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Abstract

The Human BioMolecular Atlas Program (HuBMAP) provides an opportunity to contextualize 

findings across cellular to organ systems levels. Constructing an atlas target is the primary 

endpoint for generalizing anatomical information across scales and populations. An initial target 

of HuBMAP is the kidney organ and arterial phase contrast-enhanced computed tomography (CT) 

provides distinctive appearance and anatomical context on the internal substructure of kidney 

organs such as renal context, medulla, and pelvicalyceal system. With the confounding effects of 

demographics and morphological characteristics of the kidney across large-scale imaging surveys, 

substantial variation is demonstrated with the internal substructure morphometry and the intensity 

contrast due to the variance of imaging protocols. Such variability increases the level of difficulty 

to localize the anatomical features of the kidney substructure in a well-defined spatial reference 

for clinical analysis. In order to stabilize the localization of kidney substructures in the context 

of this variability, we propose a high-resolution CT kidney substructure atlas template. Briefly, 

we introduce a deep learning preprocessing technique to extract the volumetric interest of the 

abdominal regions and further perform a deep supervised registration pipeline to stably adapt 

the anatomical context of the kidney internal substructure. To generate and evaluate the atlas 

template, arterial phase CT scans of 500 control subjects are de-identified and registered to the 

atlas template with a complete end-to-end pipeline. With stable registration to the abdominal 

wall and kidney organs, the internal substructure of both left and right kidneys are substantially 

localized in the high-resolution atlas space. The atlas average template successfully demonstrated 
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the contextual details of the internal structure and was applicable to generalize the morphological 

variation of internal substructure across patients.

Keywords

Computed Tomography; Kidney Substructure Atlas; Abdomen Atlas; Medical Image Registration

1. INTRODUCTION

Considerable effort has been made by the Human BioMolecular Atlas Program (HuBMAP) 

to relate molecular findings in organ anatomy across cellular to organ systems levels 

[1]. With the previous efforts of mapping the organization and molecular to profile 

cells across different tissues and organs [2], it is vitally important to contextualize the 

anatomical characteristics of organs in well-defined reference templates to act as a common 

framework for contextualizing multimodal molecular information across scales. Computed 

tomography (CT) provides an imaging platform to visualize anatomical context at organ 

system level. Contrast enhancement, is used to emphasize the structural and anatomical 

context between neighboring organs with the injection of contrast agent and guide to extract 

information from regions of interest (ROI) [3]. The kidney is the initial target of HuBMAP 

to analyze the structural anatomy across scales. Arterial phase CT provides distinctive 

representation for further analysis of the kidney substructure perspective [4]. Figure 1 

illustrates how the kidneys are localized with significant variability of size and anatomical 

regions. Additionally, the surface rendering of each internal structure demonstrates the large 

volumetric difference across patients from different demographics. It is challenging to adapt 

such variable morphological characteristics in a single well-defined reference for population 

analysis.

Here, we aim to adapt the conventional information of each kidney substructure on a single 

anatomical atlas template. Previous works have been demonstrated in building an atlas 

platform with neuroimaging [5, 6]. Multiple brain atlases are built to reveal the population 

characteristics of brains in both adults and infants [7–9]. Apart from looking into the 

anatomical characteristics, atlas reference is used as a platform to perform segmentation 

with unsupervised settings [10, 11]. Multiple atlas references are randomly picked and 

perform registration between the subject moving scans to the multiple atlases’ platform 

[12]. Segmentation predictions are computed with joint label fusion using the guidance 

of multiple registered outputs. However, there has been more limited work in generating 

atlas frameworks for the specific organs in abdominal regions [13, 14]. With the variability 

of demographics, several challenges are raised with 1) the difference of abdominal body 

shape and 2) the performance of registrations for adapting large deformation. Currently, 

registration pipelines are specifically designed for the abdominal regions to increase the 

robustness of adapting the abdominal organ-corresponding information such as DEEDS [15–

17]. With the DEEDS registration pipeline, over-deformation is demonstrated and leads 

to great variance in registering the liver and spleen regions due to the field of view 

varies across patients with different imaging protocols [13, 14]. Therefore, a stable atlas 

construction pipeline is needed to generalize the organ context in the abdomen across 
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demographics and construct a well-defined atlas target with a high successful rate of 

transferring ROI context needed for anatomical evaluation.

In this study, we construct a contrast-preserving kidney substructure atlas with a deep 

unsupervised preprocessing and registration pipeline to increase the robustness of adapting 

organ context across patients in high resolution. With a total of 500 arterial subject scans 

with healthy kidneys, we generated the average mapping of healthy kidney substructures 

across this population. Atlas target and moving subject scans are initially downsampled 

to input for the deep registration pipeline. The predicted displacement field is upsampled 

back to the atlas resolution and warped with the upsampled subject images. Registration 

performances are evaluated in both quantitative and qualitative perspectives and the kidney 

substructure context is stably transferred with contrastive and morphological characteristics 

to the atlas space.

2. METHODS

2.1 Preprocessing

With demographic variability across patients, the field of view varies significantly in 3D 

abdominal CT scans across populations and may contribute to the possibility of registration 

failure. Here, we introduce a deep learning preprocessing pipeline body part regression to 

generate anatomical information for cropping the kidney-corresponding area of interest to 

perform stable registration [18, 19]. Specifically, 2D axial slices are initially extracted from 

each scan and a prediction score is generated to identify the approximate anatomical location 

in the human body for each slice. The output value for each slice is in the range of −12 to + 

12 (arbitrary units), which specify regions from the heart to the pelvis. We defined the value 

between −4 to 3 as the kidney regions of interest and crop the volumetric scans to ensure a 

similar field of view between atlas target and subject scans.

2.2 Registration Pipeline

To adapt to the significant variation of the abdominal regions across patients, a deep network 

registration pipeline is introduced with probability dense displacement networks (PDD-Net), 

which aims to align a 3D moving image Im to the fixed image If space with an optimal 

spatial transformation learned on the extracted deep feature context [20, 21]. The complete 

overview of the registration pipeline is illustrated in Figure 2. Both preprocessed subject 

scans and atlas target are input into a small network to learn a meaningful non-linear 

mapping to align from input intensity to a dense feature context. The Obelisk approach is 

employed for the small network f to effectively capture the spatial context with significant 

deformation and a normal 5 × 5 × 5 convolution kernel is added to learn the edge feature 

for body-aligned registration [21]. After the extraction of the spatial feature context, our goal 

is to predict an optimized displacement field δ(k) ← ν that apply a vector ν to every set 

of control points k ∈ ℝ3 on a grid for non-linear transformation and additionally achieve the 

best similarity between the organ labels. With the use of conventional discrete registration 

[15] and the correlation layer in [22], we sample the context from discrete grids and compute 

a 6D tensor D representing the dissimilarities with the feature dimension z. Here, we use the 

negated mean square error across the feature dimension to generate the 6D tensor:
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D(k, v) = − 1
z z (fz If k fz Ic k v)2

(1)

As abdominal structures vary significantly across demographics, it causes over-deformation 

and the registered images to become ill-posed with non-linear registration. PDD-Net 

provides an opportunity to model the regularization constraints with diffusion regularization 

and use fast mean-field inference with two iterations only for discrete optimization [23]. It 

consists of two steps: 1) transformation with label compatible that assigns on spatial control 

points and 2) the additional average pooling layers with stride 1 for filtering message. 

Previous work demonstrated that the diffusion regularization can be generated using min-

convolutions with a lower envelope of parabolas rooted at the offset of 3D displacement 

with heights equivalent to the sum of dissimilarity terms and the previous iteration of 

mean-field inference [24]. We approximately compute the diffusion regularization for dense 

displacement with a min-pooling layer to extract the local minima in the cost tensor. 

Two average pooling layers are additionally used for smoothing the context extracted. The 

integration of min-pooling and average pooling aims to perform the regularization approach 

in multiple dimensions: 1) 3 displacement dimensions (min-convolution) and 2) 3 spatial 

dimensions (mean-field inference) for end-to-end optimization.

2.3 Deep Label Supervision for Registration

Apart from adapting the dissimilarities in intensity level, we aim to adapt the anatomical 

context of a specific region of interest (ROI) with high stability. Here, we use a 

supervised label loss term to preserve the morphological information of ROI instead of 

over-deformation. We use a SoftMax activation to compute a probability mapping with the 

regularized output over the displacement context. One-hot representations from the moving 

subject segmentations are wrapped in the corresponding spatial location with predicted 

displacements and compute the dissimilarity between wrapped subject labels and fixed target 

labels with mean square error (MSE). The predicted displacement is a 4D multi-channel 

output and the number of channels represented the displacement field on each direction (Δx, 

Δy, Δz). The final prediction is resampled to the original input resolution with tri-linear 

interpolation.

3. DATA AND EXPERIMENTS

3.1 Data and Platform

To evaluate the atlas template, abdomen CT volumetric scans from 1971 patients were 

retrieved in de-identified form from ImageVU with the approval of the Institutional Review 

Board (IRB) (IRB number: 160764). Exclusion criteria are set based on ICD-9 codes to 

include subjects with healthy kidney organs only. Out of 1971, 500 subjects are retrieved 

with the assurance of ICD-9 codes and within the age range of 18 to 50 years old. We 

limited our studies to the subjects with arterial phase CT only, as only the arterial phase 

CT provides adequate data on the distinctive anatomy of kidney substructures. Therefore, 

in a total of 500 subjects 3D volumetric CT are used to generate and evaluate the atlas 

template. For the atlas target image, a single subject volume with high resolution (0.8 × 0.8 
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× 0.8) is used with a dimension of 512 × 512 × 434. The criteria to choose data as the 

atlas template are based on the contrastive and morphological characteristics of the kidneys. 

With the use of body part regression preprocessing, both subject scans and atlas target are 

cropped to the abdominal interest only. We downsampled the subject scans and atlas target 

to an isotropic voxel resolution of 1.5mm × 1.5mm × 1.5mm and a dimension of 192 × 160 

× 256. The downsampled scans are then input into the deep registration pipeline to predict 

the displacement field for transferring the kidney substructure context to the atlas space.

3.2 Experiments

3.2.1 Registration Comparison—We performed a conventional registration algorithm 

DEnsE Displacement Sampling (DEEDS) as our baseline method and previous works 

have demonstrated that DEEDS outperformed other traditional registration tools (ANTS, 

NiftyReg) in the inter-patient 3D abdominal CT registration study. DEEDS calculate the 

image similarity between a number of random sampling voxels of each control point 

and model the diffusion regularization through a pair-wise term of the displacement 

field. Hierarchical steps are performed following with 1) DEEDS affine registration and 

2) DEEDS deformable registration. A displacement matrix is an output to provide the 

transformation information corresponding to each control point. We apply the displacement 

matrix to the subject ground truth labels and compare the transformed label with the atlas 

target label for evaluating the registration performance. The ground truth label of kidney 

substructure corresponds to the renal cortex (label: 1), medulla (label: 2), and pelvicalyceal 

system (label: 3) [4]. Dice Coefficient is used to measure the overlapping regions between 

the prediction label and ground truth labels.

Dice(P, G) = 2 P ∩ G
P + G (2)

3.2.2 Atlas Construction—Both subject scans and atlas target are input corresponding 

to the moving image and fixed image respectively. As the image inputs have to be 

downsampled to fit into the deep registration pipeline without memory outage, we aim 

to minimize the loss of the high-resolution context from the atlas target. After we output 

the predicted displacement field, we further resample the displacement field to the original 

resolution of the atlas target with tri-linear interpolation and warp the displacement field 

on upsampled subject scans. All warped upsampled scans are summed and generate the 

average map to evaluate the transition of the anatomical context across kidney substructures 

qualitatively.

3.2.3 Deep Registration Model—We initially use the pre-trained model from [20], 

which trained on 10 contrast-enhanced 3D CT scans of the VISERAL3 training dataset. 

Each scan in VISERAL3 training dataset consists of nine anatomical structures well-

annotated including 1) liver, 2) spleen, 3) pancreas, 4) gallbladder, 5) urinary bladder, 6) 

right kidney, 7) left kidney, 8) right psoas major muscle and 9) left psoas major muscle 

[25]. All images are downsampled to an isotropic voxel of 2.0mm × 2.0mm × 2.0mm 
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with dimensions of 192 × 160 × 256 for training input and no initial affine alignment is 

performed between the subject scans and fixed target scan.

4. RESULTS

To evaluate the generalizability of the atlas template on the localizing contextual information 

of kidney substructures, we first compare the single subject registration qualitatively, and 

manually visualize the quality of the registered kidney substructures. As shown in Figure 

4, the registered output from DEEDS demonstrates a fair registration quality of transferring 

both left and right kidney information. However, over-deformation is demonstrated with a 

small extent to the left kidney structure and the boundary information between the right 

kidney and liver cannot be clearly separated. With the PDD-Net registration, the context 

of the left and right kidney is comparable to the anatomical information of the kidneys 

in the atlas target. The substructure context is stably transferred to the atlas-defined space 

with limited over-deformation. We further evaluate the atlas target across all populations and 

generate the average mapping to visualize the localizing context of the kidney substructure 

in the atlas template. The average mapping generates with PDD-Net demonstrates a more 

distinctive appearance in the kidney substructures, while a certain extent of blurriness in 

the kidney substructure context is shown with DEEDS registration. The contrastive and 

morphological characteristics of the kidney substructures are transferred with stability in the 

atlas target across all populations. In terms of label-wise measure, we apply the predicted 

displacement field to the moving subject labels and compare the similarity between the 

warped labels and the atlas labels in Figure 3. Significant improvement (p < 0.001) on 

the renal cortex and pelvicalyceal system segmentation is demonstrated with PDD-Net, 

while DEEDS demonstrates a better performance on the medulla segmentation. The medulla 

segmentation with PDD-Net demonstrates a significant decrease of variance in performance 

and shows the generalizability across the hard registration case for kidneys.

Apart from looking into the image registration performance, we evaluate the ability to adapt 

the significant morphology of kidney substructures by generating 2D color correspondence 

mapping with surface rendering. Here we compute 2D cielab checkerboard for each of 

the kidney substructure labels in the corresponding space and warp the checkerboard 

to the kidney substructure rendering, as shown in Figure 5. Each color represents the 

corresponding anatomical information located in the subject/atlas space. After warping with 

the displacement field, the checkerboard pattern follows the guidance of the displacement 

field and is deformed to demonstrate the adaptation of the subject information to the atlas 

space. The checkerboard pattern stably deformed from subject space to atlas space and 

well adapted the structural characteristics of the subject-wise kidney substructure. Grids in 

the pattern have not been overly deformed in the renal cortex labels, while a significant 

deformation is demonstrated to transfer the pelvicalyceal system information due to the 

significant variation of morphology.

5. DISCUSSION AND CONCLUSION

With the qualitative and quantitative representation above, the contrastive and morphological 

context of the kidney substructures is demonstrated with stability using the deep 
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representation pipeline. The label transfer performance in the medullary regions of the 

kidney does not demonstrate significant improvement, although variance between registered 

labels is decreased in trend. As the deep registration model is trained with multi-organ 

labels, the registration aims to optimize the transformation of contextual information in 

the organ-corresponding regions, which is the complete kidney morphology, instead of 

the kidney substructures. With the opportunity of using label context in deep registration 

pipeline, we will adapt the current pre-train model to reduce the adverse effect from the 

morphological variability of other organs (such as the liver, spleen), and further fine-tune the 

model with the kidney substructure labels to optimize the kidney substructure registration. 

In this paper, we constructed a stable standard anatomical reference to localize the context 

of kidney substructure with deep network registration. The average mapping demonstrated 

the contrastive characteristics of each substructure across patients and the atlas target stably 

adapted the substructure information with the illustration of correspondence figure. We aim 

to create a minimal bias average template for healthy kidney substructures as our future 

long-term goal and analyze variability across populations.
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Figure 1: 
Significant variations in contrast intensity and morphology are demonstrated in both the 

external and internal structure of the kidney (1) yellow: renal cortex, 2) red: medulla, 

and 3) pelvicalyceal system). The asymmetric property in the kidney appearance and the 

anatomical (such as size and position) variation is shown and it is challenging to adapt a 

well-defined anatomical reference for kidney organs.
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Figure 2: 
We aim to transfer the significant variability of contrast and morphology to a healthy-

defined anatomical atlas target with linear and non-linear transformations for generalizing 

anatomical context across scales (top panel). The complete pipeline (lower panel) can 

be divided into two steps: 1) body part regression preprocessing and 2) deep supervised 

registration. We initially crop the abdominal area of interest for both atlas target and subject 

scans with the guidance of body part regression network. We downsample both volumes 

and input into a deep registration network to predict the voxel displacement across tri-planar 

perspective. We finally warp the predicted transformations to each subject scan and compute 

average map for analysis.
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Figure 3: 
This quantitative representation demonstrates the registration performance from subject 

space to the atlas target with subject label transfer. Supervised registration performs with a 

substantial improvement in the renal cortex and pelvicalyceal system segmentation, while 

the performance of the medulla is limited with decrease of variance.
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Figure 4: 
This qualitative representation demonstrates the comparison of transferring kidney 

substructure information with DEEDS and PDD-Net. The single subject is arbitrary picked 

and shows that the renal structure is comparatively over-deformed with DEEDS. From the 

average template, the contrastive and morphological context of the substructure is illustrated 

more appealing both in the boundary and the cortex anatomy with PDD-Net.
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Figure 5: 
We illustrate the correspondence of the anatomical information in between the subjects’ 

space and atlas space after performing deep registration. Yellow arrows show the 

corresponding information of both organs before and after registration, while the black 

arrows correspond to the location of the registered context in both transformed images and 

the atlas target. The atlas template demonstrates stable adaptation of renal cortex context and 

significant deformation of pelvicalyceal system morphology across subject space.
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