult emergence when embryos were exposed for 24 h to both 

34 °C (F = 2.5586, df = 26, p = 0.0002887) and 35 °C (F = 2.5149, df = 21, p = 0.0006646) (Figure 

5; Table S1). Pairwise comparisons of each strain are shown in Table S4. 

Figure 4. Larval to pupal recovery rates of twenty-seven Ceratitis capitata wild-type, mutant, and GSS
strains. Pupal recovery rates of strains reared at 25 ◦C without heat-shock treatment and after 24 h
heat-shock treatment at 34 ◦C and 35 ◦C are shown. Dots represent outliers, while dashes represent
the absence of variance in the data. In the case of wp tsl (EgII) FF21, wp tsl FF21, and D53-1 FF26, the
missing data are due to undefined ratios (denominator was 0).

3.3. Adult Recovery at 25 ◦C, 34 ◦C, and 35 ◦C

Similar to what was observed for egg hatching and pupal recovery, statistically signifi-
cant differences were also found among the strains studied with respect to adult recovery
at 25 ◦C (F = 6.937, df = 25, p < 2.2 x 10-16; Figure 5; Table S1). Significant differences were
also detected in the adult emergence when embryos were exposed for 24 h to both 34 ◦C
(F = 2.5586, df = 26, p = 0.0002887) and 35 ◦C (F = 2.5149, df = 21, p = 0.0006646) (Figure 5;
Table S1). Pairwise comparisons of each strain are shown in Table S4.
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Figure 5. Pupal to adult recovery rates of twenty-seven Ceratitis capitata wild-type, mutant, and GSS
strains. Adult recovery rates of strains reared at 25 ◦C without heat-shock treatment and after 24 h
heat-shock treatment at 34 ◦C and 35 ◦C are shown. Dots represent outliers, while dashes represent
the absence of variance in the data. In the case of wp tsl (EgII) FF21, wp tsl FF21, wp tsl FF26, and
D53-1 FF26, the missing data are due to undefined ratios (denominator was 0).

3.4. Temperature-Sensitive Lethal Tests at Additional Temperatures

Heat exposure of 24 h old GSS and tsl mutant embryos at 34 ◦C and 35 ◦C showed
differential sensitivity among the strains (Table S1). Due to this variability, we investigated
the thermal response of these strains (GSS and mutant) at three additional temperatures,
31 ◦C, 32 ◦C, and 33 ◦C, to define the point at which heat sensitivity is expressed in each
strain. Interestingly, egg hatching between 31 ◦C and 32 ◦C did not show any signifi-
cant decrease, except for the strains VIENNA 7 2017 (df = 5, p = 0.0137), VIENNA 8 Sr2

(df = 5, p = 0.0377), and wp tsl FF21 (df = 5, p = < 0.0001), where the difference was sta-
tistically significant. When the temperature was increased to 33 ◦C, embryos presented
higher sensitivity in most cases, apart from the strains VIENNA 7 2019, VIENNA 8 Sr2, and
VIENNA 8 Argentina, which showed no significant decrease in egg hatching. The results
indicated that the reduced fertility at the embryonic stage starts at 31 ◦C for all the GSS and
tsl mutant strains except for VIENNA 8 Israel, VIENNA 8 Argentina, and D53-3-28 FF26,
where exposure to 33 ◦C is required (Figure 6, Table S5).
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4. Discussion

The temperature-sensitive lethal (tsl) gene plays a crucial role in the successful implemen-
tation of SIT applications against the agricultural pest, Ceratitis capitata, as its engineered
presence in the genetic sexing strains VIENNA 7 and VIENNA 8 allows the robust and
efficient sex separation at the embryonic stage, thus resulting in the release of sterile males-
only individuals [17,26,28]. As the function of the tsl gene is critical as a selectable marker
for sex separation, its genetic stability should be monitored regularly to ensure the overall
stability and robustness of the GSS [18]. The present study applied to different wild-type,
GSS and tsl mutant strains temperature-sensitive lethal tests and confirmed, with some
exceptions discussed below, the presence and stability of the tsl gene marker in several
genetic sexing strains and tsl mutant strains that are routinely used in SIT-related research
and applications.

Temperature-sensitive lethal tests were performed on eleven GSS. Our results indicated
that the thermal exposure of embryos reduced egg hatching, pupal recovery, and adult
emergence. As female embryos were homozygous for the tsl allele and sensitive to elevated
temperatures, lethality was observed mainly in females. In contrast, lethality was rescued
in male embryos carrying a wild-type, tsl+ allele. Moreover, a frequent application of
“TSLTs”, in addition to the “filter rearing system” is strongly recommended due to the
possibility of having recombinants, which, being white puparia and resistant to elevated
temperatures, can accumulate under mass-rearing conditions and lead to the loss of the
sexing properties and the breakdown of the genetic sexing strain [17,18].

It is also important to note that the GSS strains tested in the present study: (a) are prod-
ucts of two different translocations (VIENNA 7 and VIENNA 8), (b) may include additional
markers such as Sr2 [24], (c) may have been (re)constructed at different time points and
(d) may have been introgressed into local genetic background depending on the region
of SIT applications. These factors may have affected their recombination rates due to the



Insects 2022, 13, 943 10 of 13

distance between the translocation break point and the selectable markers [17] and their
response to elevated temperatures [18]. Our results showed significant temperature sensi-
tivity at temperatures lower than 34 ◦C and 35 ◦C resulting in female lethality and reduced
male recovery. This is important because, in the context of operational SIT programmes,
reduced male recovery rates would increase the cost of the applications. SIT facilities may
decide to change the strain opting for a strain with higher fitness at 25 ◦C and improving
the overall performance of their strain by enriching it with a local genetic background. In
addition, if complete female lethality can be achieved at a lower temperature, the recovered
males will have experienced less stress and may be of higher biological quality. Bottlenecks,
long-term inbreeding, accumulation of spontaneous mutations, and introgression into local
genetic backgrounds may have played a role in modulating the tsl phenotype, the rearing
efficiency, and the characteristics of the genetic sexing strains. Several studies have reported
that prolonged mass-rearing leads to laboratory adaptation, which sequentially can result
in loss of genetic diversity and significant changes in alleles [29–32]. These alterations can
affect various phenotypes and life-history traits. Therefore, they should be continuously mon-
itored to verify that genetic diversity, biological quality, and competitiveness are maintained
and that the production of high-quality sterile insects for SIT applications is assured [33,34].
Towards this goal, periodic refreshments of mass-reared colonies with wild or partially in-
bred material have been proven to greatly value mass-rearing facilities [29,31,35]. Infusion
of the mass-reared colony with “fresh” flies can limit genetic bottlenecks and maintain the
genetic diversity and biological quality of the mass-reared insects.

Analysis of four different wp tsl strains indicated that they fully expressed the
temperature-sensitive lethal phenotype. In contrast, out of the three inversion lines studied,
only one of them (D53-1) behaved like a typical tsl mutant strain; however, the other two
lines (having the same origin but kept for a long time in separate rearing rooms) demon-
strated a significant number of survivors at both 34 ◦C and 35 ◦C. All three strains contain
the D53 inversion, which covers parts of chromosome 5 [In(5)50C;59C]. Chromosomal
inversions are known suppressors of genetic recombination, and therefore, we would
expect that the D53 inversion, which resides in the wp tsl genomic region, would suppress
recombination in that region [17]. The left breakpoint of the inversion is located between the
wp and tsl loci, being closer to the wp locus [19,36]. Therefore, recombination phenomena
could be possible as the tsl locus is outside the borders of the D53 inversion. A revertant
mutation at the tsl gene combined with genetic recombination could explain the presence
of survivors at elevated temperatures, thus creating wp tsl+ individuals. Mutation(s) on
secondary genetic loci might also affect the expression of the tsl phenotype. The latter may
require exposure to higher temperatures to achieve complete lethality, as recently shown
for another medfly strain carrying the tsl mutation [37].

Differences were detected among the tested wild-type strains at elevated temperatures
34 ◦C and 35 ◦C. For example, the hatching rate of the “Benakeion Volos” strain was low at
both temperatures compared to the wild-type strain EgII FF26 suggesting that temperature-
sensitive lethal alleles (not necessary of the same tsl locus) may be present in this strain, and
they could be potentially harnessed for the establishment of novel temperature-sensitive
lethal strains. On the other hand, the “Seibersdorf” and “Argentina” strains exhibited high
eclosion rates, suggesting they are more tolerant at high temperatures. This property could
be helpful for SIT applications in regions with a warmer climate.

Moreover, climate change increases the need to characterize such mutations and is not
to be underestimated [38]. In combination with the invasive character of C. capitata, climate
change favoured the shift of its geographic range into new areas [39,40]. On the other hand,
climate change can severely affect an AW-IPM programme because temperature changes
can influence the sterile males and male mating competitiveness. Rising temperatures
could lead to the death of sterile males released during SIT. However, it should be noted
that Ceratitis capitata can adapt to such stressful conditions [41,42]. It has been observed
that virgin sexually mature males prefer a warmer temperature than females (±1.7 ◦C), also
keeping an optimal mating propensity [41]. Since the global surface annual temperature
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has increased at an average rate of 0.1 ◦C, almost double compared to 20 years ago, and
increases of 1.5 ◦C and 2-4 ◦C are expected by 2050 and 2100, respectively [43], C. capitata
may still have room for adaptation over the next years. This may speed up the life cycle,
increase the number of generations per year, and expand its geographic range. In addition,
it is essential to note that climate change has also resulted in the unpredictable appearance
and frequency of weather phenomena such as storms, heavy rains, and heat and cold
waves. Those may impact IPM programmes with an SIT component, especially during the
release of sterile males, since such phenomena may affect their longevity, flight ability, and
mating performance.

5. Conclusions

The temperature-sensitive lethal tests on twenty-seven Ceratitis capitata strains resulted
in significant differences. The homozygous lethal tsl alleles in mutant strains and GSS
females trigger embryonic lethality and subsequent reduction in pupal recovery and adult
emergence rates when embryos are subjected to elevated temperatures. However, variabil-
ity was observed in the lethality levels, which could be due to novel mutations resulting in
revertant alleles or changes in the genetic background, which might influence the expres-
sion levels and/or the penetrance of the tsl phenotype. Variability was observed among
the wild-type strains suggesting that some may be more sensitive to elevated temperatures
than others. In addition, some of the tsl mutant strains may express the tsl phenotype at
lower than usual temperatures (less than 34 ◦C). The results of the present study indicate
that TSLTs should frequently be carried out with strains used in SIT-related projects, both
in research labs and operational programmes. In addition, the thermal tolerance of GSS
males used in SIT field applications should be tested because high temperatures occur more
frequently due to climate change.
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strains. Table S3: Pairwise comparisons of pupal recovery at 25 ◦C, 34 ◦C and 35 ◦C for twenty-
seven Ceratitis capitata strains. Table S4: Pairwise comparisons of adult recovery at 25 ◦C, 34 ◦C and
35 ◦C for twenty-seven Ceratitis capitata strains. Table S5: Temperature pairwise comparisons of egg
hatching at 25 ◦C, 31 ◦C, 32 ◦C, 33 ◦C, 34 ◦C and 35 ◦C for GSS and tsl mutant Ceratitis capitata strains.
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Prerequisite for Invasiveness and Adaptation. Sustainability 2021, 13, 12510. [CrossRef]

41. Weldon, C.W.; Nyamukondiwa, C.; Karsten, M.; Chown, S.L.; Terblanche, J.S. Geographic Variation and Plasticity in Climate
Stress Resistance among Southern African Populations of Ceratitis Capitata (Wiedemann)(Diptera: Tephritidae). Sci. Rep. 2018, 8,
1–13. [CrossRef]

42. Weldon, C.W.; Díaz-Fleischer, F.; Pérez-Staples, D. Desiccation Resistance of Tephritid Flies: Recent Research Results and Future
Directions. In Area-Wide Manag Fruit Fly Pests; CRC Press: Boca Raton, FL, USA, 2019; pp. 27–43.

43. Pörtner, H.-O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R. Climate
Change 2022: Impacts, Adaptation and Vulnerability. In IPCC Sixth Assessment Report; Cambridge University Press: Cambridge,
UK; New York, NY, USA, 2022.

http://doi.org/10.2307/2344614
http://doi.org/10.18637/jss.v081.i10
http://doi.org/10.1080/00031305.1980.10483031
http://doi.org/10.1603/EC11421
http://doi.org/10.1111/j.0014-3820.2001.tb01305.x
http://doi.org/10.1186/1471-2156-15-S2-S9
http://doi.org/10.1111/jen.12042
http://doi.org/10.1093/jee/toy024
http://doi.org/10.1111/jen.12998
http://doi.org/10.1038/s41467-020-20680-5
http://www.ncbi.nlm.nih.gov/pubmed/33479218
http://doi.org/10.1093/jee/toaa220
http://www.ncbi.nlm.nih.gov/pubmed/33020821
http://doi.org/10.1007/s13744-020-00817-3
http://www.ncbi.nlm.nih.gov/pubmed/33113111
http://doi.org/10.1007/s10709-006-9117-2
http://www.ncbi.nlm.nih.gov/pubmed/17111234
http://doi.org/10.3390/su132212510
http://doi.org/10.1038/s41598-018-28259-3

	Introduction 
	Materials and Methods 
	Ceratitis Capitata Strains and Rearing Conditions 
	Temperature-Sensitive Lethal Test 
	Statistical Analysis 

	Results 
	Egg Hatching at 25 C, 34 C, and 35 C 
	Pupal Recovery at 25 C, 34 C, and 35 C 
	Adult Recovery at 25 C, 34 C, and 35 C 
	Temperature-Sensitive Lethal Tests at Additional Temperatures 

	Discussion 
	Conclusions 
	References

