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Abstract: In the paper, using the video image correlation method, a study of the micro-movement
pattern of the dental implant and of a normal was performed. It is revealed that there are great
differences between these two situations. The linear displacement type of the dental implant refers
to the linear elastic modulus of bone tissue in the case of normal bite forces. It seems that the
major influencing factor regarding the type and value of implant micro-movement is defined by
the underlying bone tissue. It is to be considered that masticator force transmission inside a more
stiff and dense bone could be attenuated by the antagonist teeth parodontium, dental implant and
abutment connection type, and the elastic modulus of material of the dental crown. Because of the
elasticity of the periodontal ligament system, during the loading of the dental implant, the natural
tooth has been displaced slightly more, leaving the dental implant in an unfavorable position, having
to bear the full amount of loading forces. When comparing the relative displacements in the case of
the loaded tooth, it is shown that the dental implant has been moving almost symmetrically with
the tooth. This could mean that large amounts of forces are transmitted towards the periimplant
bone tissue, but in a more optimal, parabolic manner due to the action of the periodontal ligaments
surrounding the natural tooth.

Keywords: VIC method; dental implant; tooth; micromovements

1. Introduction

Dental implants are widely used in modern dental care, mainly for prosthetic reasons.
Their long term durability and applicability is mainly defined by the quality and quantity
of the alveolar bone, where they are inserted. For this reason, great efforts are made already
from the surgical phases, prior to implant placement for preserving, and in other cases
augmenting bone tissue to form a better substrate for the dental implant. Due to the
complexity, time consumption, and the high costs of the bone augmentation procedures,
the attention has shifted towards the more atraumatic and bone sparing techniques of
implant placement and tooth extraction. One of the newest and most innovative and
promising techniques is the use of the magnetic mallet [1]. Once the dental implant has
been osteointegrated, various types of dental prostheses are connected to their platform.
From this moment, the dental implant is exposed to the oral cavity, and loaded with
masticatory forces, the alveolar ridge slowly starts to resorb, clearly affecting the long-term
success of the dental implant.

Periimplant bone loss after osteointegration is known to be due to biologic and biome-
chanics factors, which lead to the dental implant failure [2,3].

During mastication, medium to high values of bite forces are transmitted to the
alveolar bone through the dental implant superstructure, namely the dental crown. The
basic concept of modern implantology assumes that dental implants do osteointegrate,
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and the dental implant surface gets in direct and intimate relation with the surrounding
alveolar bone tissue, without the interposition of any soft tissue. Histological periimplant
tissue differs from the normal periodontal ligaments of natural teeth. Natural teeth are
anchored inside the alveolar bone, via this pseudo-joint, transforming compressive forces
to dragging forces. The ankylotic dental implant instead compresses the bone tissue during
masticator loads. Compression of the bone is less tolerated than dragging force, which are
much physiological than compressive ones. Besides, periodontal ligament works also as
a shock absorber. The biomechanics of the periodontal ligament system was studied and
numerically modelled by means of the finite element method (FEM) [4].

Theoretically, loading the dental implant there will be impact like forces transmitted to-
wards the alveolar bone which could initiate bone resorption [5,6]. Other studies conducted
on teeth with bone resorption due to parodontal disease have shown that unfavorable
loading due to improper occlusion contributed to bone loss [7]. Another study conducted
on monkeys showed that periimplant bone loss could only have been observed when the
dental implant crown was at least higher than 180 µm compared to surrounding teeth [8].

Supposedly, the periimplant bone tissue has resisted some overloading, even when
loads were higher than the loading of the surrounding teeth. This could mean that in
some cases, periimplant bone tissue can bear overloading even in case of the missing
periodontal ligaments.

The highest compressive forces tolerated without bone resorption vary in case of each
bone type, being influenced by the density and the ratio of compact and spongy bone
tissue. This is also influenced by age, sex, and constitution. For example, the mandible
interforaminal area is much more resistant to bone resorption than any other locations of
the maxilla [9–13].

Knowing this, a series of solutions has been discussed to reduce and attenuate some
of the loading forces of the dental implant. Dental implant crown morphology has been
changed, reducing the occlusal surface. The elastic modulus of the material of the crown
has been studied for better stress absorption, and a resilient shock absorber system has
been designed for this purpose [14–17].

For long time, in vivo studies of the biomechanics of the dental implants were con-
sidered too laborious and imprecise, and the methods used interfered with the studied
phenomena and were consequently abandoned. Regardless, this issue has been often
discussed, and solutions for this issue have been implemented in dentistry [18,19].

The video image correlation (VIC) method has successfully been used for in vivo
study [20], and the authors also chose this method because of its advantages. Being an
optical measurement method, it does not interfere with the studied phenomena.

The aim of this study was to investigate micro-movement types and values in vivo
of normal teeth and osteointegrated dental implants, and to collect data regarding the
mechanical behavior of the periodontium.

Although in vivo studies are difficult to conduct in the oral environment, the authors
consider that they also have many advantages over FEM simulations.

Muscular contraction is known to be the sum of fasciculations of muscle fibres, which
are individual, specific, and shape the individual bone quality, and dental occlusion. In
this case the loading forces are as real as possible, and are not simplified or distorted [21].
Simultaneously, physiologic dental biomechanics and micro-movements are monitored
and can be compared to the dental implant. The masticator forces are transmitted towards
the investigated dental implant through the antagonistic natural teeth and are as real as
possible. The results of the in vivo investigations show great differences in some cases, due
to different measuring techniques, and interferences with the investigated phenomena [22].
The VIC method has no contact with the specimen, and does not interfere with it [19].

2. Materials and Methods

To highlight and monitor the movement of the implants and the natural teeth, the
authors have used the VIC-3D optical system without contact, from the ISI-SYS GmbH
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Company, Kassel, Germany, with the software supported by the Correlated Solution
Company, Irmo, SC, USA.

In this study, the authors investigated one osteointegrated dental implant positioned
on 1.6 (superior maxillary, molar region), the neighboring teeth being the patient’s own
and intact teeth, and the masticator forces were performed by means of natural, antagonist,
intact, vital teeth.

First, the calibration of the optical system was carried out with the help of a calibration
target, a plate provided with a set of black dots arranged at strictly identical distances, with
caliber arranged at a distance similar to that of observing the teeth by the optical system
VIC-3D. After calibration, the optical system was positioned at the same distance from the
monitored tooth.

On the vestibular surface of the dental crown and the dental implant, which were
going to be monitored, sets of black dots with random size and distribution were applied
corresponding to the followed area of interest for the selected characteristics of the optical
system used for the experiment (zones with the black dots can be seen on Figures 1 and 2).
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Along the monitoring of the displacement field, the precise monitoring of the mas-
ticator force was also desired. To this end, a miniature (electric-resistive strain gauge)
transducer of 1000 N force was used, on which we subsequently applied the actual mastica-
tor force.

Figure 3 shows the calibration curve of the force transducer, where its good linearity
can be noted, as well as its sensitivity.
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The patient was seated in the dental unit. The force transducer was placed between
the dental arches. It will alternately be placed over the surface of the crown of the natural
tooth, and the crown of the implant subjected to the tests, situated on the upper jaw, and
loaded alternatively.

During the experiments, which consisted of masticator cycles (applying a force and
discharging the jaw to a practically unloaded state, ensuring only that the force transducer
is held between the teeth), the dentist fixed the patient’s head as still as possible and
ensured the retraction of the soft tissues of the oral cavity with the help of a Farabeuff
retractor. This was required to ensure the tracking of the area of interest of the oral cavity
by the VIC-3D system.

Two sets of measurements were carried out namely:

1. The application of the masticator force on the dental implant and the simultaneous
monitoring of the displacements occurring at the level of the implant, and of the
mesially situated natural tooth.

2. Applying the masticator force on the natural tooth and simultaneously monitoring its
displacements and the displacements of the unloaded dental implant.

Each time, the point marked on loaded crown was marked with P(0), and the point
marked on the other (unloaded) crown with P(1).

The displacements of these points P(0) and P(1) marked the primary purpose of
these investigations.

In the following figures, a set of similar diagrams are presented in correlation with the
rest of masticator cycles where the displacements of points marked P(0) and P (1) appear
during the increasing masticator loading forces.

In the case of the loaded implant, both at the implant and at the level of the natural
tooth, the characteristics of the curves were practically linear due to the fact that the implant
has a practically rigid fixation in the human bone and the corresponding displacement was
also according to a linear characteristic. The natural tooth in this case was subjected to a
rigid body plane-parallel movement, displacing in a practically similar way to the implant.

In the case of the loaded natural tooth where the fixation in the maxillary bone is
elastic, both for it and for the implant, the displacements had a curve corresponding to the
elasticity of its fixation area.

Observations: The VIC-3D system has its own reference system, correlated with the
position of its two video cameras. During the experimental investigations, the two cameras
will capture images related to this system.
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The longitudinal axis of the analyzed tooth (marked with the red line; “tooth direc-
tion”) forms an angle with the horizontal axis xO of the camera (Figure 4a). In principle,
the displacements (u, v) of the point P(0) on the tooth through the resulting displacement
vector δ =

√
u2 + v2 (marked with the green line in Figure 4a) must be projected in the

direction of the tooth, giving the projection δ′.

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 5 of 19 
 

 

subjected to a rigid body plane-parallel movement, displacing in a practically similar 
way to the implant. 

In the case of the loaded natural tooth where the fixation in the maxillary bone is 
elastic, both for it and for the implant, the displacements had a curve corresponding to 
the elasticity of its fixation area. 

Observations: The VIC-3D system has its own reference system, correlated with the 
position of its two video cameras. During the experimental investigations, the two cam-
eras will capture images related to this system. 

The longitudinal axis of the analyzed tooth (marked with the red line; “tooth direc-
tion”) forms an angle with the horizontal axis xO  of the camera (Figure 4a). In princi-
ple, the displacements ),( vu  of the point P(0) on the tooth through the resulting dis-

placement vector 22 vu +=δ  (marked with the green line in Figure 4a) must be pro-
jected in the direction of the tooth, giving the projection 'δ . 

 
Figure 4. Supplementary details on the analyzed phenomenon: (a)—projections’ calculi; 
(b)—linear-, as well as curvilinear characteristic curves; (c)—load cell’s detail; (d)—plan-parallel 
movement of the teeth when the implant is loaded; (e)—plan-parallel movement of the teeth when 
the natural tooth is loaded. 

Figure 4. Supplementary details on the analyzed phenomenon: (a)—projections’ calculi; (b)—linear-,
as well as curvilinear characteristic curves; (c)—load cell’s detail; (d)—plan-parallel movement of the
teeth when the implant is loaded; (e)—plan-parallel movement of the teeth when the natural tooth
is loaded.

Due to the fact that during the simulation of the mastication process both the direction
of the applied force F (of which only its F′ projection on the direction of the tooth will be
of interest) and the actual direction of the tooth are a little bit changed (there are small
involuntary rotations of the patient’s head during mastication), the calculation would
become too complicated by the two cameras, a set of components (u, v) would result, for
which each time both the resultant δ and its projection δ′ would have to be calculated,
completed by monitoring the force projection F′ in the same direction of the tooth.

In this regard, the authors offer a simpler and more effective solution shown in
Figure 4a. Here it can be seen that it will be possible to work/operate much more easily
with the projections of the components (u, v) in the direction of the tooth, for i.e., with
(u′, v′) the sum of which gives the size of the projection of the resultant δ′, i.e., δ′ = u′ + v′.
This correlation can be demonstrated by a simple mathematical calculation.

In order to monitor the changes in the direction of the applied force, the first approach
was to use the average value of the angle formed by the support line of the force (thus the
direction of the force) with the average direction of the tooth.

In the case of a rate of image caption of 0.05 s, this stimulated the process of a mastica-
tion cycle (cycle of force application and subsequent releasing), lasting for almost a second.
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In the future, the authors will have to elaborate an automated strategy of data processing
regarding the angle arrangement of the tooth and force transmitter.

For suitable analysis of the linear and curvilinear pattern of the displacement diagram
(in the direction of the longitudinal axis of the tooth) obtained, in Figure 4, there are offered
complete explanations.

If the two crowns (dental implant 9 and natural tooth 11 are fixed in a medium
(mandible) 6 having linear force-displacement characteristic (form α from Figure 4b), then
according to the principle of parallel plan translation from solid body mechanics (only one
crown will be loaded at a time, the other one is left free), both crown displacements will
have the same pattern: linear. This corresponds to the loaded implant.

If the medium 6 has curvilinear pattern, β (as it is characteristic for the periodontal
ligament system of the natural teeth), then both of the crowns will have curvilinear pattern,
according to parallel plane displacement.

Figure 4c provides the original solution of the protection of the miniature force trans-
ducer 4, as follows: The miniature eletrotensometric force transducer 4 must be protected
from accidental damage during the mastication process, but at the same time the precise,
perpendicular orientation of masticatory force must be ensured on the upper center point
of this force transducer. Therefore, the authors designed an original support consisting
of a steel cylindrical part 2, precisely guided (without play, i.e., a sliding adjustment) in
the bore of the steel housing 3, closed in its lower part with the help of a miniature steel
disc 5. The transducer of force is also slidably mounted in the cavity of the part 3, and
the minidisc 5 is mounted by gluing with a special adhesive to the housing 3. Because
during the mastication process, both the crown of the natural tooth and the implant would
step directly on the steel surface of the cylindrical part 2, respectively, on the minidisc 5,
a thin layer of protective sheet covering 1 of the usual adhesive tape will be interposed.
Thus, damage to the teeth that would come into direct contact with the steel surface of
parts 2 and 5 will be avoided.

It Is known from the literature that the natural tooth 11 has an elastic fixation, i.e., it
forms an elastic medium (similar to the spring-damper subassembly from the suspension of
a motor vehicle), by means of the alveolar bone segment (alveolar bone) 8 (from Figure 4d),
which ensures the mitigation of shocks during mastication, given its force-displacement
load curve characteristic (type from Figure 4b). This type of fixation should not be asso-
ciated/confused with a linear-elastic (force-displacement) characteristic, since the term
“elastic” here refers exclusively to the ability of this intermediate layer, i.e., alveolar bone,
to absorb shocks during the process of mastication. On the other hand, the currently used
implant 9, involved in the authors’ investigations, is fixed by means of a double-threaded
metallic cylindrical element (sleeve-nut) 7, where its outer thread serves to fix it in the
mandibular bone 6, and in the inner one fix the pin to the actual implant (implant-bolt).
This metal ring 7 obviously has a linear-elastic characteristic (type from Figure 4b).

The loading/request each time being applied exclusively on a single tooth, either on
the implant, according to Figure 4d, or on the natural one, according to Figure 4e. For
an easier understanding of the phenomenon, let’s assume that the applied force, more
precisely, its component in the direction of the tooth, i.e., will be taken directly by the
requested tooth, and at the level of the miniature force transducer we would have a support
point fixed (a simple support from solid mechanics). Due to the stress, the element that will
deform will be either the double threaded metallic cylindrical element (sleeve-nut) 7, or the
alveolar bone portion 8 below the natural tooth. Consequently, the connecting element 6,
i.e., the mandibular bone, will move through a translational movement (from the initial
position, marked with a solid line, to the final one, marked with a broken line), carrying the
other tooth with it.

Interrupted lines from Figure 4d,e represent the parallel plane displacement of this
sub-system of the implant 9—natural tooth 11 and their connection to mandible 6.

In this translation movement, the characteristic of the deformed element 7 and 8
will be preserved, obviously at a smaller magnitude. Consequently, the unsolicited tooth
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displacement will exhibit the same characteristic as the above-mentioned deformed element.
The mandibular bone 6, which connects the two teeth (the implant and the natural one) can
be considered in this simplified calculation scheme as perfectly rigid, i.e., non-deformable.
However, if the application of the force were to occur somewhere in the interval between
the two teeth, then, obviously, both teeth would take shares of this force, and in this case the
two involved teeth would present different characteristics from the one mentioned before.
Precisely, in order to clearly separate the demand of the two teeth, the authors applied this
strategy of individual loading of them (teeth).

The diagrams in the figures showing the displacements experienced by the implant,
respectively, the natural tooth, confirm this phenomenon of plane-parallel displacement
briefly analyzed earlier.

Moreover, in Figures 1 and 2, those thin layers 1, detailed in Figure 4c, can be observed.

3. Results

(1) Case of the dental implant loading with increasing masticator forces.

Following the evaluation of the collected data during the masticator process, a char-
acteristic cycle of loading (repeated in each of the following cases) could be identified. In
Figure 5, the micro-movements of the dental implant crown in its axis, when the implant
was loaded (was applied the force F), are presented. Force F[N] from the diagrams rep-
resents in fact the projection of the total masticator forces in the direction of the loaded
implant crown, i.e., F′ = Freal [N].
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The implant has responded practically in a linear aspect to the masticator forces.
Supplementarily, one has to mention the fact that during the loading of the dental

implant, micro-movements of the mesial teeth crown were observed, which as mentioned
earlier suffers a parallel plan displacement, clearly remarkable on the diagram in Figure 6.
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The relative displacements (in absolute values) of the loaded implant/unloaded tooth
have also been calculated, as represented in Figure 7. The linear character of the curve can
be observed up to 35 N, which, subsequently, with the increasing forces changes into a
much steeper inclining of the line.

(2) Case of the mesial tooth loading with increasing masticator forces
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Based on similar analysis, a characteristic masticator cycle has been identified, resulting
in the diagram shown in Figure 8, representing the displacements in the axis of the loaded
natural tooth crown.
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The curvilinear aspect of the response of the periodontal ligament system of the maxil-
lary natural tooth can be observed. Meanwhile, the unloaded dental implant displacements
resulted in a similar, curvilinear aspect (Figure 9).
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Monitoring the masticator act, in this case, the relative displacements of the unloaded
dental implant and the loaded tooth offered the next values, presented in the diagram in
Figure 10, where the curvilinear aspect can be observed.
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Other important data obtained from this series of experimental investigations concern
the correlation of the displacements of the implant and the natural tooth, overlapping their
diagrams:

(a) Case of implant loading

Here, overlapping the analyzed curves, related to the dental implant and natural
tooth, resulted in the displacement differences, presented in Figure 11. The linear aspect
of the displacements can be observed. The loaded dental implant transmitted linearly the
displacements towards the natural tooth through the approximal contact points.

(b) Case of natural tooth loading

Based on the same procedure, overlapping the curves related to natural tooth loading,
the results presented in Figure 12 were obtained. The curvilinear aspect of the relative
displacements was observed.
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4. Discussion

Results clearly show that the micro-movement pattern of the dental implant and the
normal tooth show great differences. Approximately similar in vivo experiments produced
the same results [5]. The linear displacement type of the dental implant refers to the
linear elastic modulus of bone tissue in the case of normal bite forces, up to approximately
50 N [23]. This elastic modulus differs greatly in the case of cortical and spongy bone
type. The thickness and proportional distributions of these two bone types define the
mechanical properties for each region of the jaws [24]. In our case, absolute values of the
micro-movements of the dental implants are defined by the characteristics of this region of
the upper jaw, consisting of soft spongy bone, covered by thin cortical bone, reduced much
in height by the presence of the maxillary sinus. It seems that the major influencing factor
regarding the type and value of implant micro-movement is defined by the underlying
bone tissue. It is to be considered that masticator force transmission inside a more stiff and
dense bone could be attenuated by the antagonist teeth parodontium, dental implant and
abutment connection type, and the elastic modulus of material of the dental crown [25].

In the case of natural tooth loading, where periodontal ligament system was present,
the micro-movement pattern type was parabolic, meaning that the loading force transmis-
sion has been more optimal than in the case of the dental implant.

Due to approximal contact points between the natural tooth and the crown of the
dental implant, it is shown that according to Figures 6 and 9, micro-movements were
transmitted towards the unloaded specimen. The micro-movement pattern type present on
the unloaded specimen corresponded with the pattern of the loaded specimen.

More valuable are the information presented in Figures 11 and 12, which represent
the relative micro-movements of the dental implant and the natural tooth. Because of the
elasticity of periodontal ligament system, during the loading of the dental implant, the
natural tooth has been displaced slightly more, leaving the dental implant in an unfavorable
position, having to bear the full quantity of loading forces. When comparing the relative
displacements in case of the loaded tooth, it is shown that the dental implant has been
moving almost symmetrically with the tooth. This could mean that great amounts of forces
are transmitted towards the periimplant bone tissue, but in a more optimal, parabolic
manner, due to the action of the periodontal ligaments, surrounding the natural tooth.

When comparing the reciprocal displacements (Figure 13), the implant’s displacement
during the natural tooth’s loading (blue points/lines), and the natural tooth’s displacement
during the implant’s loading (red points/lines), it is found that the natural tooth presents
higher mobility than the dental implant, being capable of bearing higher loads than a
dental implant.
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Figure 13. The reciprocal displacements of the crowns during the mastication: the implant’s displace-
ment during the natural tooth’s loading (blue), as well as the natural tooth’s displacement during the
implant’s loading (red).

Another useful and important aspect will be to elucidate the method of transmission
of force applied by several teeth, such as: two adjacent natural teeth, one implant and
one natural tooth, as well as two adjacent implants, but also other useful cases, found in
dental practice.



J. Pers. Med. 2022, 12, 1690 15 of 16

Obviously, this study represents only the beginning of complex investigations that the
authors intend to carry out in the coming period.

Even if it seems a relatively simple strategy at first glance, the practical completion of
each new type of test requires a different approach.

5. Conclusions

The viscous-elastic properties of the bone increase its resistance on loading forces that
act for short periods of time [26]. Bone can adapt better in the case of cyclic loadings than
long-acting, static ones, which provoke bone resorption. Bone regeneration requires resting
periods, with no mechanical loading period [27]. One masticator cycle takes approximately
0.8–1 sec, short enough for the bone tissue to act like a viscous-elastic medium, although it
has not modified the linear displacement type of the dental implant. In this case, at least
for this softer bone type, the viscous-elastic characteristics of the bone could not be shown
and the attenuation of stresses was present. The linear micro-movement pattern in the case
of the dental implant was present.

The authors tried a new approach (to the best of the authors’ knowledge not currently
used) of the mastication process in vivo with the help of a high-precision optical system and
without direct contact with the studied area. The results obtained are promising, even if
this methodology can be improved based on further investigations. This original approach
will certainly open new ways toward deepening the understanding of the mechanism of
mastication, bringing significant information that could not be obtained based on existing
in vitro investigations by specialists.

In the future, the authors would like to continue more detailed investigations regarding
dental implants inserted in different areas of the maxilla and mandible characterized by
different bone quality. Multiple and splinted dental implant biomechanical behavior
investigations will also be performed in the future.
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