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Abstract: With the exponential increase in publicly available protein structures, the comparison
of protein binding sites naturally emerged as a scientific topic to explain observations or generate
hypotheses for ligand design, notably to predict ligand selectivity for on- and off-targets, explain
polypharmacology, and design target-focused libraries. The current review summarizes the state-
of-the-art computational methods applied to pocket detection and comparison as well as structural
druggability estimates. The major strengths and weaknesses of current pocket descriptors, align-
ment methods, and similarity search algorithms are presented. Lastly, an exhaustive survey of
both retrospective and prospective applications in diverse medicinal chemistry scenarios illustrates
the capability of the existing methods and the hurdle that still needs to be overcome for more
accurate predictions.

Keywords: binding site; alignment; off-target; library design; virtual screening; machine learning;
artificial intelligence drug design

1. Introduction

In living organisms, biological processes are regulated through specific molecular
recognition at local surfaces. Proteins, one of the major biomolecules composing our cells,
interact with different partners: other proteins, peptides, nucleic acids, small molecules,
and transition metals. The exploration of the proteome, considering amino acid sequences,
makes it possible to rapidly compare proteins but does not necessarily indicate whether
potential cavities at their surfaces will be conserved or not. Hence, structure conservation
does not always mirror sequence homology [1]. Progress in molecular and structural biol-
ogy have enabled us to uncover the three-dimensional (3D) structure of proteins, either by
X-ray diffraction [2], nuclear magnetic resonance (NMR) [3], or more recently cryo-electron
microscopy (cryo-EM) at an atomic scale [4], all approaches being now integrated [5]. Char-
acterizing the binding cavities for small molecules has bolstered the rise of structure-based
drug design [6]. Supported by the outlooks and successful case studies, many methods
have been developed in the last three decades. The bottleneck of protein cavity comparison
is common to all similarity estimates—similarity is a non-measurable characteristic that
depends on the considered aspects. Instead, derived hypotheses (e.g., function, ligand
binding) are further evaluated. This presents many challenges for benchmarking methods
and highlights the importance of carefully designing datasets in retrospective studies. For
users as well as developers, knowing where we come from and what has been achieved
in the field enables realistic expectations and spot limitations to be addressed by future
developments.

Structure-based algorithms for protein site comparison emerged in the 1970s, a decade
marked by the establishment of the Protein Data Bank (PDB) [7] and the deposit of a
few structures. Initially, efforts were made to compare protein 3D structural motifs inde-
pendently of sequence order and gaps. Computer vision approaches [8] were applied in
structural biology for similar substructure identification even in the absence of sequence
homology via rigid body alignments. Protein functions could be predicted from a database
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of known 3D templates, by querying or inferring protein active sites [9]. Beyond the func-
tional annotations, cavity alignment and comparison rapidly became promising for the
rational design of proteins and ligands, since similar 3D arrangements of surface motifs
may be involved in similar molecular recognition events [10].

The path from the earlier to the current site comparison methods involved several
implementations. It was common for the user to define researched features (e.g., set of
atom/residues distances defining a motif: catalytic triads, similar ligands) from prior
knowledge to initiate the search [11]. The subsequent advantages are a better control of
the comparison, an easier selection of relevant matches, and the reliability of the solutions.
Progressively, methods allowing for the automatic identification of pockets [12–16] and of
relevant matched patterns opened the doors to the analysis of the relationships between
evolutionally and structurally remote members of an entire database, without any a priori
judgment [17–21]. Such predictions led to unexpected findings with implications for drug
design [22,23]. Screening large databases requires effective computing time. Together with
the progress of computing technologies, fast methods were introduced, but often at the cost
of interpretability [24–26].

The repertoire of possible comparison algorithms is tailored to the representation made
of the pocket [27]. Pocket representation is a way to provide structured information to the
algorithm for exploration. Once delimited in the protein, a pocket can be modeled as a
list of amino acids, graphs, or unconnected pseudo atoms, among other possibilities.
The geometrical constraints of alpha carbon tuples were extensively used to identify
equivalenced areas [28–30]. Other cavity descriptors further encode the chemical properties
of atoms or residues, hence reducing redundancy in the possible matches [17,31,32]. The
intricacy of the representation lays in finding a good balance between fuzziness (with a risk
of false positive matches) and exhaustiveness (with a risk of missing remote similarities).
In any case, similarity can only be properly reported with a fair scoring function. The
scoring scheme aims at quantifying how two pockets resemble or differ. Often, a score
threshold is applied in screening campaigns for decision making. How to assign the value
of that threshold and assess the significance of that similarity is a genuine question raised
by earlier studies [24,33,34].

In practice, the variability of the pocketome [35] in terms of size, solvent accessibil-
ity, and flexibility constitutes an obstacle to the performance of binding site comparison
methods, as it is for other structure-based approaches [36]. It is perceived that comparing
subpockets instead of entire cavities might better handle the conformational variations,
typically induced by ligand binding. Noteworthy, the ability to detect local and global
similarities is suitable for different purposes. As the reader will notice, different parameters
entail the success of protein cavity comparisons, as discussed by previous articles [23,37–39].
In this review, we will provide a most recent and broad overview of all stages involved
in pocket comparison, from the prediction of ligand binding sites to the evaluation and
prospective applications in drug design.

2. Pocket Detection and Druggability Estimate

The identification of potential interaction sites is crucial to structure-based approaches
and constitutes the very first step of binding site comparison. Contact surfaces exhibit
different geometric and physicochemical characteristics according to the nature of the
binding partner (proteins, peptides, nucleic acids, small molecules, and transition metals).
For example, small molecule interaction sites are buried clefts, while protein–protein
interaction interfaces are rather flat and hydrophobic [40]. Although the available methods
for binding site detection covers the different applications above, the majority relates to
small molecule pocket identification as a testimony of efforts to structure-based drug design
of small chemical entities in recent decades. The accessibility to binding site identification is
possible via standalone tools [16], websites [41], or databases of precomputed sites [35,42].

The methods can be classified into three levels: (i) the genomic or 3D structure of the
input, (ii) the dependency to bound ligands, and (iii) the class of the algorithm (Figure 1).
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Template or sequence-based methods such as ConSeq [43] identifies functionally important
residues in protein sequences by searching for evolutionary relations with other proteins.
Another approach is 3DLigandSite, which takes a protein sequence as input, although it
relies on homology models or de novo structure predictions [41]. Structure-based pocket
identification uses only the 3D coordinates of the structures as input and benefits from the
augmentation of structural data [7].
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Figure 1. Classification of binding site detection methods.

Ligand-centric methods are restricted to protein–ligand complexes and is a site de-
limitation rather than a prediction. Noticeably, the analysis of crystallization additives
binding sites might suggest potential allosteric pockets [44,45]. Typically, a site is defined
as all residues within a certain distance cutoff to the partner’s heavy atoms, ca. 6 Å for
protein–small molecule complexes. Alternatively, the set of residues can be restricted to
those properly oriented toward the ligand, with the particularity that the distance cutoff
varies according to the interaction type. These approaches are available through integrated
environments, making it possible to manipulate protein structure coordinates and interac-
tions such as Molecular Operating Environment (Chemical Computing Group, Montreal,
Canada), or through independent tools for parsing protein 3D structure data [46].

Ligand-free approaches can operate on a larger range of structures, enabling the dis-
covery of unprecedented sites. According to their search algorithm, they can be classified
as geometric, energetic, or data-driven (Table 1). At first glance, all geometric methods
aim at identifying sufficiently buried zones unoccupied by protein atoms, but they differ
in their strategies to search for these areas. Grid-based methods place the protein into a
cartesian grid and identify grid cells likely to be in a cleft by analyzing their neighbor-
hood [13,14,47–58]. POCKET [13] and LIGSITE [12], two of the earliest methods, keep
cells that correspond to a ‘protein-solvent-protein’ event by scanning in three and seven
directions, respectively. VolSite annotates cavity points by pharmacophoric properties,
complementary to that of the protein microenvironment [47]. Such algorithms are sensitive
to grid resolution and orientation but are powerful to detect cavities of different sizes
and curvatures.
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Table 1. Common structure-based methods to predict ligand binding pocket in proteins.

Category Search Approach Methods

Geometric Grid
CAVER [51], CAVIAR [49], DoGSite [14], ghecom [57], KVFinder [48], LIGSITE [12],

LIGSITEcsc [53], McVol [58], POCKET [13], PocketDepth [55], PocketPicker [54]
VICE [56], VOIDOO [52], VOLSITE [47]

Alpha-shape APROPOS [59], CAST [6], CASTp [60], Fpocket [16],

Spherical probes DEPTH [61], HOLE [62], HOLLOW [63], PHECOM [57], PASS [64], Roll [65],
SURFNET [66], SURFNET-ConSurf [67], Xie and Bourne [33]

Other MSPocket [68], SplitPocket [69]

Energetic Grid AutoLigand [70], DrugSite [71], FTSite [72], PocketFinder [73], Q-SiteFinder [74],
SITEHOUND [75], SiteMap [76], pocket-finder [77], GRID [78]

Spherical probes dPredGB [79], Morita et al. [80]

Other Gaussian Network Model [81]

Data-driven Machine learning GRaSP [82], MCSVMBs [83], P2Rank [15], PRANK [84], SCREEN [85]

Deep learning PoinSite [86], DeepPocket [87], PUResNet [88], DeepSurf [89], BiteNet [90], Jiang
et al. [91], DeepSite [92], ISMBLab-LIG [91]

Contrarily, other methods process the protein coordinates directly and are not affected
by the grid initialization phenomena. Based on the alpha-shape concept introduced by
Edelsbrunner et al. [93], they circumvent protein cavities by connecting adequate adjacent
Delaunay triangles via the ‘discrete flow’ method [6,59,60,69], or by clustering alpha spheres
to satisfy pocket descriptors [16]. Alternative purely geometric approaches fill or coat the
protein with spherical probes to delimit cavity void [61–67,94,95]. Finally, other concepts,
such as monitoring the direction of surface normal vectors, were implemented [68].

The second category of ligand-free methods estimate favorable surfaces for protein–ligand
contacts by calculating the potential energy of probes at different positions [78]. Generally,
the Lennard-Jones potentials are used with hydrophobic probes. The nature and number of
probes vary from a simple carbon probe in DrugSite [71] to 16 different ones in FTSite [72]. The
potentials are either mapped to grid positions [70–78] or to probe the protein surface [79,80].
Evidently, the outputs of energy-based methods are influenced by the chosen force field.

The final class of methods uses supervised models, trained on the features of well-
characterized ligand binding sites. Hence, they differ in the features’ representation,
training models, set of parameters, and datasets. P2RANK [84] is one of the examples based
on classical machine learning models. The protein solvent-exposed atoms are processed
into a topological and physicochemical feature vector which serves as input to a random
forest classifier. Recently, many deep learning methods [86–92], majorly based on 3D-
convolutional neural networks (CNNs) were introduced. CNNs have shown to be very
powerful in image recognition problems [96] and were thus directly applied to protein
binding sites represented as voxels with atomic attributes, while keeping the architecture
of the CNNs previously used for other purposes. Another possibility to represent binding
sites is used in PointSite [86], which addresses point clouds segmentation using sparse
convolution. While these methods need to be challenged by prospective usages, recent
advances in 3D point cloud deep learning [97] offer some wide perspectives for this type
of problem.

Altogether, these methods have been evaluated on their performance to accurately pre-
dict binding pockets by comparing predictions on unbound proteins to ground truth ligand
locations in their corresponding bound structures. Not only is the accuracy of the location
analyzed, but also the delimitation or overlap with respect to the ligand [14]. The detected
pockets might be too large or too small where a clustering is required. Thus, post-processing
data generated by various tools may be useful [98]. Cleverly, meta-methods thrive to find
consensus from different algorithms to increase the chances of correct predictions [99,100].
However, consensus might not always yield the right solution.
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Indeed, all identified clefts do not necessarily correspond to the ability to accommo-
date a drug-like ligand (druggability). The concept of structural druggability [101] arose
from observing the characteristics of pockets bound to pharmacological ligands: an average
volume between 200 and 800 Å3, a good balance of hydrophobic and polar atoms enabling
some binding specificity, and sufficient buriedness. A few methods were developed to
predict target druggability [14,47,102–106]. Consistently, the topological and physicochemi-
cal characteristics of the pocket sites are encoded into descriptors and trained on curated
datasets to generate classification models (e.g., support vector machines, random forest,
linear regression). Since pocket druggability does not guarantee that the bound ligand will
also be druggable, the term may be replaced by ligand-ability [107] or bind-ability [104].
For more information, we refer the reader to a recent review [108]. Interestingly, some of the
previously described methods have implemented both a pocket detection and a rule-based
druggability prediction [14,16,47,76], thereby enabling a straightforward selection of the
most interesting pockets, notably for supramolecular assemblies [40].

3. Comparing Pockets: A Multi-Step Procedure

The methods that compare protein cavities operate in three steps: (i) describing the
cavity with a suitable representation, (ii) comparing these representations, (iii) scoring the
proposed comparison. Hence, successful results reside in a coordinated performance of
each of these tasks. Yet, cavity representation, which is the first step of the procedure, is
crucial as it influences the later steps. Generally, a poor representation in which relevant
characteristics are missing cannot be compensated by the most efficient comparison or
scoring algorithm. State-of-the art methods to compare protein cavities are summarized
in Table 2. In the following sections, we will discuss the different approaches to achieve
this end.

Table 2. Methods to compare protein cavities.

Year Name Detection Principle Scoring Evaluation Datasets

2002 CavBase [17] LIGSITE [12] Clique detection in
graphs of pseudoatoms

Overlap of surface grid
points, RMSD

Cofactor sites, kinases,
serine proteases

2002 eF-site [109] Ligand
Databases

Clique detection in
graph of surface normal
vectors and electrostatic

potentials

Normalized and
weighed contributions

of vectors angles,
potentials, distances

Phosphate sites,
antibodies,

PROSITE classes

2003 SuMo [110] Ligand Incremental match of
triplets of pseudocenters

Count of matches,
RMSD, composite of

Euclidean and density
distances

Protease catalytic sites,
lectines

2004 SiteEngine [18] Ligand Match of triplets of
points by hashing

Hierarchical scoring:
count of matches,
RMSD, overlap of

patches, local shape

Cofactors, steroids,
fatty acid sites,

catalytic triad in
proteases

2004 SitesBase [111] Ligand Match of triplets
of points

Count of matches,
RMSD

Cofactors,
phosphate sites

2007 Ramensky
et al. [112] Ligand Clique detection in

graph of atoms
Dice similarity of

matches Diverse

2008 Binkowski
et al. [113]

CAST [6]
Ligand

Comparison of pairwise
distance histograms

Kolmogorov–Smirnov
divergence, overlap of

volume, RMSD

Cofactor sites,
HIV proteases

2008 PocketMatch [19] Ligand Comparison of sorted
pairwise distances

Normalized count
of matches Diverse, SCOP classes
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Table 2. Cont.

Year Name Detection Principle Scoring Evaluation Datasets

2008 SiteAlign [20] Ligand Alignment of
polyhedron fingerprints

Normalized distances of
fingerprints

Proteases, kinases,
estrogen receptors,

GPCRs

2008 SOIPPA [114] Ligand
Clique detection in

graphs of
atoms

Composite weighted by
frequencies, PSSM,

distances

Cofactor sites,
SCOP classes

2009 SMAP [33] Ligand
Clique detection in

graphs of
atoms

Gaussian densities from
distances, angles of

normal vectors,
BLOSSUM weights

Cofactor sites

2010 BSSF [25] PASS [64]
Comparison of

fingerprints of binned
distances and properties

Canberra distances of
fingerprints

Diverse, synthetic
data, SCOP classes

2010 Feldman et al. [30] Ligand Match of subsets of
Cα atoms

Probabilistic score from
distances between

matches
Diverse, kinases

2010 FuzCav [24] Ligand Fingerprints of triplets
of atom features

Maximal proportion
of matches

Diverse, functional
groups,

8 difficult cases

2010 Milletti et al. [115] Ligand

Comparison of 3
concentric spheres

fingerprints encoding
neighborhood for each

point, solving linear
assignment

Composite of fingerprint
distances and RMSD ATP sites, kinases

2010 P.A.R.I.S
(sup-CK) [116] Ligand

Initial alignment
optimized by gradient
ascent to maximize a

Gaussian kernel

Gaussian kernel Cofactor sites

2010 ProBiS [31] Ligand
Maximum clique

detection in graphs of
surface atoms

Count of Matches,
RMSD, angle between

vectors

Cofactor/metal sites,
protein–protein

interfaces,
protein–DNA

complexes

2011 PocketAlign [117] Ligand
Initial pairs from sorted
lists of atom distances,

then extend

Count of matches,
RMSD

Cofactor sites,
SCOP classes

2011 PocketFEATURE
[118] Ligand

Comparison of 7
concentric spheres

fingerprints encoding
neighborhood for each

microenvironment

Normalized Tanimoto
similarity of fingerprints Kinases

2012 KRIPO [21] Ligand Fingerprints of triplets
of pharmacophore

Modified Tanimoto of
fingerprints

Diverse, fragments
subpockets, search of

bioisosteric
substructures

2012 Patch-Surfer [119] Ligand
LIGSITE [12]

Comparison of 3D
Zernike of

surface patches solving a
weighted bipartite

matching

Composite of surface
match distances and size

differences
Cofactor sites
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Table 2. Cont.

Year Name Detection Principle Scoring Evaluation Datasets

2012 Shaper [47] VolSite [47]
Comparison of cloud of

points by Gaussian
shapes matching

Tanimoto, Tversky
of matches

Diverse, GPCRs,
proteases

2012 TIPSA [120] Ligand

Match of quadruplets of
points,

iterative refinement by
Hungarian algorithm

Tanimoto of matches,
overlap of volume,
normalized RMSD

Cofactor sites

2013 Apoc [28]
Ligand

CAVITATOR [28],
LIGSITE [12]

Seed alignment by
comparing secondary

structures, optimized by
solving linear

assignment problem

Composite of vector
orientation, distance,

properties

Diverse, similar ligand
recognition sites

2013 TrixP [121] DoGSite [122]

Search for common
shape and triplets of

points by bitmap
indexing

Composite of matches
count, angle between
vectors, mismatches

penalty

Diverse, 8 difficult
cases, protease,

estrogen receptor, HIV
reverse transcriptase

2014 eMatchSite [29] eFindSite [123]
Template-based

alignment optimized by
Hungarian algorithm

Machine learning score:
RMSD, residue,

properties
Cofactors, steroid sites

2014 RAPMAD [26] LIGSITE [12]

Comparison of 14
pairwise

distance histograms, one
for each property

Jensen–Shannon
divergence of

histograms

Cofactor sites,
proteases, diverse

2015 IsoMIF [124] GetCleft [125]
Clique detection in

graphs of
interaction grid points

Tanimoto of descriptors
of matched points Cofactors, steroid sites

2016 G-LoSA [126] Ligand
Clique detection in

graphs of
atoms

Feature-weighted count
of matches

Diverse, Ca+ sites,
similar ligands

recognition sites,
protein–protein

interfaces

2016 SiteHopper [127] Ligand
Comparison of surface

atoms by Gaussian
shapes matching

Weighted combination
of shape and color

Tanimoto

Diverse using
binding affinities

2019 DeepDrug3D [128] Ligand Convolutional neural
network model Binary classification Cofactors, steroids

sites, proteases

2020 DeeplyTough [32] Fpocket [16]
Ligand

Convolutional neural
network model Binary classification

Cofactor sites, diverse
and using binding

affinities

2020 ProCare [129] VolSite [47]

Match of randomly
sampled quadruplets

refined by iterative
closest point

Tversky of matched
pharmacophoric

properties

Diverse, using
functional annotation,
fragments subpockets,
search of bioisosteric

structures

2021 PocketShape [130] Ligand
Initial alignment

optimized by Hungarian
algorithm

Composite of matches,
orientation of residues

Diverse SCOP classes,
kinases

2021 Site2Vec [131] Ligand
Random forest model on
autoencoder-generated

descriptors
Binary classification Cofactors, steroid sites,

diverse
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3.1. Pocket Representation

Once the pockets are delimited, the features are selected by considering different
aspects. This step aims at focusing on the relevant characteristics that explain ligand recog-
nition, while discarding unnecessary information. Our brain performs the same exercise
on everyday life’s objects, for example, if we are asked to compare two cars, we might
decompose the information into major aspects such as the brand, design, color, motor, etc.
Interestingly, different people will focus on different combinations of these aspects, result-
ing in different decision making. For pocket modeling, there is the general knowledge that
the attributes (size, physicochemical properties, flexibility) of residues flanking the site and
their relative 3D location explain the specific recognition of ligands [17,27,132]. Therefore,
pocket comparison methods approximate these residues into various representations which
differ at three levels: (i) the discretization of the residues, (ii) the viewpoint, and (iii) the
chemical features.

First, possible representations (Table 3), from coarse-grained to more detailed, can be a
representative atom (typically the Cα or Cβ atom) describing an entire residue (e.g., Apoc), a
group of pseudocenters or vectors associated with residue fragments (e.g., CavBase), a cloud
of atoms (e.g., VolSite), or 3D voxels (e.g., DeepSite). The resolution of the representation
determines how local the subsequent comparison can be. For example, the rigid matching
of atoms which are 7 Å apart in a query pocket can only be associated with similarly spaced
atoms in the reference pocket, therefore excluding a pertinent association of smaller areas.
Resolution also influences sensitivity to chemical and coordinate variations (Figure 2).
Coarse-grained representations are less sensitive to variations in atomic coordinates but
are more perceptive of changes in chemical properties such as single residue mutations.
They offer a better signal-to-noise ratio at the cost of information. In grid-based approaches,
the grid resolution (often 0.5 to 1.5 Å) is adjusted to capture the shape of the site, while
compromising between precision and computing [47,124]. Although small changes of
residues are reflected in detailed representations, they can be perceived to a lesser extent
since drowned in many other information elements. The detection of such details is highly
influenced by the assignment of chemical features and the performance of the search
algorithm. Noticeably, some methods have adopted a mix representation scheme, wherein
gross representations are used for a faster search and finer representations are involved in
the scoring [17].

Secondly, most methods adopt the protein perspective by considering atoms or pseu-
docenters at the protein surface (e.g., FuzCav, SMAP). A few stand out by projecting these
protein patterns into the ligand space, wherein polyhedron, voxels, or points are annotated
with the properties of nearest or well-oriented protein features (e.g., IsoMIF, SiteAlign)
(Table 3). Such discretization aims at offering a good balance between information com-
pleteness while handling variations in atomic coordinates and features. However, it is
important to recall that grid-based representations are affected by the centroid location and
axes orientation during the grid initialization. As a result, the distribution of feature types
might change (a protein feature might move in adjacent voxels or not be represented at all),
particularly when a voxel is associated with only one feature at a time. The same represen-
tation (e.g., cloud of points) can be applied to either key protein atoms [116] or grid points
delimiting the accessible cavity space [129], thereby offering the possibility to mirror an
imaginary ligand viewpoint and providing an alternative comparison approach (Figure 3).
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Table 3. Discretization of the residues to represent a protein cavity.

Representation Illustration a Methods

Single points
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Finally, besides the two aspects described above, the methods differ in their definition
of chemical and geometric features. For example, Binkowski et al. do not consider the
chemical type of atoms but showed that the relative position of the surface atoms describing
the shape of the pocket already contains some discriminative information [113]. However,
shape information alone is insufficient; hence, it is not surprising that almost all the state-of-
the-art site comparison methods annotate surface coordinate atoms with pharmacophoric
features to improve the discrimination between redundant areas. In coarse-grained repre-
sentations, Cα/Cβ atoms are annotated according to the chemical groups of their residues.
For instance, APoc defined eight exclusive chemical groups, allowing for a residue to be-
long to only one [28]. Searching for the identity of chemical features between the query and
reference pockets with such representations does not account for the interchanging role that
fragments in different amino acids may have. For example, the hydroxyl group of serine
and tyrosine can be a hydrogen bond donor or acceptor, as tyrosine additionally displays
an aromatic feature; yet serine and tyrosine belong to different classes. To correct this effect,
residues can be assigned multiple classes (e.g., SiteAlign). Alternatively, single or groups
of atoms defining pseudocenters are annotated according to their interaction capacities
(e.g., a histidine side chain is represented by a hydrogen-bond donor–acceptor feature and
aromatic pseudocenters in CavBase). Commonly, five to eight pharmacophoric features
are defined (KRIPO, SiteEngine, VolSite), as well as up to more than 40 atom types (e.g.,
PocketFEATURE). Other possible chemical attributes are partial charges used in P.A.R.I.S
(sup-CK) or SiteEngine scoring, atomic density (SuMo), or atom types (e.g., SitesBase). The
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definition of many feature types might improve the description of the site with precision but
might at the same time hinder remote similarity detection by narrowing the applicability
domain of the method. Aside from the chemical features, the geometrical patterns are
sometimes considered: CavBase and RAPMAD indicate the directionality of polar features
by vectors, SuMo considers the directionality of the patterns toward the cavity by scalar
triple product, SOIPPA assigns normal vectors to local surfaces, TrixP and Sitelign consider
distances to fixed points.

In a nutshell, there are various ways to represent a protein cavity. Challenges reside
in finding a good balance between comprehensive representation of features to ensure
reliability and loose representation making it possible to detect remote similarities. While
the absence of pocket attributes cannot be recovered at the later comparison step, too many
attributes may constitute difficulties for the search algorithm in separating the signal from
the noise.

3.2. Similarity Search

Following the selection of features characterizing the cavities, similarity is estimated
by algorithms that search for common patterns shared between two sites. First, the repre-
sentations of the protein cavities are converted or organized into comparable and computer-
friendly objects that can be processed automatically. There are a variety of search algorithms
to this end, which can be categorized according to their inputs, procedure, and visual inter-
pretability (Figure 4).
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The first category of algorithms searches for geometric (e.g., pairwise distances, angles,
shape) and chemical (identical or compatible types) constraints to match. It is not safe to
expect a perfect match, given the errors in 3D structure resolution, the flexibility nature
of proteins, and the aim to find unobvious similarities. Therefore, a certain margin of
geometric errors is always tolerated. PocketMatch compares set of distances belonging
to 90 combinations of atom types and properties to establish correspondences between
two pockets and keeps the solution maximizing the number of correspondences [19]. Global
alignment methods (P.A.R.I.S, SiteHopper, Shaper) try to maximize the overlap between
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two cavities. A seed alignment is initialized, for example, by superposing the centroids
or principal axes of the two sites, which are then optimized [47,116,133]. SiteHopper and
Shaper rely on the OpenEye’s ROCS (OpenEye Scientific Software, Santa Fe, NM, USA),
wherein atoms/points are represented by smooth Gaussians to enable fuzzy shape com-
parisons [47,127]. A different approach for global optimization is to establish seed corre-
spondences. APoc compares local protein fragments [28], Milletti et al. associate points
based on their circular fingerprint similarity [115], eMatchSite assigns seven residue-level
scores at selected Cα atoms [29], Patch-Surfer compares the patch surface properties by 3D
functions [119]. The next alignment is solved by the Hungarian algorithm or other combi-
natorial optimization algorithms [8,22,102,115]. PocketAlign uses a similar approach using
BLOSSUM62 weights when generating local seed alignments, which are later extended to
the full structures [117]. Alternatively, some methods partition the pocket by considering a
few points each time. Given that at least three points are necessary to superpose two objects
without ambiguity, those methods enumerate triplets or quadruplets of feature points in the
query to iteratively search for equivalent cliques in the target [17,30,110,111,120,121,129].
The formation of the n-tuples can be customized to avoid promiscuous sets. In TrixP,
triangles solely made of hydrophobic features are not considered [121]. A match can signify
a simple correspondence of identical chemical types and pairwise distances (SiteEngine,
TIPSA) or of additional properties such as vector angles, local shape (ProCare, TrixP).
ProCare relies on a 41-bin histogram describing each point, accounting for both shape and
pharmacophoric features [129]. The alignment is performed in two steps, first by finding
equivalent pocket points using a random sample consensus algorithm [134], then iteratively
refining the preliminary alignment by the iterative closest point (ICP) method [135]. Align-
ing all possible combinations is costly in time, hence SiteEngine and TrixP, employ hashing
and bitmap indexing, respectively, allowing for a ‘search IN’ for the faster identification of
similar patterns.

In the second category, selected points form the nodes of a graph. According to the
cavity representation, each node is annotated by a property and the edges by their lengths.
Comparing two cavities results in comparing two graphs to extract the maximum common
subgraphs. To achieve this end, a product graph is built by associating similar nodes
(property comparison) and edges of almost equal distances, tolerating a certain deviation.
Cliques are identified in this association graph to derive pairs of equivalent points that
can be used to superpose the two cavities. CavBase, G-LoSA, ProBiS, etc. (Figure 4) are
based on this principle. Differences between methods arise from the graph construction
(minimal and maximal distances to consider adjacent nodes), distance tolerances, and the
definition of a property match (identity or compatibility). For example, G-LoSA explores
three different distance deviations (1.5, 2.0 and 2.5 Å) and further evaluates the alignment
of local triangles within each clique of at least four nodes [126]. Clique detection is com-
putationally expensive, particularly with dense graphs (e.g., 0.5 Å grid, [124]). Therefore,
it requires practically efficient solutions such as the Bron–Kerbosch algorithm [136] and
improved variants [137].

Methods in the third category generally adopt a global vision of the protein cav-
ity. They consider a pocket as a fixed-length fingerprint or histogram, and comparing
two pockets is amounts to calculating the similarity or distances between their finger-
prints/histograms. BSSF, FuzCav, and KRIPO compute couples or triplets of pharma-
cophoric features separated by binned distances [21,24,25]. While the two former count
the number of occurrences of each combination, bits are activated in KRIPO when a com-
bination occurs. Then, KRIPO fuzzifies its fingerprints to account for the neighborhood
phenomena [21]. SiteAlign also compares fingerprints but, contrarily to the other methods,
the fingerprint of the query pocket is iteratively generated, as it derives from properties of
the cavity projected on a rotated/translated 80-face polyhedron [20]. Since the binding site
is discretized and a finite number of geometric transformations are sampled, the perfor-
mance of the search depends on the resolution of the steps, at the cost of computing time.
Finally, Binkowski et al. [113] and RAPMAD [26] compare the distributions of pairwise
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distances between the pocket features. RAPMAD generates 14 histograms, one for each
of the seven pharmacophoric features, considering two centroids. The idea behind these
implementations is that similar binding sites exhibit similar sets of distances. However,
these methods may suffer from matching redundant distances that do not superpose ge-
ometrically. The advantage of fingerprints/histograms is to enable a faster comparison,
without the computationally expensive alignment. Still, KRIPO and Binkowski et al. gener-
ate an alignment independently of the comparison procedure for visual inspections, with
SiteAlign as part of its search procedure.

Finally, the recent regain of interest for deep neural networks on chemical information
favored the emergence of data-driven methods for binding site comparison. Typically,
binary classification models are created to discriminate between similar and dissimilar
pairs of pockets. Site2Vec transforms the features representing a cavity into a fixed-length
vector that can feed a random forest classifier [131]. DeepSite, DeepDrug3D, and Deeply-
Tough discretize the 3D space of the pocket as voxels, and logically train a convolutional
neural network (CNN) binary classification model [32,92,128]. Besides the dependency on
sufficiently diverse training datasets for a generalized model, these approaches suffer from
the interpretability of the predictions. Interestingly, DeepDrug3D exploits the activation
map to highlight areas that largely contribute to the classification.

All the above summarized methods use the protein information only for comparison.
Provided that a pocket is delimited, they have a larger scope that may reach target deorpha-
nization [36]. When bound ligands are available, comparing the protein–ligand interactions
can be an efficient alternative, particularly when the goal is to reproduce existing binding
modes. Likewise, dedicated methods aimed at aligning interaction patterns are based on
graph alignment or fingerprint matching [138].

3.3. Local Comparison of Protein Cavities

Looking for an average match that maximizes the overlap between entire cavities is not
necessarily the right solution to similarity estimation. Local comparison is a popular term,
often used to differentiate full protein structural comparison from protein site comparison.
Here, we refer to the truly local comparison of protein pockets (Figure 5), i.e., subpockets of
approximately 3 to 4 Å radius (for reference, approximately the shortest distance between
a chain of four atoms connected by simple bonds).
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Enabling local similarity detection is relevant for drug design applications since a few
similar subpockets between two targets may suffice for a same ligand to bind. This obser-
vation was applied to explain the binding of cyclooxygenase type 2 inhibitors to carbonic
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anhydrase [22]. Local comparison is notably suitable to handle cases of protein/ligand
conformational change upon ligand binding [115].

Logically, methods that can operate locally have implemented detailed site representa-
tion and/or adequate algorithms that partition the cavity during the search. In G-LoSA,
global matches are decomposed into local subsites to generate other solutions [139]. Local
comparison can also be achieved by providing subpockets as input into the search algo-
rithm. KRIPO [21] and ProCare [129] make it possible to compare subpockets delimited by
fragmented ligands. While the search algorithms are crucial for identifying zones of similar
patterns in two pockets, how these similarities are quantified is equally important, since
generalizing the scoring over the full pockets might hinder any local similarity as well.
By analogy with ligand versus fragment promiscuity, comparing smaller cavity regions is
likely to be more redundant at the proteome scale than comparing full cavities, enabling to
catch similarities between remote proteins but at the same time yielding possible unspecific
matches that need to be discarded by robust scoring functions to quantify pocket similarity.

3.4. Scoring Functions

Scoring functions serve two purposes: (i) guiding the alignment by discarding unreal-
istic solutions and prioritizing the best matches, (ii) quantifying the estimated similarity
between the pair of pockets to consider. It is not uncommon to use distinct scoring func-
tions for the alignment search and its final quantification [18]. Consequently, a method
may implement an accurate representation and efficient search algorithm but may fail to
accurately predict similarity levels if the scoring function is incorrectly calibrated. Some
analogy can be made with the problem of pose sampling and ranking in docking, leading
to rescoring efforts.

Aspects to consider when defining a scoring function for binding site comparison
are (i) the discriminative potential, (ii) the minimal and maximal boundaries, (iii) the
broadness, (iv) the sensitivity to the size of the cavities, and (v) the interpretability. The
very simple and intuitive scoring scheme counts the number of common patterns between
two pockets (Brakoulias et al.) [111]. However, bigger pockets may tend to score higher
as the chances for a match increase. To avoid this bias, methods account for the size
of the pockets using metrics such as the proportion of aligned features with respect to
the query/target size (FuzCav, PocketMatch), Tanimoto indices (IsoMIF, KRIPO, TIPSA,
Shaper), and Tversky indices (ProCare, Shaper). SiteHopper adopts a linear combination of
Tanimoto measures for shape and chemical features matching. Almost all alignment-based
geometric matching methods aim at minimizing the root mean square deviation (RMSD)
of superposition candidates or with respect to a cutoff (Brakoulias et al., SuMo, etc.). In
some cases, the RMSD is also a composite of the final score (Milletti et al., PocketAlign).
In the same way, the CavBase R2 score accounts for the RMSD of pseudocenters when
scoring the overlap of the surface grid points. Implementing successive scores (Binkowski
et al., ProBiS) allows the user to apply a custom filter according to the desired application
or suggests a hierarchical scoring. For instance, SiteEngine proposes a workflow wherein
a gross evaluation makes it possible to rapidly filter out bad solutions before applying
a finer rescoring on promising matches. Instead of reporting similarities, some methods
measure the distances between pockets (SiteAlign) instead—the lower, the better. BSSF and
RAPMAD, which compare histograms, respectively report the Kolmogorov–Smirnov and
the Jensen-Shannon divergences. Scoring functions can be more complex, often at the cost
of interpretability (Feldman et al., eMatchSite, P.A.R.I.S).

Weights are used to give more or less importance to different variables (types of fea-
tures, geometric patterns) but their assignment is at best subjective [119,121,139], intuitive
such as inverse of feature frequency, or adapted from sequence alignment methods (BLOS-
SUM, PSSM) [114,117,140]. Proportioning penalties of mismatches with respect to the
positive contributions of the matches (e.g., TrixP) is tricky and may ameliorate or worsen
the discrimination performance in context-dependent noisy representations. In fingerprint
comparisons, bins are populated with counts or integer descriptors with variable ranges.
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The descriptors are normalized [20] or the scores are corrected to account for the increase
in activated bits with respect to the size of the cavity [21]. Finally, the commutativity of the
score should be regarded to ensure a consistent output whatever the reference/query order.

A few studies [30,47,129,141] have assessed the significance (Z-score, p-values) of
the scoring function by analyzing random distributions or robustness to variations in the
cavities (simulated data, molecular dynamic simulations). While these studies offer a
certain overview on possible scoring thresholds in screening settings, we draw attention to
potential bias in setting up calibration datasets.

4. Retrospective Evaluations and Datasets

To demonstrate their applicability, the methods for comparing protein binding sites
have been evaluated for their ability to (i) discriminate between similar and dissimilar
binding sites (classification), (ii) retrieve similar pairs seeded in decoys (enrichment),
and (iii) cluster proteins belonging to the same families according to other classifications
(e.g., SCOP, functional annotations). The availability of structural data impacts the design
of the evaluation datasets.

As for any benchmarking study, the quality of the dataset is instrumental to the re-
liability of the conclusions. Ligand-based and structure-based virtual screening benefit
from well-established standards and datasets [142,143]. Predicting the binding affinity
of molecules to a target can be directly verified by experimental measures in many cir-
cumstances. Contrarily, pocket similarity cannot be measured experimentally. Instead,
similarity prediction suggests hypotheses such as the recognition of similar ligands or the
catalysis of the same reaction, which are then confronted with in vitro experiments. What
is conveyed here is that there is not a straight line between predictions and verifications
since ligand recognition involves other parameters likely not evaluated by binding site
comparison methods, such as the pocket flexibility, the influence of disregarded parts of
the protein, and the ligand conformations and energetics. Indeed, the ligand may bind to
different proteins in different conformations and use different interaction patterns [144].

Nevertheless, many available datasets [24,28,116,128,144–146] have been set-up with
the assumption that similar pockets bind to identical or similar ligands, and vice versa
(Table 4). These include proteins belonging to the same family for the easiest ones, and
unrelated proteins for the most difficult datasets. In these cases, unrelated proteins are
predicted by other computational approaches (sequence alignment, global structural com-
parison). Besides the discussions above, one issue encountered with these definitions is
how to set the similarity cutoff to cluster binding sites and ligands.

Chen et al. defines similar pairs as pockets in proteins sharing at least three submicro-
molar ligands, while dissimilar pairs share at least three ligands large affinity variations
going from one target to the other [133]. However, from a medicinal chemistry perspective,
this dataset is imbalanced as the number of similar pairs largely exceeds that of dissimilar
pairs (Table 4). Still, a main concern is that structural data evidencing that the proposed
pair of binding sites effectively accommodating the same ligand are usually missing. Gener-
ally, datasets relying on ligand binding information suffer from data incompleteness [147].
Dissimilar pairs are based on limited available/accessible binding information, while all
ligands have not been tested against all targets. Otherwise, pairs labeled as ‘dissimilar’
might have fallen into the ‘similar’ classes.
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Table 4. Common datasets used in benchmarking studies for pocket comparisons.

Purpose Name Content # Positive
(# Negatives)

Pairs of cavities from dissimilar
proteins binding identical or similar

ligands (positives) and dissimilar
ligands (negatives)

APoc set [28] Diverse 38,066
(38,066)

Barelier et al. [144] Diverse 62
Homogeneous [116] Diverse 100

Kahraman [146]/extended [116] Cofactor sites 100/972
sc-PDB subset [47] Diverse 1070

TOUGH-M1 [145] Diverse 505,116
(556,810)

TOUGH-C1 [128] Nucleotides, heme, steroid sites 2218

Pairs of proteins sharing 3 high
affinity ligands (potency < 100 nM) vs.

pairs of proteins sharing 3 ligands
with divergent affinities

Vertex [133] Diverse 6598
(379)

Vertex refined [129] Diverse 338
(338)

Pairs of cavities of associated with the
same (positives) or different

(negatives) functions and fold class

sc-PDB subset [24] Diverse 769
(769)

sc-PDB subset [121] Diverse 766
(766)

sc-PDB subset [129] Diverse 383
(383)

Intra-family classification Proteases, kinases, GPCRs,
Estrogen receptors [17,20,47,115,148] -

Difficult cases Difficult cases [19,24] Diverse from experimental
validations 8

Successful applications ProSPECCTs D7 [38] Diverse from experimental
validations

115
(56,284)

Structures of identical sequences ProSPECCTs D1 [38] Diverse 13,430
(92,846)

ProSPECCTs D1.2 [38] Diverse 241
(1784)

NMR structures ProSPECCTs D2 [38] Diverse 7729
(100,512)

Artificial sets: random mutations ProSPECCTs D3 and D4 [38] Diverse 13,430
(67,150)

Given the bias in the PDB dataset towards some protein–cofactors complexes and well-
studied protein families, methods have been extensively evaluated on nucleotide-binding
pockets [146], although such test cases are quite specific or far too easy to be really predictive
of real drug discovery scenarios. Similarly, the capacity of binding site comparison tools
to cluster together binding sites originating from the same protein family (e.g., proteases,
kinases, or steroid-binding sites) have been widely studied [17,20,115,148]. Alternatively,
other datasets proposed pairs of similar and dissimilar sites based on functional annota-
tions [149] or folds [150,151]. Starting from really druggable protein–ligand complexes [152]
is often advised in the case of medicinal chemistry applications [20,24,129,138]. Due to the
increasing accuracy of deep learning methods [153,154] to predict protein structures with
near-atomic resolution, the druggable pocketome is predicted to significantly expand in the
next years [155]. Therefore, clear guidelines, as those recently proposed in ProSPECCTs [38],
are welcome. Many artificially built datasets are too easy or do not correspond to realistic
challenges. Compilations of difficult cases drawn from experimental observations are
provided, but such examples are rare [19,24,121].
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5. Prospective Applications

The best possible validation method of any binding site comparison tool is indeed to
experiment. True prospective validations (Table 5) are still rare for several reasons:

• Fragment/ligand promiscuity towards unrelated targets of known 3D structure re-
mains are a rare event [156];

• Direct drug repurposing from in silico [157] or in vitro screening strategies have not yet
yielded any success in terms of new indication approvals [158], as recently exemplified
by the COVID-19 pandemic;

• The experimental validation of putative binding site similarities is not as straightfor-
ward as testing many compounds on a single target. For every putative off-target, a
suitable assay has to be used if available, or more likely needs to be developed on
purpose. In vitro biophysical assays (e.g., NMR, thermal shift) give a direct answer of
shared ligand binding to two different targets [159,160] but do not necessarily evidence
the binding site location, by opposition to enzymatic assays [40,161–164] or binding
competitions experiments for which the binding site is usually unambiguous [165–167].
If not possible otherwise, functional and/or in vivo assays [168,169] can be used but
are more difficult to interpret since the examined function might be biased by binding
to another target.
Known success stories (Table 5) have notably enabled:

• The explanation of target-mediated side effects and guidelines to optimize the ligand
selectivity by suitable structural modifications [168,169];

• The explanation of off-target beneficial effects [165];
• The validation of cross-docking data for repurposing hypotheses [162,166];
• The confirmation of ligand 2D and 3D shape similarities [164];
• The serendipitous discovery of remote similarities across totally unrelated targets

during code benchmarking and validation [159,167].

The above-cited examples share common characteristics. First, the repurposed ligands
usually exhibit (very) weak affinities towards the secondary target, notably when the on-
and off-targets are unrelated. In all cases, the studied ligand needs to be optimized for
potency and selectivity towards the secondary target, thereby abolishing the benefits of
immediate in silico-guided drug repurposing [159–167,169]. Second, and in relation to the
first observation, the noticed pocket similarity is usually local and not global. In other
words, only the subpockets of the two targets under investigation account for the shared
ligand binding. This explains why some targets, notably those exhibiting hydrophobic
subpockets (COX-1, HIV-1 RT, PPARγ, ER-α) are frequently observed among the protein
pairs cited below (Table 5). The conservation of shared polar and apolar pocket features is
a rarer event but leads to higher affinities of the corresponding complexes [164,167].

Table 5. Examples of small molecular weight ligand-binding site comparisons relevant to medici-
nal chemistry.

Method On-Target Secondary Target Ligand Secondary Target Affinity Ref.

SOIPPA Estrogen receptor alpha SERCA Ca2+ ion
channel ATPase

Tamoxifen IC50 = 5 µM [168]

CPASS Bcl-2 apoptosis protein Bcl-xL Type III SS Needle
Protein (PrgI) Chelerythrine N/A a [160]

SOIPPA Catechol-O-
methyltransferase

Enoyl-acyl carrier
protein reductase Entacapone IC50 = 80 µM [162]

SiteAlign Pim-1 kinase Synapsin I Quercetagetin IC50 = 0.15 µM [167]

SMAP HIV-1 protease ErbB2 receptor tyrosine
kinase Nelfinavir N/A b [163]
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Table 5. Cont.

Method On-Target Secondary Target Ligand Secondary Target Affinity Ref.

PSSC Monoamine oxidase Lysine-specific
demethylase 1 Namoline IC50 = 51 µM [166]

SMAP Epidermal growth factor β-secretase Gefitinib IC50 = 20 µM [165]

KRIPO Cannabinoid type 1 receptor Adenine nucleotide
translocase 1 Ibipinabant N/A c [169]

PSIM PPAR gamma Cyclooxygenase type 1 Fenofibrate IC50 = 950 µM [161]

TM-align Receptor Tyrosine kinases Acetylcholinesterase Pazopanib
Sunitinib

IC50 = 0.93 µM
IC50 = 5.87 µM [164]

Shaper Cyclooxygenase type 1 Cinnamoylesterase Flurbiprofen IC50 = 400 µM [40]

ProCare HIV-1 reverse transcriptase TNF-α trimer Efavirenz
Delavirdine

Kd = 24 µM
Kd = 49 µM [159]

a binding evidenced by 15N-1H NMR-HSQC spectra; b 15% inhibition at 20 µM in a kinase activity assay; c 30%
Inhibition of ANT-dependent mitochondrial ADP uptake at a concentration of 100 µM.

6. Conclusions

This review presents the current state of ligand-binding site comparison applied to
small molecule drug design. As computer-aided drug design strategies, assessing the
similarity of protein pockets constitutes a unique way to analyze structural information,
as they complement other well-spread approaches. The repertoire of available methods is
diverse with respect to the detection and representation of cavities, the search algorithms,
and the scoring functions. All of these aspects must somehow be coordinated to achieve the
best performance. Still, the limitation of experimental data and biases in datasets represent
major obstacles to properly evaluate such methods. In reality, estimating protein site
similarity is always context-dependent. The importance of matched features is influenced
by the chemical context and physicochemical considerations of the targets, making it hard
to predict subtle and specific similarities from generalized principles.

One holy grail of computational chemists is to repurpose existing drugs proposed
by structure-based experiments. Although this pursuit appears at best hardly probable
due to the optimization of drugs for their on-targets [157,158], we believe that binding site
comparisons are the most useful in finding not global but local similarities, and therefore
to repurpose fragments [22] and not full ligands, provided that the selected fragments can
be grown or linked to enumerate full ligands or target-focused libraries [170].

Binding sites comparisons have demonstrated an effective contribution to medicinal
chemistry projects, from the elucidation of previous biological observations to the gen-
eration of new hypotheses supported by experimental validation. The majority of the
state-of-the-art methods are based on the superposition of the compared structures. The
alignment allows for a visual inspection and increases the possibilities of applications. Typ-
ically, pocket-bound ligands in the reference frame can be transposed into the target pocket
and serve as a starting point for ligand generation. The improvement of the algorithmic
efficiency of the methods alongside with technological progress may enable to better follow
the current growth of publicly available protein structures, determined experimentally or
predicted at near-atomic resolution [171].
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