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Abstract

Neural tube closure (NTC) is crucial for proper development of the brain and spinal cord and 

requires precise morphogenesis from a sheet of cells to an intact three-dimensional structure. 

NTC is dependent on successful regulation of hundreds of genes, a myriad of signaling pathways, 

concentration gradients, and is influenced by epigenetic and environmental cues. Failure of NTC 

is termed a neural tube defect (NTD) and is a leading class of congenital defects in the United 

States and worldwide. Though NTDs are all defined as incomplete closure of the neural tube, the 

pathogenesis of an NTD determines the type, severity, positioning, and accompanying phenotypes. 

In this review we survey pathogenesis of NTDs relating to disruption of cellular processes 

arising from genetic mutations, altered epigenetic regulation, and environmental influences by 

micronutrients and maternal condition.

1. INTRODUCTION

Neural tube defects

NTDs are devastating congenital defects which affect approximately 300,000 babies each 

year, 88,000 of which will be deadly, and the remaining cases often will experience 

significant impacts to the length and quality of life (Zaganjor et al., 2016). These statistics 

are most likely on the low side, as less than half of the 194 World Health Organization 

member states report data on NTDs. The outcome of an NTD depends heavily on where the 

neural folds fail to close. Failure to close in the developing brain causes exencephaly, which 

ultimately results in loss of brain tissue and anencephaly, which is lethal (Fig1 A,B)(Wilde 

et al., 2014). Failure to close more caudally leads to spina bifida or myelomeningocele (Fig 

1 C,D), which has much better outcomes but the lifetime cost of care for spina bifida can be 

up to $700,000 (Grosse et al., 2016). Spina bifida occulta conversely is a mild defect caused 

by a gap in bone(s) of the spine and the neural tissue is not exposed
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Neural tube closure

This review emphasizes specific cellular processes and tissues that mediate the major steps 

of NTC, which are briefly covered here. Formation of the neural tube begins in humans 

at approximately day 18 and is completed by the fourth week of pregnancy (O’Rahilly 

& Müller, 1994). The process of NTC is similar in mice but starts at approximately 

embryonic day 8 and is completed by day 10 (Gray & Ross, 2011). Formation of the 

neural tube which will become the brain and most of the spinal cord is completed by 

a process called primary NTC, while neural tube formation below the sacral region is 

completed by secondary neural tube formation. The process of primary NTC begins with 

a flat sheet of epithelial cells overlying the notochord and mesoderm (Fig. 2A). Neural 

induction specifies the neuroepithelium (NE, green) from the non-neural ectoderm (NNE 

or surface ectoderm; blue). The first major morphogenetic event is cell intercalation which 

drives NE cells toward the midline resulting in medial-lateral narrowing and rostral-caudal 

lengthening of the NE. Morphogenesis continues through the elevation of the neural folds 

(Fig. 2B,C) which is driven by proliferation within the mesoderm and NE, and polarized 

actomyosin contractions which create hinge points at the medial and dorsolateral positions 

to shift the rising neural folds from a convex to concave orientation (Fig. 2C). As the neural 

folds approach each other, the NE and NNE cells separate, cell protrusions extend across 

the gap and each cell layer adheres with its partner tissue on the opposing fold (called 

fusion) to form a closed neural tube covered by NNE. Arising at the border between the 

NE and NNE are pre-migratory neural crest cells, which begin to delaminate during this 

last step of NTC and migrate to become neural crest cells. This process of NT closure does 

not occur simultaneously along the rostral-caudal axis. In humans, closure initiates at two 

discrete sites: one initiation site lies at the forebrain and zippers backwards towards the 

hindbrain, the other initiation point occurs at the hindbrain/ cervical boundary and zippers 

both rostrally towards the midbrain and caudally towards the sacral region where secondary 

neural tube formation will occur (O’Rahilly & Müller, 2002). Mice utilize a third closure 

point which lies between these two, and zippers both rostrally and caudally (Nikolopoulou 

et al., 2017). The following sections will analyze individual cellular processes which can 

fail and lead to an NTD. The overwhelming majority of examples are contextualized within 

the process of primary neural tube closure, as most NTDs result from defects in primary 

NTC. Secondary neural tube formation, which occurs in the most caudal region, is not 

accomplished by large morphogenetic changes, and instead relies on the condensation 

of tail-bud mesenchyme and subsequent migration and epithelialization to form a lumen 

(Catala, 2021).

2. CELLULAR PROCESSES UNDERLYING NTDS

NTC is a highly orchestrated process which requires coordination between a myriad of 

signaling pathways and cellular behaviors. NTC is driven by a multitude of genes, which 

presents many points of failure leading to NTDs. When attempting to understand the causes 

of neural tube defects, one can start by surveying the known genetic perturbations which 

can manifest as NTDs. Animal models that show NTD phenotypes have been crucial for 

elucidating mechanism of NTC and gene action. Indeed, over 300 genes in mice play 

critical roles in NTC and over 80 genes in human are associated with NTDs to date 
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(Kakebeen & Niswander, 2021; Wilde et al., 2014). However, most of the animal studies 

have investigated the effect of single gene, and often homozygous mutations, whereas the 

risk in humans of presenting with an NTD is multi-factorial and often polygenic, rather 

than simple mendelian inheritance due to single gene mutations (Lee & Gleeson, 2020; 

Neumann et al., 1994; Zohn, 2012). In other words, human NTDs are thought to be due to 

interactions between multiple gene variants and genetic modifiers. Nonetheless, we can learn 

much about the broad cellular processes required for NTC as highlighted by individual gene 

examples. Although there is not a strict correspondence between the genes associated with 

NTDs in mouse with those discovered from human NTD cases to date, there is excellent 

correspondence when considered in the context of the biological processes affected, such as 

outlined in the rest of this review. As we consider the genetic contributions towards NTDs, 

we will be drawing upon animal models to contextualize the cellular processes involved in 

NTC, each with their own tolerances to perturbations and failure points which may result in 

NTDs.

2.1 Proliferation

The process of NTC involves extensive morphogenetic changes to the embryo, 

accommodated in part by spatially and temporally directed increases in cell division. Too 

little proliferation can result in not enough material to form an intact neural tube, whereas 

too much proliferation can change the tissue geometry and inhibit closure. Proliferation 

defects often manifest during primary NTC, excluding Xenopus where proliferation is not 

an important component of early embryogenesis (Nikolopoulou et al., 2017). In chick 

and mouse models and human NTC, all embryonic cells are rapidly proliferating at this 

stage. Focusing on the tissues that contribute to neural tube formation (neuroepithelium, 

non-neural ectoderm, mesoderm), proliferation within these tissues needs to keep pace with 

one another for successful NTC.

Perturbation of proliferation within the NE cells of the closing neural tube is represented 

by many NTD models (Harris & Juriloff, 2010). This includes defects in canonical WNT/β-

catenin signaling, which plays a key role in maintaining proliferative balance within the 

neural plate. Mouse lines which harbor Pax3 mutations, a downstream effector of WNT/β-

catenin, display both exencephaly and spina bifida - highlighting its importance spanning the 

rostro-caudal axis (Epstein et al., 1991). Pax3 mutant mice display decreased proliferation 

and premature neuronal differentiation of dorsal NE cells - suggesting that WNT and PAX3 

work to maintain the NE in a proliferative state (Fig. 3A) (Sudiwala et al., 2019). Loss 

of proliferation capacity in Pax3 mutant mice prevents the neural folds from meeting, 

disrupting zippering of the mid and hindbrain neural folds (Fleming & Copp, 2000). 

Furthermore, the spatial restriction of PAX3 within the dorsal NE highlights the importance 

of regulated proliferation, even within similarly fated cells. This restriction of PAX3 dorsally 

is accomplished in part by the CDX family of proteins which interact with posteriorizing 

WNT signals and act as inducers for Pax3 transcription, the loss of which results in a 

truncated anteroposterior axis, fused somites, and craniorachischisis (Ferras et al., 2012; 

Ramakrishnan et al., 2021; Savory et al., 2011). CDX2, which localizes with PAX3 dorsally, 

seems to be particularly important as it also regulates PTK7 which interacts with multiple 

WNT receptors to fine-tune canonical and non-canonical WNT signaling (Berger et al., 
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2017; Hayes et al., 2013). The loss of Ptk7 mimics phenotypes found in Cdx1/2 conditional 

knockouts and results in 100% penetrance of craniorachischisis (Lu et al., 2004; Savory 

et al., 2011; M. Wang et al., 2015). Pax3 restriction to the dorsal NE is also controlled 

by ventral SHH signaling, which attenuates WNT signaling through inhibition of ZIC2 

(Sanchez-Ferras et al., 2014).

There is a gradient of proliferation along the dorsal-ventral axis of the NE at the time of 

NTC with higher proliferation on the dorsal side through WNT/PAX3 and lower rate of 

proliferation of the ventral side (Fig. 3A). PHACTR4 normally serves to restrict proliferation 

in the ventral NE at the time of NTC. Phactr4 mutation in mice results in faster cell cycle 

in NE cells leading to too many cells, especially in the ventral neural tube, and exencephaly 

(Fig. 3B) (Kim et al., 2007). Similarly, mice harboring mutations of the Nap1/2 genes 

experience increased mitotic events in neuronal precursors with exencephaly and spina 

bifida correlated with an overabundance of NE cells (Rogner et al., 2000).

Disrupted proliferation within the NE is also represented by NTD animal models whose 

mutations affect proliferation more indirectly by causing cells to prematurely differentiate 

and therein reducing their proliferative capacity. Several of these models fall within the 

Notch pathway, which works to ensure that NE specified cells retain proliferative capacity 

until NTC is complete (Hatakeyama & Kageyama, 2006). Notch itself is a marker of 

neuronal differentiation, however components of the Notch pathway act to inhibit Notch 

signaling and retain NE cells in a proliferative state (Engler et al., 2018). When components 

of the Notch pathway (Hes1, Hes3, Rbpj) are perturbed, Notch expression is increased, 

NE cells prematurely differentiate, resulting in either spina bifida or exencephaly (Harris 

& Juriloff, 2007; Ishibashi et al., 1995). Premature differentiation has also been proposed 

to cause NTDs through mechanical stiffening of the cells, which might disrupt dorsolateral 

hinge point bending, interfere with neural crest cell release, or inhibit adhesion between 

neural folds (Copp et al., 2003). An argument can be made that all three may be 

simultaneously possible. ZIC2 plays roles in both the roof plate cells and in regulating 

dorsolateral hinge point bending which is necessary for fold adhesion (Ybot-Gonzalez et 

al., 2007). Interestingly Zic2 is regulated along with Notch by the transcription factor 

FOXD5, with feedback from Notch signaling regulating Foxd5 expression itself (B. Yan 

et al., 2009). In disrupted Notch signaling mouse models, NTDs might occur from either 

premature neuronal differentiation alone, or alongside FOXD5 feedback associated with 

ZIC2 perturbation. This aligns with observations in Zic2 mutant mice and zebrafish, which 

display lack of dorsolateral hinge point bending (Nyholm et al., 2009; Ybot-Gonzalez et al., 

2007).

Looking beyond NE progenitor cells, NTD models associated with disrupted proliferation 

in other tissues are fewer in number. Within the mesoderm for example, cell migration 

seems to play a larger role, yet proper proliferative capacity is necessary to expand the 

mesoderm population and to form the mesenchyme bulges which will help elevate the neural 

folds (Fig. 4A) (Nikolopoulou et al., 2017). Twist1 and Cart1 knockout lines demonstrate 

reduced proliferative capacity within the mesenchyme, interfering with the formation of 

the biconvex neural folds and resulting in exencephaly (Fig. 4B) (Z. F. Chen & Behringer, 

1995; Zhao et al., 1996, p. 1). It is noteworthy though that caudal NTC appears to be 
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less sensitive to disruption of the mesoderm, as demonstrated by physical depletion of the 

paraxial mesoderm still allowing subsequent NTC (van Straaten et al., 1993).

Proliferative defects in non-neural ectoderm cells (NNE) are even more rare, with cell 

structural changes and adhesion playing a larger role. Mutations which lengthen the cell 

cycle (Gadd45a, TrP53) can reduce overall cell numbers in both the NE and NNE leading 

to an NTD, albeit with relatively low penetrance (Harris & Juriloff, 2007). These mutations 

have also been proposed to reduce genomic stability, which could lead to cell death and 

reduced cell numbers (Hollander et al., 1999). In more caudal regions, reduction of Grhl3 is 

associated with an imbalance of proliferation between the NE and caudal hindgut resulting 

in spina bifida (Gustavsson et al., 2007). These phenotypes associated with Grhl3 mutation 

may actually be localized to uncommitted stem-like cells along the neural plate border as 

this phenotype can be rescued when paired with a deficiency of Dkk1/Kremen1 – canonical 

WNT signaling antagonists which promote NE specification within uncommitted neural 

plate border cells (Kimura-Yoshida et al., 2015).

2.2 Migration

Cell migration plays a key role in the processes of: convergent-extension which shapes the 

neural plate, mesoderm migration to help elevate the neural folds, clearance of neural crest 

cells, and lumen formation in secondary neural tube formation.

During early stages of primary NTC, the first key cell migration step involves intercalation 

of cells toward the midline, which narrows and lengthens the neural plate along the medial-

lateral axis and the rostral-caudal axis, respectively (Fig. 5A,B). Animal NTD models in 

which these convergent-extension movements are disrupted display a wide neural plate 

and ultimately a large gap between the neural folds such that the folds cannot meet in 

the midline (Fig. 5C)(Harris & Juriloff, 2010). This cell migration is heavily dependent 

on planar cell polarity (PCP) signaling and the response seems to be tissue dependent 

(Shindo & Wallingford, 2014). In the mesenchyme, migration is accomplished by shortening 

of cell-cell junctions and cellular protrusions which exert traction to produce a crawling 

motion, with the orientation of the protrusions dependent on the distance from the midline 

mesoderm and notochord (Butler & Wallingford, 2018; Ezin et al., 2006). The positioning 

of the protrusions which drive intercalation is thought to be regulated by the non-canonical 

WNT-Frizzled PCP pathway, with extension of the protrusions regulated downstream of 

WNT in both a Dishevelled-dependent and independent manner (Keller, 2002). Mutations 

which disrupt the Dishevelled pathway in Xenopus affect convergent-extension and are 

marked by more but less stable and randomly oriented protrusions (Wallingford & Harland, 

2002). In the neural plate, cell migration is also thought to be controlled by PCP signaling, 

but instead seems to be mainly accomplished by shortening of cell-cell junctions (Nishimura 

et al., 2012). This is accomplished by pulsed actomyosin contractions that are restricted 

to or enriched at mediolaterally oriented cell-cell junctions (Butler & Wallingford, 2018). 

These actomyosin contractions will be discussed further in the cell structure section but 

are dependent upon polarization within the cell. NTD mice deficient for PCP regulators 

PTK7 and Vangl2 display varying degrees of polarity loss, and NE cells in both cases fail to 

apically constrict (M. Williams et al., 2014), leading to the most severe form of NTD called 
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craniorachischisis in which the neural folds fail to meet in the midline along most of the 

rostral-caudal axis. Similarly in humans, mutations in the non-canonical WNT-Frizzled PCP 

pathway are associated with NTDs, including craniorachischisis (Kibar et al., 2001).

Completion of primary NTC requires that neural plate border cells, also referred to as 

pre-migratory neural crest cells – delaminate from the intact neural tube and NNE. Failure 

of neural crest cells to migrate can lead to NTDs, which might stem from inhibition 

of neural fold bending (Copp et al., 2003). The process of neural crest formation and 

migration requires neural plate border cells to undergo epithelial to mesenchymal transition 

(EMT). EMT is highlighted by loss of adherens junctions (specifically E-cadherin together 

with Catenins and actin rings), the loss of cell polarity, separation from surrounding 

epithelial tissue (delamination), and migration through extracellular matrix to adjacent 

tissues (Acloque et al., 2009). In mice, neural crest cells which overexpress the gap junction 

protein Connexin 43 fail to migrate which leads to exencephaly (Ewart et al., 1997). 

Furthermore, sequestration of chondroitin sulphate proteoglycans (a family of molecules 

important in regulating adhesion) in rats prevents the disruption of fibronectin-containing 

ECM necessary for neural crest migration, which delays dorsolateral bending of the neural 

folds (Morriss-Kay & Tuckett, 1989). As neural crest cells can be observed detaching from 

the neural folds before NTC is complete, it has been suggested that the failure of neural 

plate border cells to differentiate and thus migrate may inhibit the transition from biconvex 

to biconcave morphology of the neural plate (Copp et al., 2003).

In secondary neural tube formation, evidence also points towards the importance of 

cell migration and intercalation. Mesodermal cells undergo a mesenchymal to epithelial 

transition (MET) to form an epithelial tube that then fuses with the neural tube formed by 

primary NTC. When the mesodermal cells are prevented from undergoing epithelialization, 

the cells fail to participate in neural tube formation, and instead accumulate in the neural 

canal (Nakaya et al., 2004) Chick embryos in which SMAD3 is disrupted, a receptor 

involved in Transforming Growth Factor β (TGF-β) signaling, display disrupted secondary 

neural tube formation marked by multiple small lumen (Gonzalez-Gobartt et al., 2021). 

SMAD3 seems unique among other SMAD proteins in directing cell migration during 

secondary neural tube formation (Gonzalez-Gobartt et al., 2021). TGF-β signaling has been 

previously implicated in chick brain medial hinge point (MHP) formation (Nikolopoulou et 

al., 2017). Together these data have intriguing implications for possible cell migration & 

intercalation in the formation of the MHP in chick and mouse, as SMAD2 & SMAD3 are 

highly active at the MHP while other SMAD proteins involved in BMP signaling are down 

regulated (Amarnath & Agarwala, 2017). Furthermore, a role for cell migration in MHP 

formation may be obfuscated by the ability of dorsolateral hinge point bending to overcome 

the loss of MHP in mice (Ybot-Gonzalez et al., 2002).

2.3 Cell death

With NTC being a highly proliferative process, the subsequent death of some of these newly 

formed cells may seem counter-intuitive or even counter-productive. Indeed, the involvement 

of apoptosis in NTC is still a subject of debate, with evidence that it may be dispensable 

in the context of mammalian NTC (Massa et al., 2009). Still, cell death is observed and 
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may be necessary within the neural folds (Cecconi et al., 1998; Urase et al., 2003). Loss of 

apoptosis in mouse models has been observed to accompany disrupted neural fold bending 

and delayed NTC in the mid- and hind-brain (Yamaguchi et al., 2011). Regardless of 

the necessity of apoptosis for NTC, there is evidence that abnormally increased apoptosis 

can underlie NTDs in animal models, and this can result from genetic insult, nutritional 

deficiencies, or pharmacological insults (Kakebeen & Niswander, 2021).

Arguments for the necessity of apoptosis in NTC are supported by a myriad of mice 

NTD models (mutations in Mapk8/Mapk9, Apaf1, Casp3, Casp9, and Cytc) which result in 

decreased apoptosis and lead to midbrain exencephaly. Most of these mutant also show 

forebrain protrusion or cauliflower-like overgrowth not observed in other mouse NTD 

models (Harris & Juriloff, 2007). In Xenopus, the pro-apoptotic function of Barhl2 has been 

demonstrated to be crucial for NTC, and is thought to normally limit the number of Chordin- 

and Shh-expressing cells in the prospective notochord and floorplate (Juraver-Geslin & 

Durand, 2015).

On the other hand, increased apoptosis can also increase the risk for NTDs. Analysis of 

human NTD autopsies found that hallmarks of anencephaly cases include higher amounts 

of apoptotic cells, higher expression of p53, and lower expression of Pax3 (L. Wang, Lin, 

Yi, et al., 2017). In human spina bifida autopsies, Pax3 is diminished, yet p53 expression 

and the number of apoptotic cells resemble controls, suggesting that rostral NTC may 

be more sensitive than caudal NTC to increases in apoptosis (L. Wang, Lin, Yi, et al., 

2017). Within animal NTD models, increased apoptosis is represented in Bcl10 and MEKK4 
mutant mice (Harris & Juriloff, 2007). MEKK4 is specifically found in NE cells, and 

while MEKK4 deficient cells demonstrate massively elevated apoptosis and highly penetrant 

NTDs, proliferation of NE cells seems to be largely unaffected (Chi et al., 2005). Alteration 

in the levels of micronutrients can lead to increased cell apoptosis and NTDs. For example, 

treating mouse embryos at the time of NTC with TPEN, a zinc chelator to model zinc 

deficiency, leads to stabilization of p53, increased apoptosis and failed NTC. The TPEN-

induced NTD can be rescued by pharmacological inhibition of p53 or overexpression of a 

E3 ubiquitin ligase which targets p53 for degradation (H. Li, Zhang, & Niswander, 2018). 

These experiments not only demonstrated a mechanism for zinc-deficiency associated NTD 

risk, but also provide evidence that increased apoptosis can drive NTDs as opposed to 

simply accompanying them. Perhaps in a similar fashion, an excess of the drug all-trans-

retinoic acid (RA) has also been demonstrated to induce caudal NTDs in mice and rats, 

which is accompanied by an increase in apoptosis (Kakebeen & Niswander, 2021; Wei et al., 

2012). Notably, as discussed later, increased apoptosis is thought to be a driver of diabetes 

associated NTDs(Gao & Gao, 2007).

2.4 Structural Changes

NTC relies upon proper proliferation, cell death, and migration as previously discussed, 

but these cellular processes in turn are often dependent on cell structural changes. The 

directionality of cell migration, oriented cell division, actomyosin constriction, and cell 

shape is highly dependent on the cell polarity (Nikolopoulou et al., 2017). It is not surprising 
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then that a large number of NTD animal models are rooted in perturbed planar cell polarity 

(PCP) signaling (Harris & Juriloff, 2007; Juriloff & Harris, 2012).

In the context of the mesenchyme, we have already discussed disruptions to the Disheveled 

pathway which randomize cellular protrusions and prevent cell crawling (Wallingford & 

Harland, 2002). Mutations to Ptk7 and Vangl2 similarly disrupt convergent extension in 

both the mesenchyme and NE by disrupting cell-cell junction shortening required for 

cell migration (M. Williams et al., 2014). The proper cell-cell junction regulation in 

these mutants is dependent on restriction of actomyosin contractions to the mediolateral 

junctions. This restriction appears to be driven by the polarity of the cell imparted by 

asymmetric enrichment of PCP proteins Vangl2 and Prickle2 (Butler & Wallingford, 2018). 

Knockdown of Prickle2 in Xenopus, which is spatiotemporally coordinated at shrinking 

junctions, disrupts convergent extension (Butler & Wallingford, 2018). Though Prickle2 is 

not associated with NTDs in human, it is noteworthy that the gene family member Prickle1 
has multiple documented mutations in human patients which are thought to pre-dispose 

to NTD risk (Bosoi et al., 2011). Though Vangl2 and Prickle2 may contribute to the 

actomyosin contractions, the directionality of this enrichment is thought to be influenced 

by the Fat/Dsch/Fjx1 pathway (Badouel et al., 2015). Fat1–4 and Dsch1/2 are atypical 

cadherins which are phosphorylated by Fjx1 to affect their binding affinity which is 

proposed to contextualize local cell behaviors to a larger axial orientation (Mangione & 

Martín-Blanco, 2018). The exact interaction between the Fat/Dsch/Fjx1 pathway and PCP 

signaling is still in question, however Fat1−/− mice display forebrain NTDs and Fat4−/− 
mice exhibit caudal defects and a broad spinal cord (Ciani et al., 2003; Nikolopoulou et al., 

2017; Saburi et al., 2008).

In addition to the need for cell-cell junction shortening due to PCP signaling in the neural 

plate, NE cells contain unique points for cell structural regulation and failure. The formation 

of the dorsal-lateral-hinge point (DLHP) is an intersection of several such pathways (Fig. 

6A). Bending of the neural plate in more rostral regions is dependent on actomyosin 

contractions, however, this regulation differs from NE cell-cell junction shortening (Haigo 

et al., 2003). The myosin contraction is carried out by the small GTPase RhoA (Arnold et 

al., 2018). Though there is no RhoA NTD model, Gef-H1 and RhoGap which act upstream 

in the neural folds both display severe exencephaly phenotypes accompanied by significant 

basal actin accumulation (Brouns et al., 2000; Itoh et al., 2014). Similarly, disruption of 

ROCK, LIMK, and Cofilin which act downstream of RhoA to regulate actin polymerization 

and turnover result in abnormal actin accumulation, failure of neuroepithelial folding, 

and NTDs (Fig. 6B) (Escuin et al., 2015). Interestingly Blebbistatin, a myosin inhibitor 

which blocks actomyosin cross-linking, rescues NTDs accompanied by abnormal actin 

accumulation. Conversely, the drug Jasplakinolide, which blocks actin depolymerization, 

significantly delays NTC (Cramer, 1999; Escuin et al., 2015). With the large influence 

that actin function and turnover has over DLHP bending, it is perhaps not a surprise that 

disrupted localization of ROCK would yield similar phenotypes to the previously discussed 

perturbations of its downstream signaling components. Indeed, disruption of Shroom3, 

which has been proposed to localize ROCK to apical cell junctions, results in failed 

neuroepithelial bending and severe exencephaly (Nishimura & Takeichi, 2008). A separate 

NTD model arising from failed neuroepithelial bending involves the gene encoding the 
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protein Noggin. Noggin normally works to inhibit BMP signaling at more caudal regions of 

the NE where its own expression is no longer repressed by Sonic Hedgehog signaling (Ybot-

Gonzalez et al., 2007). Noggin knockout mice display spina bifida marked by increased 

BMP signaling activity and failure of neuroepithelial bending at the DLHP (Stottmann et al., 

2006).

The NNE is unique in that NTD animal models that affect this tissue are represented 

almost exclusively by disruptions to cellular structure (Rolo et al., 2016). This is most 

clearly evident by the role that the NNE and its surface proteins play in neural fold 

fusion (Copp et al., 2003). As the neural folds undergo fusion or zippering along the 

rostral-caudal axis, the NNE cells exhibit protrusive behavior and this differs along the 

axis. Two sets of protrusions identified as important for NTC are long filopodia and ruffle-

like lamellipodia, with filopodia thought to be important to cranial and upper spinal cord 

NTC, and lamellipodia more crucial to later most caudal closure (Rolo et al., 2016). The 

GRHL3 transcription factor is important in controlling some of these NNE cell structural 

elements. Knockout of Grhl3 displays loss of sheet-like lamellipodia thought to be crucial 

for caudal neural fold fusion (Jaffe & Niswander, 2021). Loss of Rac1, more directly 

linked to lamellipodia production, mimics Grhl3 loss phenotypes and suggests GRHL3 

as an upstream regulator of Rac1 (Jaffe & Niswander, 2021; Rolo et al., 2016). This 

preferential role in the regulation of lamellipodia might be reflected in the infrequency of 

Grhl3 mutants to produce cranial NTDs, whereas spina bifida is a completely penetrant 

phenotype (Nikolopoulou et al., 2017). The family member Grhl2 is expressed uniformly 

within the NNE and upon loss demonstrates both cranial and spinal NTDs (Brouns et al., 

2011; Rifat et al., 2010). GRHL2 regulates epithelial morphogenesis through its downstream 

targets Claudin4, Rab25, and E-cadherin. Although none of these downstream targets are 

represented by NTD models, this could be due to their critical roles during earlier stages of 

embryogenesis (Harris & Juriloff, 2010; Pyrgaki et al., 2011; Senga et al., 2012). Notably 

though, antisense oligonucleotide knockdown of E-cadherin leads to cranial NTDs, pointing 

towards a role in GRHL2 maintaining epithelial cohesion through tight junctions (B. Chen 

& Hales, 1995), and as seen by loss of NNE integrity in mouse Grhl2 mutants (Ray & 

Niswander, 2016). It has been proposed the presence of N-cadherin at junctions may be 

sufficient to maintain neural identity (Punovuori et al., 2019), and a similar role for GRHL2 

and E-cadherin in maintaining epithelial identity is supported by the observation that Grhl2 
loss is accompanied by mesenchymal markers in the NNE (Ray & Niswander, 2016).

3. EPIGENETICS OF NTDS

We previously defined individual genetic mutations which can produce an NTD, most 

often when gene function is largely ablated in animal models. We also discussed how 

a variety of genes regulate critical cellular processes. In humans it is thought that NTD 

penetrance results from a combination of genetic and environmental perturbations, which 

can be tolerated to a certain level, above which an NTD becomes a possibility. As epigenetic 

regulators act globally on the genome, it might be expected that mutations in epigenetic 

regulators could globally alter gene expression. Reflecting on the complexity of the cellular 

processes involved in NTC, it may seem that even small noise introduced by epigenetic 

disruption may lead to NTDs; however, variability in gene expression seems to be tolerated 
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and even a necessary aspect to maintain plasticity required in NTC (Pujadas & Feinberg, 

2012). This partly points towards the extent of epigenetic disruption needed to induce an 

NTD, but perhaps also emphasizes the multi-factorial nature of NTDs and the interplay 

between epigenetic, genetic, and environmental factors. Of epigenetic regulators that act 

globally to modify gene expression, disruptions to DNA methylation, histone modifications, 

and chromatin structure are enriched in animal models of NTD (Kakebeen & Niswander, 

2021; Wilde et al., 2014). The context that individual NTD epigenetic models provide 

will undoubtedly improve as researchers begin to cross-reference global epigenetic changes 

against the expanding knowledge created by the encyclopedia of coding elements project 

(ENCODE) which includes spatial and temporal profiles of regulatory elements within 

mouse development (J. E. Moore et al., 2020).

3.1 DNA methylation

The majority of the genome (70%−90%) harbors enzymatically added methyl groups at CpG 

dinucleotides which are established and maintained by DNA methyltransferases (DNMT)

(Jones & Baylin, 2002). DNA methylation is essential for silencing retroviral elements, 

regulating tissue-specific gene expression, genomic imprinting, and X chromosome 

inactivation (L. D. Moore et al., 2013). CpG islands are defined as >500bp stretches with 

>55% GC content, and an observed/expected CpG ratio of 0.65 (Bird et al., 1985; Takai & 

Jones, 2002) Approximately 70% of gene promoters lie within CpG islands, and methylation 

in these regions is thought to contribute towards tissue specific transcriptional regulation 

through exclusion (Miranda & Jones, 2007) or attraction (Blattler & Farnham, 2013) of 

transcription factors and accessibility of DNA (L. D. Moore et al., 2013; Saxonov et al., 

2006).

Disruption of methylation globally through depletion of the DNA methylation maintenance 

enzyme DNMT1 is detrimental to embryogenesis, however early embryonic death and 

ubiquity of function impedes the study of DNMT1 in the context of NTDs (E. Li et 

al., 1992; Wilde et al., 2014). Instances where disruption of global methylators result 

in NTDs are represented by mice lacking de novo methyltransferases DNMT3B and 

DNMT3L; however, mice lacking the other major de novo methyltransferase DNMT3A, 

die early in embryogenesis (Hata et al., 2002; Okano et al., 1999). Although these de 

novo methyltransferases can methylate DNA in a non-specific manner, they are also 

thought to methylate in a site-specific manner through protein complexes which contain 

tissue specific transcription factors (Hervouet et al., 2018; Yagi et al., 2020). These site-

directed methylation behaviors have led to some insight to their role in NTC. It has 

been demonstrated that DNMT3A is required for methylation and proper transcription 

of Polycomb group target developmental genes, and has been proposed to act as switch 

mediating neural crest fate transition (Hu & Rosenfeld, 2012; Yagi et al., 2020). Knockdown 

of DNMT3A during NTC upregulates neural genes such as Sox2 and down regulates neural 

crest specifier genes (FoxD3, Sox10, and Snail2), broadening the dorsal neural tube and 

leading to expansion of NE cells over neural crest cells (Hu & Rosenfeld, 2012). The NTD 

phenotype observed following loss of methylation of Sox2 and neural crest genes points to 

the possible involvement of site directed methylation in other NTD animal models. Further 

evidence for specific methylation influencing NTDs can be found in human NTD cases 
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where increased methylation within the Pax3 gene body has been observed (Lin et al., 2019; 

L. Wang, Lin, Zhang, et al., 2017). This is mirrored in mice treated with a benzoapyrene, 

which demonstrate hypermethylation of Pax3 and NTDs (Lin et al., 2019).

3.2 Histone modifications

The ability of the nucleus to contain such large amounts of DNA is made possible by its 

organization and compaction into chromosomes. This organization is rooted in the wrapping 

of DNA around nucleosomes, composed of four homodimers of core histone proteins 

H2A, H2B, H3, and H4 (Rosenfeld et al., 2009). Post-translational modifications to the 

N-terminal tails of these histones are thought to regulate the interaction between DNA and 

nucleosomes, and subsequently the packaging and accessibility of the DNA to transcription 

factors (Kouzarides, 2007). There are eight different post-translational modifications that 

can affect more than 60 sites, with multiple modifications possible at each site (Kouzarides, 

2007). This leads to a nearly endless combination of histone modifications. Moreover, the 

influence these marks exert over transcriptional regulation is also thought to be affected by 

neighboring proteins with their own combination of modifications. Overall, the influence 

of one or multiple histone states on transcription has been deemed the “histone code” 

(Jenuwein & Allis, 2001). Similarly to DNA methylation, histone modifiers act on a global 

scale, however the different marks and myriad of enzymes which produce local histone 

states lends itself to more direct interrogation of the roles of histone modifiers on NTC.

The most widely studied histone modifications are acetylation and methylation, a trend 

which is reflected in current NTD mice models (Harris & Juriloff, 2007). Histone 

acetylation is thought to decrease the affinity of DNA to nucleosomes, increasing the 

accessibility of the DNA and is associated often with increased transcription (Kouzarides, 

2007). Mice harboring mutations in histone acetyltransferases (HATs) GCN5 and CBP/

p300, which deposit acetyl marks, display exencephaly; and even mice heterozygous for 

CBP or p300 mutations display exencephaly (Bu et al., 2007; Partanen et al., 1999). 

These HAT mutations are thought to act through disruption of metabolic pathways such 

as glucose metabolism needed for NTC, which has interesting implications for pregnant 

people with diabetes who have a higher risk of NTD births (Wilde et al., 2014). Histone 

de-acetyltransferases (HDACs) serve the opposite role and loss of HDACs Sirt1 and HDAC4 

leads to dysregulation of P53 and Runx2 respectively and are associated with exencephaly 

in mouse mutants (H.-L. Cheng et al., 2003; Vega et al., 2004). Treatment with HDAC 

inhibitor trichostatin A or anticonvulsant valproic acid are thought to produce NTDs through 

a similar pathway, as they display disruption of HDACs and hyperacetylation of histones 

(Göttlicher et al., 2001; Murko et al., 2013). Beyond specific HDACs, HDACs in general 

have been implicated in the regulation of differentiation, and have been demonstrated to 

be necessary to inhibit BMP2/4 signaling in the developing mouse forebrain (Shakèd et 

al., 2008; Wilde et al., 2014). Though there is much less evidence for histone methylation 

specifically affecting NTC, the loss of histone demethyltransferase FBXL10 in mice leads to 

early NE cell death and exencephaly (Fukuda et al., 2011).
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4. ENVIRONMENTAL INFLUENCES

The impact that environmental factors exert on NTD risk is apparent when studying global 

statistics. NTD rates vary significantly by geographic location, and can be stratified even 

further by income status (Zaganjor et al., 2016). Many of these disparities can be tied 

to nutritional status as discussed below. Also the relatively high frequency of NTDs has 

allowed researchers and epidemiologists to make connections to a variety of maternal 

conditions and teratogenic agents.

4.1 Folic acid

The micronutrient most closely associated with NTD incidence is folate, found widely 

in the diet, especially in leafy green vegetables, and synthetically as Folic Acid (FA). 

This relationship was first recognized by a midwife named Catherina Schrader in 18th 

century Holland. Schrader’s meticulous record keeping showed the correlation between poor 

crop years and higher incidence of NTDs (Michie, 1991). In 1965, a paper detailing a 

case-control study marked the recognition of an inverse relationship between deficient folate 

metabolism and increased NTD incidence (Hibbard & Smithells, 1965). Further clinical 

trials in the 1980’s and 1990’s confirmed the protective nature of FA in reducing NTD cases. 

Now, FA is widely used to fortify grains to avoid maternal folate deficiency (“Prevention 

of Neural Tube Defects,” 1991). Starting in 1998 the United States enriched cereal grains 

with 140μg FA/100g, which has prevented an estimated 1,300 cased of NTDs annually (J. 

Williams et al., 2015). Eighty countries around the world also fortify their grains with FA. 

According to the Food Fortification Initiative, countries with higher FA supplementation 

have lower NTD incidence. However, this association, according to an epidemiological 

study done in 2020, may be confounded by socio-economic class (Qu et al., 2021). Still, 

women who had a previous NTD affected pregnancy are less likely to have a second NTD 

affected pregnancy after supplementing FA in the diet. Additionally, a randomized control 

trial in China showed that when pregnant women regularly took periconceptional FA, there 

was an 85% reduction in NTD risk (Berry et al., 1999). Thus, many epidemiological 

studies have established the efficacy of FA fortification on NTD prevention, although debate 

continues over the details of supplementation and public implementation.

Despite the focus on folate status, maternal folate deficiency itself is not enough to produce 

a NTD in mice, and instead requires a predisposing mutation in a folate-sensitive gene 

(Greene et al., 2009). Similarly, in humans it is believed that NTDs are multi-factorial 

in which genetic variants (inherited or de novo) along with environmental factors act in 

combination to affect NTD risk (Wilde et al., 2014). This has led to investigations to 

identify NTD gene mutations that are responsive to folate levels. Studies in mice have 

used FA deficient and FA supplemented regimes to begin to uncover the interplay between 

genetic and environmental factors. First, we will discuss genes within the folate one-carbon 

metabolism (OCM) pathway and then highlight that many of the FA responsive genes have 

no apparent roles in FA metabolism or other processes related to this pathway, indicating the 

broader impact of the OCM pathway on nucleotides, proteins, and lipids during NTC.

Folate is processed in the cell within the OCM pathway. Folic acid must be reduced to 

produce the body’s biologically active form, tetrahydrofolate (THF). Further reduction 
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and the addition of a methyl group yields 5Me-THF. 5Me-THF can then be used as 

methyl carrier for transfer of one-carbon units to many molecules within the cell (Imbard 

et al., 2013). This pathway is essential for the biosynthesis of purines and thymidylate, 

remethylation of homocysteine to methionine, and from there making S-adenosylmethionine 

which is the universal methyl donor in the cell (Suh et al., 2001). It is thought that these 

key metabolites may be at suboptimal levels at critical closure time points in folate deficient 

mothers.

As highlighted earlier, the coordination of proliferation is critical for NTC. The folate 

pathway is necessary for production of the building blocks for DNA synthesis, and hence 

proliferation has been a focus of study in FA pathway mutants. Mutations that affect folate 

uptake and metabolism are a prime example of the correlation between folate levels and 

NTD incidence. Deletion of the Folate Receptor 1 (Folr1, Folbp1) in mouse causes NTD 

and the embryos are severely growth retarded (Piedrahita et al., 1999). The evidence 

in humans is less clear but there are reports of autoantibodies against folate receptors 

associated with NTD risk (Cabrera et al., 2008; Rothenberg et al., 2004). MTHFD1L is 

an enzyme in the mitochondria responsible for catalyzing the last step in the flow of 

one-carbon units (formate) from the mitochondria to the cytosol. Deletion of this gene in 

mice results in severe NTDs, including craniorachischisis, exencephaly, and a “wavy” neural 

tube (Momb et al., 2013). Mthfd1L mutant mice show reduced cellular proliferation in 

the brain after completion of NTC (Shin et al., 2019). Gene variants in the mitochondrial 

OCM pathway are associated with increased NTD risk in humans including MTHFD1L, 

AMT, and GLDC, and this increased NTD risk is borne out in studies in mice (Narisawa 

et al., 2012; Parle-McDermott et al., 2009). Within the cytosolic folate pathway, loss of 

serine hydroxymethyltransferase SHMT1, which utilizes serine to form one-carbon units, 

causes NTDs in mice, but only on a folate deficient diet, through decreased flux through the 

thymidylate biosynthesis pathway (Beaudin et al., 2011). It has been reported that SHMT1 

C1420T parental alleles increase NTD risk (K Rebekah et al., 2017). Variants in MTHFD1, 

a tri-functional enzyme which catalyzes three steps in the folate cycle, are also associated 

with increased NTD risk (De Marco et al., 2002; Parle-McDermott et al., 2009; Zheng et al., 

2015) and disease alleles show altered flux through thymidylate biosynthesis pathway (Field 

et al., 2015). These data link the importance of the folate OCM pathway in the regulation of 

proliferation and NTC.

Another proposed mechanism by which FA may affect the penetrance of NTDs is 

modulation of the epigenome through OCM metabolites, via the methionine cycle and 

methylation of substrates including DNA, RNA and proteins. In animal models, methionine 

cycle inhibitors or mutations in DNA methyltransferase proteins can cause NTDs (Dunlevy 

et al., 2006; Okano et al., 1999). The MTHFR enzyme catalyzes the synthesis of 5Me-

MTHF, which is the methyl donor for homocysteine to regenerate methionine through the 

methionine synthase (MTR) and methionine synthase reductase (MTRR) enzymes. MTHFR 

has been studied for association with NTDs in human cases. In a case-control study within 

Italian families, it was determined that the families and mothers who have experienced an 

NTD are enriched in a MTHFR polymorphism A1298C (De Marco et al., 2002). Similarly, 

MTHFR polymorphism C677T is associated with a greater risk for NTDs and has been 

found to result in low plasma folate levels and higher levels of homocysteine, as well as 
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diminished DNA methylation, which could be improved by increased FA status (Friso et 

al., 2002; van der Put et al., 1995). MTR and MTRR variants are also associated with 

NTD (Cai et al., 2019; Ouyang et al., 2013) and altered homocysteine levels (Gaughan et 

al., 2001). These data indicate the importance of the methionine cycle in NTC. However, 

the interrelationship between the three OCM cycles – folate cycle, methionine cycle, and 

mitochondrial glycine cleavage cycle has been demonstrated; where, a mutation in one arm 

of the OCM pathway can alter the flux of one-carbon units in the other cycles. Thus, it may 

be an oversimplification to view the effect of a mutation as limited to an individual OCM 

cycle but instead to consider how it may affect the partitioning of one-carbon units between 

these three cycles that together are critical for NTC (Leung et al., 2017).

Epigenetic changes are also possible as FA supplementation over multiple generations 

exacerbates FA sensitive mutations (Marean et al., 2011). It has been demonstrated that there 

is a trans-generational effect of a mutation in the methionine synthase reductase gene. Mtrr 
deficiency in either maternal grandparent of offspring can result in developmental defects of 

the grandprogeny and global DNA hypomethylation (Padmanabhan et al., 2013). These data 

suggest that modulations in folate metabolism can be passed down epigenetically for many 

generations.

Notably, many of the FA responsive genes identified in mice have no apparent roles in FA 

metabolism or other processes related to this pathway. For example, PAX3 is necessary for 

successful NTC by regulating cell proliferation and suppressing neuronal differentiation. 

Although levels of individual folate cycle species are not altered in Pax3 mutants (Sudiwala 

et al., 2019), supplementation with FA prevents NTD, whereas FA deficiency increases 

NTD incidence (Burren et al., 2008; Wlodarczyk et al., 2006). FA supplementation helps to 

drive cell cycle progression which is proposed to prevent NTD in Pax3 mutants (Sudiwala 

et al., 2019). In most cases, however, how FA levels act to prevent or exacerbate NTD 

incidence in animal models of FA sensitive gene mutations is yet unclear. Additional 

processes impacted by FA levels but not directly associated with the OCM pathway have 

been uncovered. There is a correlation between ubiquitination of Histone 2A (H2A) under 

low FA conditions, and this can lead to modulation of the expression of NTC associated 

genes (Pei et al., 2019). Additionally, the formation of cilia can be modulated by FA 

supplementation (our lab unpublished data), and folate is thought to promote ciliogenesis 

by regulating the methylation of Septin2, an important ciliogenesis gene (Toriyama et 

al., 2017). The underlying mechanisms for how FA modulates NTC in the case of folate 

sensitive genes is likely a balance of all of the processes outlined above as well as yet to be 

discovered processes.

4.2 Non-FA micronutrients

In cases where FA does not protect against NTDs, other micronutrients have been examined. 

The quest for other factors that may prevent NTD has been driven in part by epidemiological 

studies and by an understanding of the biology underlying NTC and gene function in 

mouse models which do not respond to FA. Here we summarize evidence for an impact 

on NTD incidence by inositol, iron, zinc, and retinoic acid. Inositol is important in cell 

transduction and is an important component of phosphoinositol lipids. Inositol deficiency 
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can increase NTD risk and inositol supplementation can decrease NTD incidence in curly 
tail mouse mutants, which are FA-resistant, and in diabetic rodent models (Reece et al., 

1993). Inositol supplementation was used as a preventative treatment for recurrent NTD in 

humans, with no detriment to the mother or the fetus (Cavalli et al., 2011). This led to a 

small clinical trial (PONTI: Prevention of Neural Tube Defects by Inositol) which showed 

inositol supplementation is safe and showed promising results relative to NTD risk (Greene 

et al., 2016). These results have led to speculation that combined inositol and FA treatment 

will have a more optimal effect among women who have had a NTD affected pregnancy.

Iron deficiency is the most common micronutrient deficiency among pregnant women, and 

the World Health Organization estimates that 40% of pregnant women are iron deficient or 

anemic. Despite the importance of iron in numerous cellular reactions and oxygen transport, 

its effect on NTC has been little studied. Epidemiological studies have differed as to whether 

there is a correlation between iron status and NTD risk (Felkner et al., 2005; Molloy et 

al., 2014). In mouse, mutation of the Ferroportin1 (Fpn1) gene, which transports iron from 

the visceral endoderm to the embryo, causes a high NTD rate, as does culture of wildtype 

mouse embryos in an iron chelator (Mao et al., 2010). Fpn1 mutants do not respond to FA 

but iron supplementation can reduce NTD incidence (Stokes et al., 2017). However, iron 

levels may also influence folate metabolism (Herbig & Stover, 2002). Indeed, in mouse 

it was found that iron supplementation can cause folate deficiency even in wildtype dams 

and embryos (Stokes et al., 2017). In a study of a mouse mutant for the Lrp2 gene, which 

mediates endocytosis of the FA receptor as well as uptake of transferrin bound iron, high FA 

supplementation was able to prevent NTDs, while iron supplementation alone had no effect, 

or in combination iron worked against the positive effects of FA supplementation (Sabatino 

et al., 2017). This highlights the interrelationship between iron and folate metabolism and 

lends caution to an oversimplification of the effect of an individual nutrient without a 

broader look at other possible confounding effects, both genetic and environmental.

Zinc is another vital micronutrient and almost 3,000 proteins interact with zinc. 

Epidemiological studies indicate that zinc deficiency is associated with elevated NTD risk 

whereas zinc supplementation has been correlated with decreased risk as well as increased 

risk, perhaps due to intracellular versus peripheral levels of zinc depending on uptake (H. 

Li, Zhang, & Niswander, 2018). Knockout in the mouse of three zinc transporters (ZIP1, 

and double knockout of ZIP1 and ZIP3) on a zinc deficient diet leads to a 2–3 fold increase 

of risk for NTDs (Dufner-Beattie et al., 2006). This implies that zinc transporters are 

essential for the distribution and retention of zinc, and this is important for NTC. Zinc 

deficiency has been linked to p53 ubiquitylation, through the zinc binding protein, MDM2, 

which leads to p53 stabilization and abnormal apoptosis, resulting in NTDs (H. Li, Zhang, 

& Niswander, 2018). Conversely, experimentally induced zinc accumulation by exposure 

to zinc oxide nanoparticles cause NTDs in chickens and mice, likely due to abnormal 

apoptosis. This apoptosis is thought to result from endoplasmic reticulum related stress 

induced by intracellular calcium concentrations (Y. Yan et al., 2021). These studies indicate 

imbalance in the level of zinc may contribute to NTDs and that further studies of maternal 

and fetal zinc status in NTD cases are warranted.

Engelhardt et al. Page 15

WIREs Mech Dis. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Retinoic acid (RA) is another micronutrient implicated in NTDs. RA is a vitamin A 

derivative and a proper spatial gradient of RA is required for development of the hindbrain 

and spinal cord (Araya García, 2017). During normal development, RA suppresses BMP, 

another key factor in neural tube patterning. Cyp26a1 is an enzyme responsible for 

maintaining precise concentrations of RA, and in Cyp26a1 knockout mice, NTC fails (Abu-

Abed et al., 2001). FBXO30 ubiquitin ligase can promote ubiquitin-mediated degradation 

of Retinoic acid receptor gamma and hence can positively regulate BMP signaling. A 

case-control study in humans revealed that human NTD cases are enriched for mutations in 

vitamin A related processing genes (H. Li, Zhang, Chen, et al., 2018). In NTD cases with 

high levels of retinol, BMP target genes are downregulated and FBXO30 is dysregulated 

(X. Cheng et al., 2019). Together the data indicate that when the RA pathway is unbalanced 

due to deficiency or high dosage, the patterning of the neural tube cannot proceed as 

normal. Overall, micronutrients play a key and dynamic role during NTC, and the roles of 

these nutrients and how they influence each other requires further investigation in order to 

understand the causes of NTDs and the most effective types of therapies, depending on the 

genetic makeup of individuals.

4.2 Diabetes

Shifting to a consideration of maternal factors associated with NTD risk, maternal diabetes 

and obesity are significant risk factors for NTDs (Zabihi & Loeken, 2010). The embryo 

does not develop pancreatic function until week 7 of pregnancy, and thus relies on the 

metabolism of the mother during neural tube formation (Lupo et al., 2012). It is proposed 

that altered metabolism in the mother can detrimentally affect NTC. This is supported 

by correlation between SNPs in maternal glucose metabolism genes (FTO, LEP, TCF7l2, 
LEPR, GLUT1, Glut2, and HK1) and increased NTD risk(Loeken, 2020; Lupo et al., 2012; 

Wilde et al., 2014). The exact mechanism is still under debate, however animal models 

point towards decreased proliferation and increased apoptosis within the NE (Gao & Gao, 

2007). Chemically induced diabetes in mice with streptozotocin has implicated several 

pathways including: increased oxidative stress and transcription of Jnk1/2 which can trigger 

pro-apoptotic pathways (X. Li et al., 2012), upregulation of miR-200b and subsequent 

repression of its targets leading to ER stress (Gu et al., 2016), and activation of the Foxo3a 
- Caspase8 pathway which upregulates apoptosis (Yang et al., 2013). Further evidence for 

the latter pathway is demonstrated through the reduction of NTDs in streptozotocin mice 

via knockout of Foxo3a (Xu et al., 2021). Evidence from another diabetic mouse model, 

the nonobese diabetic mouse strain which exhibits high rates of NTDs, points towards 

defects in cell migration when exposed to high amounts of glucose both in vitro, and in-vivo 

(Herion et al., 2019). This suggests convergent extension as another diabetic sensitive NTC 

process. The complexity in parsing diabetes associated contributions towards NTD risk is 

driven home by the observation that more than a third of genes involved in NTC have their 

expression altered in maternal diabetes models (Salbaum & Kappen, 2010).

Conclusion

Large-scale sequencing of NTD samples by researchers across the globe will be key in 

moving beyond testing of genes identified in animal studies to a more comprehensive 
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characterization of human risk alleles and to uncover the multigenic nature of NTDs 

in humans. Efforts to bring together cohort samples and sequencing data, such as the 

Spina Bifida Sequencing Consortium (https://sbseqconsortium.org), will greatly increase our 

ability to pinpoint candidate genes for future evaluation of NTD risk. Current sequencing 

studies include samples from NTD cases conceived post-FA fortification as well as cases 

prior to FA fortification or from countries that do not yet include FA fortification. This 

holds the possibility of identifying NTD risk alleles that differ in these populations, which 

may reflect FA sensitivity. It is speculated that the burden of de novo mutations and/or the 

genetic landscape may differ pre- and post-FA fortification, perhaps representing a shift in 

the threshold of severity or number of gene variants in NTD cases after decades of FA 

supplementation (Lee & Gleeson, 2020). Most sequencing efforts are focused on identifying 

germline mutations, but an additional challenge arises from the idea that somatic mutations 

at the NTD lesion site may contribute to NTD. Recent sequencing studies of the lesion 

site have discovered tissue mosaicism with somatic mutations in proteins of the Mediator 

complex as well as PCP genes(Tian et al., 2021). Moreover, experimental studies in mouse 

showed that as few as 16% of cells carrying a Vangl2 mutation can non-autonomously 

prevent apical constriction in neighbouring cells to prevent NTC(Galea et al., 2021). Also, 

increased signatures of DNA mismatch repair deficiency have been associated with low 

folate status(H. Li et al., 2020). In the future, it is possible that single-cell sequencing may 

reveal the extent to which localized perturbations, rather than germline mutations, contribute 

to NTD. The overall goal will be to provide better genetic counselling for genetic risk 

factors and more personalized consideration of nutrient supplements for better outcomes of 

all births.
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Figure 1: NTD phenotypes
A) Human anencephaly B) Mouse exencephaly C) Human spina bifida D) Mouse spina 

bifida

Fig 1A,C from Wilde, 2014
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Figure 2: Process of NTC
A) NTC begins with a flat sheet of epithelial cells (NE cells shown in green, NNE cells 

shown in blue) overlaying the notochord (yellow) and mesoderm (pink). B) Convergent 

extension and proliferation drive the bulging of the mesoderm and formation of neural folds. 

C) Actomyosin contractions form medial and dorsolateral hinge points as neural folds bend 

and approach one another. D) Neural folds adhere to partner tissue and fuse, forming intact 

neural tube covered by NNE
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Figure 3: Disruption of NE proliferation
A) Illustration of proper balance of dorsal/ventral proliferation. Pax3 acts to increase 

proliferation dorsally, while Phactr4 acts to inhibit proliferation ventrally. B) Mice lacking 

Phactr4 display abnormal ventral NE proliferation (unexpected cells shown in red). Buildup 

of cells ventrally changes the geometry, which does not allow proper neural fold bending 

and inhibits closure.
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Figure 4: Disruption of mesoderm proliferation
A) Illustration of proper mesoderm proliferation and migration, highlighting Twist1 and 

Cart1 as necessary for bulging of mesoderm. B) Loss of Twist1 or Cart1 causes NE 

proliferation to outpace mesoderm growth, preventing the neural folds to adopt a concave 

orientation.
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Figure 5: Disruption of cell migration & intercalation
A) Illustration of NE cell sheet with selected cells marked in purple. B) Convergent 

extensions movements drive the narrowing and lengthening of the cell sheet due to cell 

migration and intercalation. C) Disruptions to cell migration & intercalation result in a wide 

neural plate which prevents contact of neural folds.
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Figure 6: Disruption of actomyosin contraction
A) Illustration of components necessary for proper localization, contraction, and turnover of 

actomyosin. B) Disruption of actomyosin contraction inhibits formation of hinge points and 

neural fold bending.
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