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In pre-clinical models, the composition and function of the gut microbiota have been linked to 

bone growth and homeostasis, but there are few available data from studies of human populations. 

In a hypothesis generating experiment in a large cohort of community-dwelling older men (N= 

831, age range 78-98 years), we explored the associations between fecal microbial profiles and 

bone density, microarchitecture, and strength measured with total hip DXA and HR-pQCT (distal 

radius, distal and diaphyseal tibia). Fecal samples were collected and the 16S rRNA gene V4 

hypervariable region sequenced. Sequences were bioinformatically processed through the DADA2 

pipeline and then taxonomically assigned using SILVA. Generalized linear models as implemented 

in MaAsLin 2 (Microbiome Multivariable Association with Linear Models) were used to test 

for associations between skeletal measures and specific microbial genera. The abundances of 4 

bacterial genera were weakly associated with bone density, structure, or strength (false discovery 

rate (FDR)≤ 0.05), and the measured directions of associations of genera were generally consistent 

across multiple bone measures, supporting a role for microbiota on skeletal homeostasis. However, 

the associated effect sizes were small (log2 fold change <±0.35), limiting power to confidently 

identify these associations even with high resolution skeletal imaging phenotypes, and we assessed 

the resulting implications for the design of future cohort-based studies. As in analogous examples 

from genome-wide association studies, we find that larger cohort sizes will likely be needed to 

confidently identify associations between the fecal microbiota and skeletal health relying on 16S 

sequencing. Our findings bolster the view that the gut microbiome is associated with clinically 

important measures of bone health, while also indicating the challenges in the design of cohort-

based microbiome studies.
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Introduction

Complex multicellular organisms exist as a symbiosis between the host and resident 

microbiota. The largest portion of the human microbiota is in the gut, which is also 

responsible for the majority of immune, metabolic, and biochemical host-microbial 

interactions (1). As a result, the composition of the gut microbiota has been linked to a 

wide variety of normal physiological processes outside the intestine, disturbances have been 

implicated in the causation of numerous disorders, and there may be many opportunities 

to therapeutically alter microbiota composition or function (2). Due to the diversity 

of microbial chemistry and the lifelong nature of association with a personalized gut 

microbiome, gut microbes could participate in health phenotypes that might be unexpected, 

such as kidney stone formation, inorganic detoxification, and developmental processes (3, 

4).

Skeletal homeostasis appears to be affected by the gut microbiota (5-7). A number of 

critical experiments in laboratory animals have revealed skeletal effects of changes in gut 

microbiota composition. Germ-free mice can have altered bone characteristics, including 

increased bone density (8-11). However, these findings are not consistently present (12-14), 

and as with many gnotobiotic animal settings, different outcomes are potentially related to 
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the background strains of the animals used, the protocols for the studies, the age or sex of 

animals, housing conditions, etc. Similarly, antibiotic treatments have been shown to have a 

range of effects on bone density; antibiotic-treated mice appear to have higher bone density 

in some experiments (12), but other reports include adverse (15, 16) or no effects (17). 

Finally, a number of experiments have demonstrated that probiotic preparations, commonly 

including one or more Lactobacillus species, may positively affect mineral metabolism or 

bone health (18-21).

Despite the growing series of animal experiments that demonstrate an effect of the gut 

microbiome on skeletal health, there are very few studies in humans that examine whether 

there are associations between the gut microbiome and skeletal status. Wang et al. (22) 

reported the relationship between categories of BMD (primary osteoporosis, osteopenia, 

normal based on DXA) in a very small number of participants (3 male and 15 female 

patients), but there are no studies in larger cohorts. Jones et al. recently summarized 

compelling studies that suggest that the critical adverse skeletal effects of oophorectomy, 

and the positive effects of some probiotics, are at least in part mediated via alterations 

the gut microbiota, gut permeability, and immune function (13). The mechanisms that 

mediate the interaction between the gut microbiota and bone are undoubtedly complex, 

but may involve combinations of immune function and inflammation (12, 23-25), changes 

in endocrine factors (26, 27), nutritional effects and prebiotics (28-34), secreted microbial 

products (35, 36), effects mediated by exercise (37), and others (5, 14, 20, 27, 38, 39).

We thus aimed to test for covariation between the gut microbiome and skeletal biology 

in humans by studying the associations of the fecal microbiome with multiple measures 

of bone density, microarchitecture, and strength in a large cohort of community dwelling 

older men. We obtained stool samples from 831 participants in MrOS - a longitudinal 

observational study of musculoskeletal health and aging (40, 41). We then performed 

16S rRNA amplicon sequencing, and tested for associations between the abundance of 

microbial clades and human bone measures obtained with high resolution peripheral 

quantitative computed tomography (HR-pQCT) and dual energy x-ray absorptiometry 

(DXA). We viewed this experiment as exploratory and hypothesis generating. As the 

resulting associations were of generally small effect, we utilized this experience to explore 

the implications for the design of future cohort-based microbiome studies specifically 

planned to confidently identify microbiome compositions that are associated with skeletal 

traits.

Methods

Participants: The MrOS cohort

The Osteoporotic Fractures in Men Study (MrOS) is a prospective study of 5,994 

community-dwelling older men, recruited at six clinical sites in the U.S between 2000 

and 2002. The cohort and recruitment methods have been previously described (40, 41). 

At baseline, participants were at least 65 years of age, able to consent, walked without 

assistance of another person, and did not have bilateral hip replacement or any condition 

that in the judgment of the site investigator that would likely impair participation in the 

study. The Institutional Review Boards at all sites reviewed and approved the study and all 
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participants provided informed consent. All surviving active MrOS participants were invited 

to participate in a Year 14 visit occurring between May 2014 and May 2016.

As part of a microbiome study, 1,329 of the men participating in the visit were invited to 

provide a stool sample starting in 2015. Some men (347) refused or were deemed ineligible 

to collect specimens because of cognitive or physical limitations that interfered with the 

sample collection, 982 participants agreed, 951 specimens were obtained, 31 specimens 

were inadequate, and one did not pass the pipeline validation code after genotyping; thus, 

919 had complete microbiome data available (Figure 1). There were a few small but 

significant differences between those who agreed and those who refused: the men who 

agreed were slightly younger, more active, stronger, and more often reported good or 

excellent health than those who declined (42). Participants were also queried about antibiotic 

use in the 30 days prior to sample collection, and the 66 (7.2%) who reported use were 

excluded from the analyses. Finally, complete covariate data were missing in 22. Thus, the 

final analyses included 831 participants.

Microbiome sample collection, 16S rRNA gene sequencing, and sequence data processing

As described previously (42), after collection instructions were provided during the in-

person clinic visit, fecal samples were collected by study participants at their homes 

using the Omnigene Gut collection kit (OMR-200, DNA Genotek, Ottawa, Canada) that 

includes a stabilizing reagent to preserve stool DNA at ambient temperature for up to 

60 days (43, 44). Stool collection was within 1 month after the study visit for 98.3% of 

participants, and others were within 3 months. Samples were mailed directly to Portland 

and stored at −80°C until DNA extraction. The specimens were sent to the Alkek Center 

for Metagenomics and Microbiome Research (CMMR), Baylor College of Medicine in 

Houston, TX, where the samples were aliquoted and genomic bacterial DNA was extracted 

using the MO BIO PowerSoil DNA Isolation Kit (MO BIO Laboratories, Inc, Carlsbad, 

CA). The 16S rRNA gene V4 hypervariable region (hereafter abbreviated 16S) was then 

amplified using primers 515F and 806R by polymerase chain reaction and sequenced on the 

MiSeq platform using the 2×250 bp paired-end protocol (Illumina, San Diego, CA). The 

fecal samples were extracted, amplified, and sequenced in two batches: the first 599 men 

from whom fecal samples were collected, and those 320 from whom samples were received 

thereafter. Collection, sample processing, and 16S amplification and sequencing procedures 

were identical in the two subcohorts. The clinical characteristics of the men in the two 

batches were highly similar, and microbiome diversity was minimally different between the 

two batches of samples. Specifically, Shannon alpha diversity (for methods, see below) was 

minimally, albeit significantly, different (batch 1 median Shannon diversity index 3.66, batch 

2 3.76, p= 0.006). Thus, all analyses were performed using the results from the two batches 

combined, with adjustment for batch in all analyses. In the analyses, no significant batch 

effects were seen with HRpQCT measures.

Raw amplicon sequences as FASTQs were then bioinformatically processed through 

the DADA2 (45) workflow in R which has been wrapped in the reproducible 

bioBakery workflow (46) with AnADAMA2. Briefly, sequences are demultiplexed, after 

which DADA2 denoising, filtering, trimming, merge, chimera removal, and taxonomic 
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classification is executed in R using default parameters for paired-end Illumina sequence 

data. DADA2 assesses the reads for sequence error rates and corrects on a base by base 

basis. Chimera removal occurs while simultaneously assigning amplicons to amplicon 

sequence variants (ASVs). Assigning ASV is based on determining which exact sequences 

were read and how many times each was read. These data are then combined with an error 

model for the sequencing run, enabling the comparison of similar reads to determine the 

probability that a given read at a given frequency is not due to sequencer error. Phylogenetic 

trees are constructed after alignment of sequences using Clustal Omega (47). ASVs are then 

taxonomically assigned using the SILVA (48) reference database (version 128).

This yielded a total of 12855 denoised ASVs across all samples, with an average of 25487 

reads per sample (ranging from 5429 to 70721 reads). ASVs were excluded if present in 

<10% of samples or at a relative abundance of <0.0001, leaving 2,788 available for analysis 

after quality control.

Skeletal measures

HR-pQCT measures were performed using Scanco XtremeCT II machines (Scanco Medical 

AG, Brüttisellen, Switzerland) as previously described (49). Centrally trained operators 

acquired scans of the distal radius (9 mm from the articular surface), distal tibia (22 

mm from the articular surface), and diaphyseal tibia (centered at 30% of tibial length, as 

measured externally from the tibial plateau to the tibial malleolus. The radius from the 

nondominant arm and the tibia from the ipsilateral leg were scanned except in the case 

of prior fracture, metal shrapnel or implant, or recent non-weight-bearing status persisting 

>6 weeks; 8% of radius scans and 8% of tibia scans were performed on the dominant 

limb. Machines were calibrated prior to being used in the present study, and a single 

cross-calibration density phantom was circulated among the study sites.

Centralized quality assurance and standard analysis of all image data, including micro-finite 

element analysis (μFEA), was performed. A central observer read all images for motion 

artifacts and used an established semiquantitative five-point grading system (1 = superior, 5 

= poor) to score image quality; images of grade 4 or 5 were deemed to be of insufficient 

quality and were excluded from the analytic data set (97% of scans had image grade ≤3). 

The final analyses included 792 radial, 801 distal tibial and 732 proximal tibial images 

(Figure 1).

A fully automated analysis pipeline was developed to segment the radius and tibia for 

quantification of bone density and microarchitecture. Volumetric BMD and cross-sectional 

area of the total, cortical, and trabecular compartments were measured. Cortical porosity 

and thickness, and trabecular thickness and number were calculated directly. Linear elastic 

μFEA of a 1% uniaxial compression was performed using a homogenous elastic modulus 

of 10 GPa and a Poisson's ratio of 0.3 (Scanco FE Software v1.12; Scanco Medical). 

The failure load was estimated by calculation of the reaction force at which 7.5% of 

the elements exceed a local effective strain of 0.7%. The measures were identified as 

suggested by Whittier et al (50). The precision of HR-pQCT measures have been reported 

(51, 52). Since associations of bone measures with the gut microbiome may be different 

depending on the specific site of measurement (e.g. cortical vs trabecular, radial vs tibial) 
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we examined these associations using several types of bone measures. In that analytical 

context, the intercorrelations between measurement sites should also be considered; those 

intercorrelations are shown in Supplemental Figure 1.

Hip DXA scans were performed on Hologic 4500 scanners (Hologic, Waltham, MA, USA) 

as previously described (53). Centralized quality-control procedures, certification of DXA 

operators, and standardized procedures for scanning were used to ensure reproducibility of 

DXA measurements. The coefficient variation of the MrOS DXA scanners estimated using a 

central phantom ranged from 0.3% to 0.7% for the total hip. Each participant's right hip was 

scanned unless there was a fracture, implant, hardware, or other problem preventing the right 

hip from being scanned; in those instances, the left hip was scanned.

Other measurements

Body weight was measured on balance beam or digital scales; height was measured using 

a Harpenden stadiometer (Holtain, Dyfed, UK). Body mass index (BMI) was calculated 

as weight (kg)/height (m2). Medical history included self-reported physician diagnosis 

of diabetes. Alcohol use was assessed as 0-5 or ≥6 drinks/week. All men completed 

questionnaires and were interviewed about health status, including as assessment of life 

space (54). Each self-reported his health as excellent/good, fair, poor, or very poor. The 

PASE questionnaire (Physical Activity Scale for the Elderly) was used to estimate physical 

activities (55). All prescription medications were recorded in an electronic medication 

inventory database and matched to its ingredients based on the Iowa Drug Information 

Service drug vocabulary (College Pharmacy, University of Iowa, Iowa City, IA, USA) (56). 

The composite life space score, a comprehensive measure of mobility that captures an 

individual's movement in their environment, was assessed by questionnaire (54). Diet was 

assessed using the Block dietary questionnaire, and the response data was reduced using 

factor analyses to derive two major dietary patterns ("Western" and "prudent") (57, 58) 

that were used as covariates in these analyses. They represent two dietary patterns that are 

commonly empirically derived based on the underlying distribution of the dietary habits 

of participants. The Western dietary pattern is characterized by high intakes of processed 

meat, fried foods, snacks, and desserts. The prudent dietary pattern is characterized by high 

intakes of fruits, vegetables, legumes, whole grains, and lean meats like chicken. The scores 

are a linear combination of foods in that pattern; a higher factor score indicates a higher 

correlation of foods in that dietary pattern.

Statistical analyses

The analytic sample for the present analysis included those 831 men with 16S sequencing 

and measures of bone parameters who reported no use of antibiotics within the past month 

and complete data for the adjustment covariates (Figure 1). The Kruskal–Wallis test was 

used to determine differences in categorical demographic and clinical covariates such as age, 

race, diet, body mass index, and clinic site.

Diversity analyses: Alpha diversity (estimated using the Shannon index) is a measure 

of the richness of a microbial community (total number of taxa and evenness of the taxa 

present) in a single sample. We tested for alpha diversity associations with HR-pQCT 
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measures using linear regression controlling for covariates (age, race, clinic site, diet, and 

BMI) (57, 59). Beta diversity estimates (measures of the differences in microbial abundance 

between 2 samples) included Bray-Curtis dissimilarity and unweighted and weighted 

UniFrac distance metrics. Weighted-UniFrac takes into account the relative abundance of 

species/taxa shared between samples, whereas unweighted-UniFrac only considers presence/

absence. Principle coordinates analysis (PCoA) was used to analyze and visualize patterns 

of beta diversity in sequence count data. To prepare the analytic data set from raw ASV 

count data we agglomerated ASVs to the genus level, filtered the resulting taxa (requiring 

at least 10% prevalence and 0.0001 abundance) and used relative abundance to normalize, 

i.e. control for differences in library sizes. We did not rarefy to equalize counts for any of 

the analyses. The final dataset included 122 total ASVs. Permutation analysis of variance 

(PERMANOVA) as implemented by the adonis function in R vegan was used to test 

the statistical significance of microbial community dissimilarities across continuous bone 

measures with 999 permutations.

Associations between microbial abundance and skeletal measures: For association analyses, 

counts were filtered and then agglomerated (final dataset, 129 ASVs). Generalized linear 

models as implemented in MaAsLin 2 (Microbiome Multivariable Association with Linear 

Models) were used to test for associations between skeletal measures and specific microbial 

genera (60). Bacterial count data were normalized and transformed according to methods 

available in the package (CSS normalization and log transformation). The default MaAsLin 

2 parameters were applied (taxonomic feature prevalent in a minimum of 10% of all 

samples, minimum percentage relative abundance 0.01%, P < 0.05, q < 0.25). Models 

used each genus as the outcome (all ASVs for the same genus were agglomerated) and 

the standardized phenotypes as predictors of interest; i.e. the association of the relative 

abundance of the microbe per SD increase in the bone phenotype. False discovery rate 

(FDR) values for discovery using MaAsLin 2 were calculated with respect to the set of 

associations for each skeletal measurement site individually (Table 2). All models were 

additionally adjusted for age, race, clinic site, diet, BMI, batch number, PASE score, self-

rated overall health, self-rated diabetes, alcohol use, and number of medications used.

We also evaluated our confidence in the associations of genera with skeletal measures 

using established approaches for examining local FDR considerations that are similar to 

those applied to genome association studies (61-63), essentially by examining the overall 

distribution of z-scores of associations to determine the degree to which effect estimates 

in the tails of the z-score distribution were expected (followed the theoretical normal null 

distribution) or unexpected (likely to be non-null). We used these analyses to estimate the 

attained power of our study design, and finally considered the power needs of similar future 

studies. In fact, the observed Z-score distribution has somewhat long and asymmetrically 

dense tails (Supplemental Figure 2), suggesting that at least a proportion of these extreme 

values (either positive or negative) may represent meaningful associations. Detailed methods 

for these analyses of the distribution of z-scores are provided in Supplemental Statistical 

Methods. Briefly, we performed a finite mixture analysis of the association z-scores, 

assuming a three-component mixture where the central component (centered near zero) 

is normally distributed and represents the "null" associations, and the outer (extremal right 

and left) components represent the admixture of "non-null" associations hidden within the 
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tails of the observed distribution. Based on the empirical spread of all the z-scores (from all 

bone measures) taken together, we fit a normal distributional curve to the central ("null") 

component and extrapolated that curve into the tails to yield the distribution of z-scores 

that would be expected under the null hypothesis (of no association), given the observed 

data. At each end of the mixture distribution of the observed z-scores, we identified regions 

in the tails that showed higher density than expected from the normal null distribution 

and were thus more likely to contain high concentrations of non-null associations. These 

components of the mixture were considered "enrichments" (of extreme positive or negative 

values occurring at higher rates than expected for null associations). To clarify the power 

of our study design and the challenges in interpreting "significant" effects that may or may 

not represent real associations, we estimated the expected local FDR value for a non-null 

effect appearing in an enriched area of one of the tails of the z-score distribution. The local 

FDR differs from the typical FDR adjustments applied to p-values in that the local FDR 

applies to each z-score individually, and is conditioned on that value; it is interpretable 

as an empirical Bayes probability that the specific z-score of interest is a false finding, 

i.e. that it comes from the null distribution rather than from a component of enrichment 

(typical FDR adjustments, e.g. the Benjamini-Hochberg algorithm, only estimate the average 
false discovery rate expected across all "discoveries" with a p-value more extreme than 

some cutoff; they are not true probabilities and do not apply to individual results). The 

expected local FDR for a non-null effect is the average local FDR value for z-scores coming 

strictly from an enrichment, given the estimated locations of the enrichment components. 

The higher the expected local FDR value, the lower the power to discover true effects using 

FDR-based cutoff criteria (because the probability that any given finding comes from the 

null distribution instead is high on average).

Visualization of clusters of phenotypes and taxa of interest: Differences in microbial 

composition per standard deviation of each HR-pQCT measure were assessed using the 

multivariable MaAsLin 2 analysis, and the log2 fold change and FDR-adjusted p-value for 

each taxon were used to create a heatmap. We performed a hierarchical clustering analysis 

to group associations found using MaAsLin 2 across the variety of skeletal measures (HR-

pQCT and DXA). We used Cronbach's alpha to assess the coherence of associations within 

clusters; we probed the volatility of the alpha coefficient to small amounts of shuffling of the 

components of the clusters.

Analyses were performed using R version 3.6.0 for processing the microbiome data, 

diversity analysis were performed using the Phyloseq package in R, regression analysis 

of the ASVs with the bone phenotypes were performed using the MaAsLin 2 package in R, 

heatmaps were created using the heatmap2 package in R, Stata version 16.1 was used for 

the finite-mixture analysis of association z-scores and meta-analysis of effect sizes across 

measurement sites, and SAS version 9.4 was used for creating summary tables.

Results

Participants.

Samples adequate for amplicon sequencing were available from 919 men. A number of 

men were excluded for use of antibiotics and some outcome measurements were missing 
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in additional participants (Figure 1); the final analyses included data from 831. The clinical 

characteristics of these men are provided in Table 1, where we also provide a summary 

of the diversity measures and the average number of amplicon sequence variants (ASVs) 

detected. Within this population, none of the skeletal measures were significantly associated 

with alpha diversity (Shannon diversity; Supplemental Table 1) or beta diversity (examples 

in Supplemental Figure 3).

Associations between genera and skeletal measures.

After multivariable adjustment, we identified possible associations between skeletal 

measures and specific bacterial genera (Table 2). At MaAsLin 2-derived FDR≤ 0.05, the 

abundances of 4 genera were associated with one or more skeletal measurement sites: 

greater Anaerofilum abundance was associated with lower radial and tibial density, radial 

and tibial strength, tibial cortical thickness and cortical porosity, and hip DXA BMD; 

Methanomassiliicoccus was associated with greater distal tibial cortical porosity. On the 

other hand, Ruminiclostridium 9 was associated with less distal tibial cortical porosity, and 

Tyzzerella with greater tibial density measures. The abundances of 2 additional genera were 

associated using a slightly less strict criterion (FDR≤ 0.1): Lactobacillus and Streptoccocus 
were both associated with worse bone measures at radial and tibial sites. As this was 

intended to be an exploratory analysis, Table 2 also includes associations with FDR up to 

0.25.

Patterns of associations across skeletal phenotypes.

The availability of a number of complementary microarchitectural and density 

measurements at three skeletal sites allowed us to explore the patterns of their joint 

associations with microbial taxa (Figure 2). Several overall patterns were apparent. First, 

there was a group of genera with generally positive associations with measures of bone 

density, microarchitecture, and failure load (the top cluster in Figure 2), and another with 

generally negative associations (the bottom cluster in Figure 2).

Second, the direction of associations with measures of cortical porosity tended to be 

similar, particularly at the two tibial sites (Figure 2, right columns) and were frequently 

in the opposite direction to the measures of density or structure, as might be expected 

if perilacunar remodeling was broadly and similarly affected throughout the skeleton, as 

greater porosity would be expected to lower bone density. Correspondingly, associations 

between genera and porosity were found to be highly consistent across genera (Cronbach's 

alpha = 0.75) and were similarly consistent for non-porosity measures (Cronbach's alpha = 

0.95). The correlations between measures of cortical porosity and other skeletal measures 

were low (Supplemental Figure 1) and did not explain the grouping of associations between 

genera and cortical porosity, and the fact that they are often in the opposite direction from 

density measures.

Finally, the associations of genera with measures of cortical thickness, cortical density 

and total density were similar at the distal radius, distal tibia, and diaphyseal tibia, and 

clustered together. Failure load at the diaphyseal tibia, determined primarily by cortical bone 

characteristics, is also in this cluster. Associations with measures of trabecular density and 
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number, and failure load at the distal radius and tibia, tended to be similar, and to represent a 

separate cluster. The associations of genera abundance with total hip BMD assessed by DXA 

were generally comparable to those of trabecular measures and failure load assessed by 

HR-pQCT. These findings are possibly consistent with the correlations between the skeletal 

measures.

Power and sample size considerations.

We used our results to estimate the attained power of the current study to identify 

associations of microbiota with skeletal traits. From the overall distribution of the MaAsLin 

2-derived z-scores of all associations tested (Figure 3) we identified areas of the tails of the 

distribution that contained a greater enrichment of effects than would be expected from a 

normal null distribution comprising all the z-scores considered together (Figure 3). Based 

on the finite mixture analysis of this distribution (see Statistical Analyses), the expected 

(i.e. mixture-model-based average) local FDR value across all the enriched portions of the 

tails (red and green areas in Figure 3) was very large at 0.76. This number represents the 

average probability of false discovery that would apply to a z-score selected at random 

from an enrichment area. Since most of the z-scores in these areas are in regions of high 

null density (the height of the smooth black line shown in Figure 3), they lack salience 

as true "discoveries". Moreover, the average local FDR value for even the most extreme 

members of the distribution, for example the three most extreme negative z-scores and the 

three most extreme positive z-scores, was 0.33, indicating that even in the furthest reaches 

of the tails, null density is still sufficiently large that the z-scores found there could very 

plausibly have come from the null distribution instead of from an enrichment. Note that this 

somewhat large local FDR estimate for the most extreme z-scores contrasts with the lowest 

FDR values presented in Table 2. That difference is because the FDR values in Table 2 are 

tail-averaged (i.e. not local) FDR values calculated by MaAsLin 2 for associations at each 

skeletal measurement site individually, while the distribution-based estimates here use the 

full set of associations across all measurement sites together, and also consider local FDR 

(i.e. at each z-score) rather than average tail FDR (for details about local FDR see Statistical 

Analyses).

In studies of the association of microbiome composition with skeletal traits, low expected 

false discovery rate (e.g. FDR < 0.1) for promisingly large associations would be desirable. 

The z-scores observed among the most robust associations in the current studies had 

estimated log2 fold changes of approximately 0.25 per standard deviation of bone measure 

(Table 2), with standard errors on the order of 0.1. An optimistic power calculation assuming 

enrichment fraction and effect sizes at similar levels to what was observed in the current 

study estimates that a sample size of no less than n = 6,000 would be required, and upwards 

of n = 10,000 or more may be required if the true effect sizes are smaller, the enrichment 

fraction is lower, or both.

Discussion

The gut microbiome has been linked to bone homeostasis in a variety of animal experiments, 

and probiotic supplements have been reported to have beneficial effects on bone density 
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in postmenopausal women (20), but there are few data concerning what elements of the 

microbiome might be related to skeletal health in humans. This is the first large study 

to test for associations between the microbiome and skeletal measures in humans. We 

found suggestive evidence that the abundances of several bacterial genera were associated 

with skeletal bone density, microarchitecture, and strength. Four genera were associated 

with at least one skeletal measure (Anaerofilum, Methanomassiliicoccus, Ruminiclostridium 
9, and Tyzzerella). Two more (Lactobacillus and Streptococcus) were associated using 

somewhat less stringent significance criteria. Most associations were negative, but others 

suggested higher genera abundance was associated with indices of better skeletal health. 

This is concordant with dysbiotic shifts in other health conditions, which are frequently not 

attributable to single organisms, but which can instead modify any one of several "more" or 

"less beneficial" microbes among different individuals. Moreover, these relationships were 

generally consistent across a variety of skeletal measurement sites. While the study must be 

considered exploratory and we cannot be highly confident of the associations we identified, 

our results should be useful in highlighting specific bacterial genera and pathways that may 

be of particular interest for additional confirmatory research. The genera we report as having 

the most robust associations have not, to our knowledge, been previously reported to affect 

skeletal traits and the mechanisms that might mediate those effects are unknown. More 

detailed studies using metagenomic data generated by shotgun sequencing (i.e. at the species 

or functional level) would be better suited to identify biological functions that might be 

important for bone.

The patterns of the associations of the microbiome with skeletal measures may also be 

informative. The associations between genera abundance and bone were generally consistent 

across multiple measurement sites and bone compartments. For instance, genera most 

strongly associated with lower trabecular BMD were also likely to be associated with 

lower cortical thickness and higher cortical porosity, and hence lower integral BMD and 

failure load. This pattern is expected if mediated by a broad-based effect of the microbiome 

on remodeling balance (either positive or negative) that would drive density and porosity 

measures in opposite directions. This also suggests that putative influences of microbial 

composition on bone were not limited to a particular bone compartment but involve 

widespread remodeling-based mechanisms. To some extent, these consistent associations 

across measures of several anatomical sites are expected based on underlying correlations 

among the skeletal measures (Supplemental Figure 1). However, these are sometimes quite 

weak in isolation (e.g. r ~ 0.4), making it difficult to assume they completely explain the 

consistent associations of microbes with multiple skeletal measures. The associations with 

distal radial cortical porosity were somewhat less consistent, but the accuracy of cortical 

porosity measures at the distal radius is questionable. Overall, the consistency and biological 

plausibility of the patterns of associations argues against statistical artifact, and suggests an 

underlying microbiome-bone interaction.

A notable finding given the nontrivial size of our sample of participants (n> 800) was that 

there were few strong associations between taxa and skeletal measures. This is again in 

some ways to be expected, as the routes by which the gut microbiome can affect systemic 

physiology are relatively narrow. Molecular mechanisms to transmit chemical products or 

immune activity from the gut throughout the body for bone development and/or maintenance 
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must of necessity act gradually at best, and in extreme cases the latter will be confounded 

with overt inflammatory disease. A further challenge in this cohort of older men is that 

variation in the HRpQCT features also reflects genetic variation and the influence of lifetime 

exposure to environmental effects. Thus, some of the effects of the microbiome would 

likely be proportionately small. Our experience with these data suggests that studies similar 

to this one would have to be large (≥ 6,000 participants) to provide adequate power to 

confidently detect meaningful associations. Cohort studies that utilize metagenomic data 

with resolution exceeding that of our 16S rRNA gene amplicon sequencing might need even 

greater population sizes to provide sufficient power. These challenges are similar to studies 

using genetic markers, in which effect sizes of common variants with phenotypes are of 

extremely small magnitude (64-66). Conversely, studies of more focused patient populations 

might require fewer numbers. For instance, studies of participants with specific clinical 

characteristics or studies that exclude variables that might confound the relationships (67), 

could improve power.

The study had several strengths. MrOS is a well-phenotyped cohort with extensive 

information about the participants’ clinical characteristics. We excluded men with recent 

exposure to antibiotics, and adjusted for potentially confounding factors. Fecal samples 

were collected using an approach known to preserve nucleic acids and well-established 

methods were used for bacterial genotyping and analyses. Standardized bone measures were 

performed at several skeletal sites using state-of-the-art approaches.

We also identified several important limitations. Most importantly, our strongest associations 

between bone phenotypes and the gut microbiome were relatively small, and it is clear that 

even in >800 men these results must be considered exploratory. On the other hand, the 

genera that we have identified may be very useful as specific targets for future replication 

studies, especially if adequately powered, and eventually to identify pathways or to design 

targeted research using mouse models. While the homogeneity of the MrOS aids in analysis, 

this was as a result a cross sectional evaluation that included only elderly males; we could 

not evaluate the potential influence of age, sex, or racial/ethnic differences, longitudinal 

measures of the gut microbiome and the skeleton, and their inter-relationships. On the 

other hand, although the human microbiome can vary in response to a variety of stimuli, 

it is generally relatively self-stable over long periods (68, 69). Also, as is often necessary 

in human populations, the study was observational, and causation cannot be determined 

from our results. Finally, while we examined multivariable models that included a number 

of factors that might influence bone, the microbiome or their interactions, there may be 

additional confounding variables that were not considered.

In summary, we examined associations of genus-level gut microbial components with 

measures of bone density, microarchitecture, and strength in a cohort of older men. 

We found several taxa that were nominally associated with bone measures, and a 

compelling pattern of genus-bone relationships that suggest the influences of microbial 

composition on bone are not limited to a particular bone compartment but involve more 

generalized mechanisms. The magnitudes of the associations we detected were not large, 

but therapeutically targeting the microbiome over many years could still translate into 

preservation or enhancement of skeletal integrity. Clearly additional studies should involve 

Orwoll et al. Page 12

J Bone Miner Res. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



larger cohorts of men and women over wider age ranges and/or more causally incisive 

methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Selection of participants; fully described in Methods.
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Figure 2. 
Associations between gut microbial taxa and bone measures. Differences in microbial 

composition per standard deviation of each bone measure were assessed using generalized 

linear models in MaAsLin 2, and the log2 fold change and FDR-adjusted p-value for 

each taxon were used to create the heatmap. Only those associations with FDR <0.25 are 

included. A hierarchical clustering was performed to group associations across the variety of 

skeletal measures. *p< 0.05
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Figure 3. 
Finite mixture analysis of association z-score distribution. The smooth black curve is an 

estimate of the hypothetical normal distribution of null associations, based on the observed 

range and density of z-scores near zero. The jagged light-blue line shows the distribution 

(in bins of 1/14 ~ 0.0714 z-score units) of all actual, observed z-scores of the taxa-skeletal 

measure associations. The colored areas represent the number of taxa-skeletal measure 

associations not expected to occur within the hypothetical normal distribution of null 

effects, and thus representing potentially true associations: red the number of potentially 

true negative effects, and green the potentially true positive effects. The false discovery rates 

at each location on the z scale can be visually estimated by comparing the height of the 

red or green areas at that location to the height of the overall histogram (light-blue line) at 

the same location. See Supplemental Statistical Methods for a fuller description of the finite 

mixture model.
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Table 1.

Cohort characteristics. N= 831. Mean (SD) or N (%).

Age (years) 84.2 (4)

BMI (kg/m2) 27 (3.7)

PASE score 123 (66)

Self-rated health status

 Excellent/good N (%) 744 (90)

 Fair, poor or very poor N (%) 87 (10)

Diabetes N (%) 124 (15)

Alcohol

 0-7 (drinks/week) N (%) 503 (60)

 >7 (drinks/week) N (%) 326 (40)

Western diet −0.03 (−1.0)

Prudent diet −0.01 (−1.0)

Total number of medications taken 9 (6)

Composite life-space score 85 (22)

Shannon alpha diversity* 3.6 (0.6)

Observed amplicon sequence variants (ASVs)* N (range) 144 (48)

Min Bray-Curtis dissimilarity* 0.6 (0.05)

Distal radial

 Failure load (FL)(kN) 4921 (1344)

 Total BMD (Tt.BMD)(mg HA/cm3) 276 (60)

 Trabecular BMD (Tb.BMD)(mg HA/cm3) 170 (39)

 Trabecular number (Tb.N)(1/mm) 1.4 (0.2)

 Cortical thickness (Ct.Th)(mm) 1.0 (0.2)

 Cortical porosity (Ct.Po)(%) 0.02 (0.01)

Distal tibial

 Failure load (FL)(kN) 4921 (1344)

 Total BMD (Tt.BMD)(mg HA/cm3) 276 (60)

 Trabecular BMD (Tb.BMD)(mg HA/cm3) 170 (39)

 Trabecular number (Tb.N)(1/mm) 1.4 (0.2)

 Cortical thickness (Ct.Th)(mm) 1.0 (0.2)

 Cortical porosity (Ct.Po)(%) 0.02 (0.01)

Total hip BMD; gm/cm2 0.94 (0.15)
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Table 2.

Associations between taxa abundance and bone measures from the MaAsLin multivariate adjusted model. 

Includes all associations with FDR q-values ≤0.25.

GENUS

Mean
relative

abundance* Bone phenotype
Log 2 fold
change**

FDR q-
value***

Anaerofilum .00028 FL distal radius −0.262 0.019

BMD DXA THD −0.249 0.027

FL distal tibia −0.214 0.075

Ct.Th distal radius −0.189 0.136

Tt.BMD distal radius −0.184 0.148

Tb.BMD distal radius −0.166 0.186

Ct.Th diaphyseal tibia −0.186 0.195

Tb.N distal radius −0.155 0.247

Ruminiclostridium 9 .00321 Ct.Po distal tibia −0.232 0.027

Methanomassiliicoccus .00012 Ct.Po distal tibia 0.165 0.027

Tyzzerella .00084 Tt.BMD diaphyseal tibia 0.338 0.048

Tt.BMD distal tibia 0.244 0.165

Lactobacillus .00035 Tb.N distal radius −0.191 0.076

FL distal radius −0.161 0.159

FL distal tibia −0.155 0.162

Streptococcus .00151 FL distal tibia −0.285 0.100

BMD DXA THD −0.275 0.120

FL distal radius −0.262 0.145

Tb.BMD distal tibia −0.223 0.230

Ruminiclostridium 5 .00314 Ct.Th distal tibia −0.191 0.115

Ct.Po distal tibia 0.147 0.250

Sellimonas .00009 Ct.Po diaphyseal tibia 0.141 0.117

Romboutsia .00103 Ct.Th distal tibia −0.253 0.131

Lachnospiraceae FCS020 group .00013 Ct.Po diaphyseal tibia −0.165 0.139

Ruminococcaceae UCG-009 .00008 Tb.N distal radius −0.124 0.141

.00008 Total hip BMD DXA −0.114 0.193

UBA1819 .00233 Ct.Th distal tibia −0.219 0.148

Cloacibacillus .00027 Tb.BMD distal tibia 0.154 0.150

Flavonifractor .00161 Total hip BMD DXA 0.261 0.151

FL distal radius 0.253 0.164

Tb.N distal radius 0.253 0.166

Ct.Th diaphyseal tibia 0.252 0.214

Tb.BMD distal radius 0.222 0.230

Tt.BMD diaphyseal tibia 0.245 0.231
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GENUS

Mean
relative

abundance* Bone phenotype
Log 2 fold
change**

FDR q-
value***

Ruminiclostridium 6 .01081 Tb.N distal radius −0.340 0.166

Erysipelatoclostridium .00047 Ct.Th distal tibia −0.205 0.154

Holdemania .00020 Ct.Th distal radius −0.171 0.166

UC5-1-2E3 .00161 FL distal tibia −0.270 0.172

Akkermansia .02971 Tt.BMD distal radius −0.344 0.182

Eisenbergiella .00025 Tb.BMD distal tibia 0.169 0.188

GCA-900066575 .00017 Ct.Po distal radius −0.151 0.193

Ruminiclostridium 1 .00028 Total hip BMD DXA −0.164 0.200

Lachnospiraceae UCG-001 .00290 Tt.BMD distal tibia 0.263 0.202

Ct.Th distal tibia 0.256 0.225

Odoribacter .00350 Tb.N distal tibia 0.248 0.205

Clostridium sensu stricto 1 .00310 FL distal radius −0.262 0.210

Tt.BMD distal radius −0.254 0.227

Faecalitalea .00030 Ct.Po distal tibia 0.162 0.212

Tyzzerella 3 .00013 Tb.N distal tibia 0.129 0.221

Intestinimonas .00191 FL distal radius 0.176 0.221

Methanobrevibacter .00080 Ct.Po distal tibia 0.171 0.223

Erysipelotrichaceae UCG-003 .00131 FL diaphyseal tibia 0.250 0.225

Lachnospiraceae UCG-004 .00268 Tb.N distal tibia −0.258 0.226

Acidaminococcus .00099 FL distal tibia 0.185 0.233

Lachnospiraceae NK4A136 group .01274 Ct.Po diaphyseal tibia −0.231 0.241

Lachnospiraceae UCG-010 .00096 Total hip BMD DXA 0.186 0.242

Bacteroides .25190 Total hip BMD DXA 0.122 0.243

Terrisporobacter .00034 Tb.N distal tibia −0.162 0.243

Oscillibacter .00329 Total hip BMD DXA 0.157 0.246

*
Mean relative abundance is the abundance of each genus (from raw counts) as a proportion of all genera.

**
Log 2 fold change is the log-ratio of the association of the relative abundance of the microbe per SD increase in the bone phenotype.

***
The q-value is the expected proportion of false positives among all features at least as extreme as the observed one.
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