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Abstract:
Proprioception is a deep sensation that perceives the position of each part of the body, state of movement and muscle

contraction, and resistance and mass applied to the body. Proprioceptive feedback influences movement and positional accu-

racy, resulting in key somatosensory functions for human postural control. Proprioception encompasses signals received

from proprioceptors located in the skin, subcutaneous tissue, muscles, tendons, and joint capsules, commonly known as

mechanoreceptors. The muscle spindle, a crucial proprioceptor, is stretched during eccentric contraction of muscle, thus gen-

erating an action potential on afferent fibers to convey a proprioceptive information to the sensorimotor cortex in the brain.

For exercise therapy in patients with locomotor disease, proprioception serves an essential function for motor control; thus,

this should be considered to obtain effective muscle output. As postural control is achieved by proprioceptive function ac-

cording to the balance between the lower limb and trunk, relative proprioceptive weighting ratio can help clarify propriocep-

tive control using muscle response to mechanical vibration. The absence of proprioceptive information congruent with mo-

tor intention activates cortical center monitoring incongruence of sensation, leading to pathological pain. Therapeutic proce-

dures may aim to restore the integrity of cortical information processing in musculoskeletal chronic pain. Poor propriocep-

tion is one of the main causes of decreased postural balance control in elderly patients with low back pain (LBP). It has

been hypothesized that proprioception of the lower limbs deteriorates with age-related muscle mass loss (sarcopenia), which

increases the proprioceptive burden on the lumbar spine. Accurate diagnosis of the proprioceptive function is important for

establishing a treatment procedure for proprioceptive recovery, and further prospective research is required to clarify the re-

lationship between proprioception and LBP improvement.
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Introduction

In Japan, the prevalence of chronic musculoskeletal pain

is 15.4%, and it mostly occurs in the low back1). The preva-

lence and associated burden of low back pain (LBP) in-

crease with age2), which is a major problem that cannot be

overlooked considering Japan’s super-aging society and the

decline in quality of life associated with LBP. In particular,

the incidence of chronic LBP (CLBP) increases with age,

with more than 1 in 3 community-dwelling older adults ex-

periencing LBP3). Furthermore, it presents one of the most

disabling and therapeutic challenges affecting older adults4).

For 40 years, the mechanical model of geriatric LBP has

been based on pathoanatomical spinal changes; however,

spinal degeneration is highly prevalent in old age and is

weakly associated with pain intensity5,6). As older adults are

susceptible to LBP, mechanisms other than spinal degenera-

tion such as systemic senescence may also be implicated.

Recently, it has been reported that age-related muscle mass

loss (sarcopenia), which occurs with increasing age, may
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cause pain7-9) with changes due to systemic aging. Moreover,

sarcopenia and/or sarcopenic obesity (age-related intramus-

cular fat deposition), which are associated with geriatric

LBP10,11), are considered a result of systemic inflamma-

tion12,13). However, age-related skeletal muscle mass loss oc-

curs in type II fibers14); therefore, trunk muscles, which con-

tain a greater number of type I fibers, develop sarcopenic

changes later than muscles in the lower extremities15). There

is conflicting evidence for the relationship between morpho-

logical changes in the lumbar muscles and LBP16-18). At the

other extreme, activation of local muscles is essential for

segmental stability of the lumbar spine; therefore, local and

global muscles, which were initially believed to function in-

dependently for stabilization and moment generation, respec-

tively, are both crucial for the stability and mobility of the

lumbar spine19,20). Clinical instability of the spine, as a poten-

tial cause of LBP, is defined as failure of the motor control

system. Motor control adaptations are inevitably linked to

somatosensory feedback, namely proprioception. There is

growing scientific evidence that proprioceptive functional

decline is one of the main causes of failure in postural bal-

ance control in patients with nonspecific LBP21-23). Thus, sev-

eral studies have been conducted on the relationship be-

tween the muscle spindle function in proprioception and

LBP24). In this review, we identify a unique mechanism of

proprioceptive dysfunction via a sensory input disturbing

postural control, resulting in LBP in elderly patients.

What Is Proprioception?

Proprioception, also referred to as deep sensation, is de-

fined as afferent information that contributes to the detection

of joint motion, limb position, muscle movement, and resis-

tance applied to the body, whereas neuromuscular control is

the efferent motor response to sensory information. Proprio-

ceptive feedback influences movement and positional accu-

racy even in the absence of the visual sense, resulting in the

key somatosensory functions for human postural control. For

the response mechanism in the standing posture, the ankle

strategy involves the distal proprioceptive reaction pattern

while standing on a static or normal surface. On the other

hand, the hip strategy, which is a more proximal propriocep-

tion function with little or no motion on the ankle strategy,

is used when performing a task or when being unstable25).

Accordingly, the ankle strategy is incorporated when being

unperturbed or in the presence of low-amplitude perturba-

tions, whereas the hip strategy is for fast and large-

amplitude perturbations, wherein multiple strategies are used

to maintain the standing balance26). A kyphotic flexed pos-

ture, with or without a vertebral fracture, in older adults has

relatively unstable balance control because the center of

mass in the body is shifted anteriorly. Hyperkyphotic spinal

alignment changes the joint position sense27) and could influ-

ence the ability to recover from balance perturbation28), with

decreased postural stability caused by ankle strategy dys-

function29). Alternations in proprioceptive signals impede the

ability to reduce fall risk. Therefore, older adults with spinal

malalignment are more susceptible to falls on an unstable

surface.

Proprioception encompasses signals from mechanorecep-

tors, which are proprioceptors located in the skin, subcuta-

neous tissue, muscles, tendons, and joint capsules. Informa-

tion from cutaneous and subcutaneous proprioceptors-such

as Meissner’s and Vater-Pacini corpuscles, which act as tac-

tile and stretch receptors, respectively-is considered an addi-

tional sensory source that completes proprioceptive inputs30).

Golgi tendon organs encode variations in the muscle force

induced by the contraction of muscle fibers and contribute

to the sense of force31), whereas feedback from joint recep-

tors provides relevant information on limb position and joint

movement32). The muscle spindle, one of the most important

proprioceptors, consists of a bundle of differentiated muscle

fibers called intrafusal fibers, which are surrounded by a

fusiform capsule filled with a viscous fluid. Muscle spindles

are stretched during eccentric muscle contraction, resulting

in the generation of action potential on afferent fibers to

convey the proprioceptive information to the sensorimotor

cortex in the brain. Muscle proprioception can be altered by

vibration, which activates the primary endings of the muscle

spindle and produces a sensation of displacement of the

body segment33-35). Vibratory stimulation to muscles generates

illusory movement and muscle-tendon vibration is a power-

ful stimulus for muscle spindle primary afferents with differ-

ent frequency vibrations for postural responses36). Therefore,

local muscle vibration is often used to evaluate the proprio-

ceptive function, which contributes to balance and postural

stability.

Significance of Proprioception in Motor Exercise

For musculoskeletal disorders, especially lumbar spinal

disorders, evidence of their dysfunction has led to a new

paradigm of exercise therapy to address motor control prob-

lems in local and global muscles. Panjabi proposed a

stability-based spinal model based on the motor control ap-

proach, in which the spinal column is the passive subsys-

tem; the neural elements, the control subsystem; and the

motor system, the active subsystem19). Impairment in any

one subsystem leads to chronic dysfunction and pain. There-

fore, a spinal column robust enough to compensate for im-

pairment in any system should be tolerant to other subsys-

tems from a practical perspective. In this respect, LBP pa-

tients stiffen their spine by recruiting superficial spinal mus-

cles, which provides robustness against perturbations37,38). In

a critical element of motor control, which is responsible for

spinal posture and stability, there is a constant interplay be-

tween motor outputs, such as trunk muscles, and sensory in-

puts, such as proprioception30,39). Motor control, which is par-

ticularly significant in exercise therapy for LBP, affects

trunk posture, instability, and lumbar spine movement. In

motor control adaptations induced in locomotor disorders,

including LBP, emphasis is placed on responses to active



Spine Surg Relat Res 2022; 6(5): 422-432 dx.doi.org/10.22603/ssrr.2021-0269

424

Figure　1.　Proprioceptor and stretch reflex loop.

The muscle spindle or tendon organs react to muscle stretches, exciting the Ia and Ib afferent neu-

rons. The spinal stretch reflex is activated by excitatory monosynaptic connections from group I af-

ferent neurons to α motor neurons, which activate muscle contraction. Impulse from higher centers 

of the nervous system excites γ motor neurons, and intrafusal muscle fibers of the muscle spindle are 

activated. Activation of γ motor neurons enhances the dynamic responses of Ia afferent neurons, in-

creasing muscle tone through the α motor neurons (γ loop). There is coactivation of both α motor 

neurons (activating the main muscle; the extrafusal muscle fiber) and γ motor neurons (activating 

the muscle spindle; the intrafusal muscle fiber). This coactivation allows group I and II afferents to 

detect unexpected stretches during contraction and compensate (α-γ linkage). 

systems such as muscle strengthening, endurance, and/or

skillful motor function in rehabilitation medicine. The poten-

tial to adequately control posture and movement accompa-

nied by muscle activation is limited without an optimal sen-

sory input. Thus, consideration of a sensory component is

required for most aspects of the motor control approach.

Proprioception, which plays a central role in the mainte-

nance of posture and control of voluntary movement, is the

key somatosensory feedback system.

Sensory inputs serve as stimuli for reflexive movement

organized at the spinal cord of the central nervous system,

modulating the movement from commands originating from

higher centers of the nervous system. Therefore, sensory in-

formation plays an important role in adjusting motor output

that results from spinal cord activity. Peripheral mechanore-

ceptors receive sensory input, and the spinal stretch reflex

and the long-loop or transcortical reflex activate synergistic

muscles (Fig. 1). The harmony of muscle contraction by

coactivation of both α and γ motor neurons indicates that

sensory input and motor output are equally significant. It

must be recognized that skeletal muscle is both an effector

and a sensory organ with the proprioceptive function being a

result of the neuromuscular activity of the nervous system.

Especially with exercise therapy for older adults, improving

motor output due to sarcopenia that occurs with aging is

challenging. Therefore, beneficial changes in the propriocep-

tive sensory input should result in efficient improvement of

the motor output40). However, there is no established method

for the accurate quantitative evaluation of the proprioceptive

function. Thus, the development of an evaluation method is

essential for improving the sensory input in motor control.

Evaluation of the Proprioceptive Function

Classically, the identification and repositioning of joint

position angles and vibration sensing using a tuning fork

(128 Hz) were developed as a method for evaluating the

proprioceptive function; however, in addition to lacking ob-

jective quantification, these methods are dependent on the

cognitive function and memory ability of older adults. Most

studies on proprioception for spinal disorders have focused

on repositioning accuracy in tests of position sense24,41-43).

However, the reliability of measurements should often be af-

fected by a learning effect, which substantially improves

with repeated testing. Thus, a holistic approach using pos-

tural control or postural balance tasks is needed, instead of a

separate assessment of individual components of propriocep-

tion, such as position, movement, and velocity sense44-46).

This objective evaluation method is based on the displace-

ment of the center of pressure (COP) using a force plate
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while maintaining constant signals from the visual and ves-

tibular systems and incorporates the effects of sensory

weighting using vibration. Mok et al. demonstrated a re-

duced hip strategy in postural control in LBP patients44).

Subsequently, many studies on LBP and proprioception have

been conducted using this evaluation method. However, the

concept that proprioceptive function evaluation with COP

should be performed in a more subconscious state led to the

development of a method in which dual vibration stimula-

tion was applied to the lower legs and the trunk. Muscle-

tendon vibration is a powerful stimulus to muscle spindle

primary afferents34,35), and the effect of vibration is to extract

the proprioceptive output. Therefore, Brumagne et al. re-

ported a proprioceptive weighting change from the trunk to

the ankles in older adults with LBP21). Furthermore, Claeys

et al. appraised the relative proprioceptive weighting (RPW)

ratio, which was analyzed as COP displacements in the calf

(triceps surae; TS) and trunk (lumbar multifidus; LM) mus-

cle vibration trials using the next equation46). The use of

muscle vibration can help clarify proprioceptive control

more directly. Afference of stimulated muscles to the central

nervous system for postural control expects direction-

specific responses.

COP displacement during TS vibration
RPW

COP displacement during TS vibration + COP displacement during LM vibration
= ×100

A score of 1 corresponds to complete reliance on the

lower extremity muscle afference, whereas a score of 0 cor-

responds to reliance on trunk muscle afference. Claeys et al.

demonstrated less reliance on back muscle proprioceptive in-

puts for postural control in young patients with nonspecific

LBP46). Decreased sensitivity for muscle vibration indicates

hyposensitivity of proprioceptive afference24). As postural

control by proprioceptive function is performed according to

the balance between the lower limb and trunk46), the larger

the RPW, the more dominant the lower limb; the smaller the

RPW, the more dominant the trunk; and the closer the RPW

is to 50%, the more ideal the balance control. This is an ex-

cellent model for evaluating how proprioception is handled

incorporating the effects of sensory weighting by comparing

the ankle and hip strategies. However, the vibration stimulus

was limited to 60 Hz, which is the frequency corresponding

to the muscle spindle in the previous investigation. As de-

scribed above, because the organ that controls propriocep-

tion does not depend only on muscle spindles, there exists a

drawback that not all proprioceptors used for perception by

humans have been evaluated. Although muscle spindles are

considered to be the most important mechanism involved in

kinesthesia, other proprioceptors, such as cutaneous and

joint receptors, also play a role. The afferent response of the

muscle spindle ranges from 20 to 220 Hz depending on

muscle conditions34), and tactile stimulation in the neck im-

proves the position sense in the cervical spine47). The signifi-

cance of a Pacinian corpuscle function in response to high

frequencies of around 250 Hz in the occurrence of LBP was

demonstrated in our recent clinical study48). Evaluable pro-

prioceptive diagnosis at various responsible frequencies is

particularly important in older adults who are highly ex-

pected to have proprioceptive decline49). Therefore, to diag-

nose the proprioceptive function in older adults, we have de-

veloped a vibrating device that can change diverse frequen-

cies ranging from 30 to 250 Hz, responsible for almost all

proprioceptors48) (Fig. 2).

Aging and Proprioception

It is well known that age-associated functional decline oc-

curs in the neuromuscular and sensorimotor systems. Pro-

prioceptive declines also occur with age, which contributes

to changes in postural stability, leading to increased fall risk

in older adults50). With the occurrence of age-related changes

in proprioception, alterations in muscle spindles, along with

the integration of the neural signal, at the supraspinal level

influence proprioceptive perception. Aged human muscle

spindles exhibit increased spindle capsule thickness and loss

of total intrafusal fibers per spindle, as a result of denerva-

tion51). The most characteristic age-related change in the

muscle spindle may be the reduction in spindle diameter;

however, this morphological modification was specific to

certain muscles52). Muscle spindles innervation in the ante-

rior tibial nerve dramatically decreased with age, suggesting

an age-related decrease in the number of Ia afferents in the

muscle spindles53). Degeneration of the proprioceptive sen-

sory nerve with aging starts earlier than a morphological

change in the intrafusal muscle fibers54). Aged muscle spin-

dle function appears to exhibit impaired sensitivity due to

denervation. The afferent response of the muscle spindles

for applied stretch is lower in aged rats, implying a decline

in spindle sensitivity55). In humans, the vibration-related

muscle spindle activity and reflex-induced force generation

have been reported to be reduced in older adults56,57). Age-

related proprioceptive decline contributes to major changes

in postural control. Response to proprioception in the stand-

ing posture is determined by the complicated interaction be-

tween the ankle strategy, which is the distal function cen-

tered on the lower limbs, and the hip strategy, which is the

proximal function centered on the trunk and hip25). To

achieve proprioceptive improvement for an age-related de-

cline, the effect of age on trunk and leg proprioceptive func-

tion and its implication in postural control strategy are of

paramount importance.

To evaluate the proprioceptive function in the trunk and

lower limbs in older adults, a wide range of vibratory stimu-

lation of 30-240 Hz from low to high frequencies was ap-

plied to the TS and the LM muscles measure COP displace-

ment (Fig. 3). A comparison between healthy young and

older adults revealed that older adults had a predominant

lower leg balance control at 240 Hz, which is a high-

frequency range, suggesting a decline in proprioception in

the trunk with age40,58)(Fig. 4). Skeletal muscle mass loss is

one of the causes of age-related proprioceptive dysfunction.

When the relationship between proprioception and skeletal
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Figure 2. Wave form of center of pressure (COP) using sweep 

frequency of vibratory stimulation.

Vibratory stimulation, which can change a wide range of frequencies 

from 30 to 250 Hz, responsible for almost all proprioceptors, is giv-

en for the purpose of diagnosing the proprioceptive function in older 

adults. The COP displacement was continuously analyzed as a wave-

form using a stabilometer.
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Figure　3.　Diagnostic system responsible for a wide range of frequencies of vibratory 

stimulation to evaluate the proprioceptive function.

Vibration was applied to the bilateral lumbar multifidus and triceps surae muscles, and me-

chanical vibrations from low to high frequency were applied continuously. The displace-

ment of the center of pressure during vibration at the trunk and calf was automatically re-

corded by the stabilometer to evaluate the proprioceptor function.
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Figure　4.　Comparison of proprioceptive function in each frequency band between healthy 
young and older adults. 
A relative proprioceptive weighting ratio (RPW) score of 100% corresponds to complete re-
liance on the lower extremity muscle afference, and a score of 0 corresponds to reliance on 
the trunk muscle afference. In vibration-induced proprioceptive function evaluation, an RPW 
of <50% indicated trunk dominance and an RPW of >50% indicated lower limb dominance. 
Older adults (average 78.3 years) exhibit predominant lower leg balance control, that is, de-
creased trunk proprioceptive function, at 240 Hz, which is a higher frequency range than 
younger people (modified from Reference 58).
RPW: relative proprioceptive weighting
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Figure　5.　Skeletal muscle mass and proprioception in older adults.
Older adults with skeletal muscle mass loss show trunk-dominant proprioception, that is, 
lower limb proprioceptive dysfunction, in the 60 Hz frequency range, which corresponds to 
the muscle spindle function. Skeletal muscle mass reduction is determined by skeletal mus-
cle mass index (kg/m2), which has a cutoff value of <6.87 kg/m2 for men and <5.46 kg/m2 for 
women in the Japanese population (modified from Reference 59).
RPW: relative proprioceptive weighting
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muscle mass in older adults was evaluated using physique

correction by skeletal muscle mass index (kg/m2), balance

control of the trunk was dominant in the middle frequency

range in older adults with decreased muscle mass59) (Fig. 5).

Decreased skeletal muscle mass in the lower limbs reduces

RPW, that is, decreased proprioceptive function in the lower

limbs, resulting in trunk-dependent proprioceptive control.

Since age-related sarcopenia occurs mainly in type II fi-

bers14), the decrease in lower limb muscles is more remark-

able than that in the trunk. Thus, it is conceivable that the

effect of sarcopenia in older adults with low muscle mass

for the proprioceptive function is significant. The proprio-

ceptive function of the trunk has also been identified in

older adults with trunk muscle atrophy60). From the above,

proprioception in humans reflects not only muscle function

but also skeletal muscle volume. The relationship between

age-related muscle mass reduction and proprioception is

supported by the presence of chronic inflammation associ-
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ated with senescence, which is one of the mechanisms of

sarcopenia61), and recent research on the involvement of sys-

temic inflammation in proprioceptive dysfunction62). There is

also a relationship between proprioception and fall risk in

older adults. Older people with fall risks show a propriocep-

tive decline in the trunk in the low-frequency range63), lead-

ing to dependence on the ankle strategy on an unstable sur-

face for the tendency to fall promoted by muscle mass loss

in the lower limb.

Proprioceptive Pain

Regarding the relationship between LBP and postural

control, the first study in 1991 by Nies et al. showed insta-

bility while standing on one leg in patients with LBP64).

With increasing attention given to the significance of pro-

prioceptive function in humans, a more detailed evaluation

of postural balance control using stabilometry, focusing on

proprioception in LBP, has been reported. The delayed re-

sponse of skeletal muscles to a sudden trunk load, which is

a characteristic of LBP patients, is due to the impaired pro-

prioceptive function in the lumbar spine37,65,66); this has been

supported by the study result of the impairment of trunk po-

sition sense in patients with LBP41,67). Research on proprio-

ceptive function evaluation has subsequently progressed, and

a method using vibratory stimulation has been developed as

a more objective procedure to evaluate the function of dif-

ferences in the biological response to the vibratory stimulus

in the trunk and lower limbs considering that muscle spindle

is activated through muscle vibration inducing afferent nerve

activity34). The study results using this method have made a

possible comparison of proprioceptive functions of the lower

limbs and trunk, and patients with LBP seem to use the pro-

prioceptive postural strategy with strong reliance on ankle

proprioceptive signals21,22,45,68). However, little is known about

the mechanism by which the trunk proprioceptive function

declines in patients with LBP46), whereas the muscle spindles

that tend to concentrate in the deeper and central portion of

muscles69) are presumed to be reduced in the trunk muscle.

A new concept in the relationship between proprioception

and pain is sensory-motor incongruity pain. This hypothesis,

proposed by Harris in 1999, is the notion that discordance

between awareness of motor intention and muscle and joint

proprioception results in pathological chronic pain70). The

source of pain from sensory-motor incongruity is thought to

arise in the brain in the absence of tissue injury and/or pe-

ripheral pathology. Motor intention generation does not acti-

vate proprioceptors, and proprioceptive feedback is limited,

leading to pathological pain in parts of the body. A condi-

tion used to explain this mechanism is the phantom limb. In

an amputee, the absence of proprioceptive information con-

gruent with motor intention activates cortical center monitor-

ing incongruence of sensation; thus, most amputees experi-

ence pathological phantom pain71). A bimanual coordination

experiment involving an artificial sensorimotor conflict via a

mirror demonstrated a mismatch between motor output and

sensory input trigger incongruence within the motor control

system and could contribute to pain in some healthy indi-

viduals and ongoing pain in patients with musculoskeletal

pain72). Prolonged limb immobilization affects body owner-

ship73), and the illusion of body ownership leads to the sen-

sory discrepancy and decreases the pain threshold74). Thus,

elucidation of the relationship between proprioception and

sarcopenic pain in older adults is also expected from the

viewpoint of sensory-motor incongruity. Interestingly, watch-

ing a virtual image of a phantom limb moving synchro-

nously with motor commands relieves phantom limb pain71).

This indicates that therapy is best directed at restoring the

integrity of cortical information processing in the presence

of musculoskeletal chronic pain without pathology, instead

of the use of analgesics and antiinflammatory agents70).

In view of these findings, proprioception is important in

the use of motor control theory as an exercise therapy in

LBP. An important part of the therapeutic exercise programs

for LBP is the motor control approach, which focuses on

the activation of deep trunk muscles independent of global

muscles activity75). Lack of spinal intersegmental deep mus-

cle control when the global muscle is working unwantedly

could contribute to lumbar dysfunction, causing LBP. LM

muscles are as important for segmental stability of the lum-

bar spine as deep trunk muscles, whereas the erector spinae

muscles are torque generators for spinal motion and like guy

ropes to control spinal orientation, and balance the external

loads applied to the trunk20). When local muscles are not

functioning enough to control lumbar segmental motion

while global muscles are working appropriately, muscle

stiffness results in reduced lumbar stabilization. If the nerv-

ous system interprets that spinal stability is already achieved

by excessive contraction of the global muscles to stiffen the

lumbar spine, a local muscle response is not initiated. This

mechanism could explain some of the findings in patients

with LBP from an electrophysiological perspective76,77). Pro-

prioceptive dysfunction provokes a mismatch between motor

output and sensory input78). Proprioceptive pain is relatively

new and the range of sensory incongruities that can give rise

to pain are still unknown78,79).

Geriatric LBP Associated with Proprioceptive
Dysfunction

Numerous studies have shown that individuals with LBP

have decreased lumbosacral proprioception in various pos-

tures, including standing and sitting, compared with healthy

subjects without LBP21,24,41,43). Regarding the mechanism of

lumbar proprioceptive change, the question remains whether

local dysfunction of proprioceptors affects the quality or

quantity of sensory reception or changes in the central proc-

essing of proprioceptive signals. Muscle spindles in the

paraspinal muscles are more sensitive to position and move-

ment sense than those in the arm and leg muscles80). The

number of muscle spindles in the lumbar region is higher

than in other regions due to the muscle bulk in the lumbar
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Figure　6.　Evaluation of the proprioceptive function in the trunk and lower limbs in older adults 
with low back pain (LBP).
Older LBP patients (>65 years) show trunk-dependent proprioceptive control due to functional de-
cline of high-frequency responsive receptors (240 Hz) at the lower extremity (figure modified from 
Reference 90). 
LBP: low back pain, RPW: relative proprioceptive weighting
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spine81). Afferent input spinal ligaments are integrated into

the proprioceptive input arising from muscle spindle affer-

ents and initiate reflex muscle activation via the γ
motoneuron-muscle spindle system82). In particular, the spe-

cific ligament-muscular reflex is induced by stretching of

the supraspinous ligament in anesthetized patients83). As

mentioned above, both muscle spindle and afferent tract dys-

function occur with age-related changes and affect proprio-

ceptive function in older adults; however, the mechanism by

which the decrease in position and movement sense is seen

in patients with LBP has not been elucidated.

There is inconsistent evidence of an association between

proprioceptive impairment and LBP; therefore, it is unclear

whether proprioceptive exercises affect pain and disability.

Recent systematic reviews with meta-analyses have provided

different conclusions that there is a relationship between

proprioception and LBP84,85), that there is insufficient evi-

dence86), that there is a relationship but its correlation is

weak87), and that there is no relationship88). One factor that

causes such disagreement is that the measurement approach

varies considerably among studies85,86). Different testing posi-

tions, number of repetitions, movement instructions, and

measurement systems render a comparison of findings diffi-

cult. Thus, most studies using the position and/or movement

sense evaluated proprioceptive function in LBP; however,

these methods are less objective and measurement errors are

unavoidable86). On the other hand, the evaluation of proprio-

ception using vibration sensation enables accurate and ob-

jective procedures by targeting receptors that respond to a

wide range of vibration frequencies. Although various re-

search reports on LBP and proprioception exist in recent

years, most are studies on single-frequency vibration stimuli

for LBP in young adults. Recent studies in older LBP pa-

tients evaluating proprioceptive responses to all frequency

stimuli that humans can perceive has shown trunk-dependent

proprioceptive control due to functional decline of high-

frequency responsive receptors (240 Hz) at the lower ex-

tremity89,90) (Fig. 6). Lasting hyperactivation of proprioceptors

continuously stimulates the reflex arc in the spinal cord, fur-

ther inducing microglial activation, leading to the initiation

and maintenance of pain91). Previous studies have shown that

proprioceptive sensitivity in the trunk muscles, afferent in-

formation transmission decrease in older adults21,40,58), and the

ankle strategy are dominant in older individuals whose trunk

proprioceptive function declines. Thus, it is hypothesized

that the proprioception of the lower limbs deteriorates with

age-related sarcopenia, which increases the proprioceptive

burden on the lumbar spine (Fig. 7). Establishing a diagno-

sis for proprioceptive function in patients with LBP could be

a new approach to LBP treatment.

Conclusion

While proprioception is important in older adults, there is

insufficient evidence for its contribution to LBP and its role

in pain management. To enable accurate diagnosis of pro-

prioceptive function, it is necessary to establish a treatment

procedure for recovering proprioception decline due to ag-

ing, and further prospective research is also needed to pre-

sent a relationship with the improvement of LBP.
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Figure 7. Proprioceptive function and low back pain in older adults (hypothesis).
When the trunk proprioceptive function (hip strategy) declines with aging, older adults become de-
pendent on lower limb-proprioceptive function (ankle strategy). Furthermore, when the skeletal 
muscle mass of the lower limbs decreases due to sarcopenia, decompensation superimposed on trunk 
proprioception leads to a burden on the lumbar spine and low back pain (LBP). If an accurate diag-
nosis of a proprioceptive function of the trunk and lower limbs is possible, determining a therapeutic 
target will be an exit strategy as a new treatment procedure for LBP.
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