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Eya-controlled affinity between cell lineages
drives tissue self-organization during Droso-
phila oogenesis

Vanessa Weichselberger 1,2,3, Patrick Dondl 4,5 &
Anne-Kathrin Classen 1,2,6

Cooperative morphogenesis of cell lineages underlies the development of
functional units and organs. To studymechanisms driving the coordination of
lineages, we investigated soma-germline interactions during oogenesis. From
invertebrates to vertebrates, oocytes develop as part of a germline cyst that
consists of the oocyte itself and so-called nurse cells, which feed the oocyte
and are eventually removed. The enveloping somatic cells specialize to facil-
itate either oocyte maturation or nurse cell removal, which makes it essential
to establish the right match between germline and somatic cells. We uncover
that the transcriptional regulator Eya, expressed in the somatic lineage, con-
trols bilateral cell–cell affinity between germline and somatic cells in Droso-
phila oogenesis. Employing functional studies and mathematical modelling,
we show that differential affinity and the resulting forces drive somatic cell
redistribution over the germline surface and control oocyte growth to match
oocyte and nurse cells with their respective somatic cells. Thus, our data
demonstrate that differential affinity between cell lineages is sufficient to drive
the complex assembly of inter-lineage functional units and underlies tissue
self-organization during Drosophila oogenesis.

Throughout development, it is essential that different cell lineages
coordinate their morphogenesis to construct functional units. This
requires self-organizing mechanisms that ensure that the right cells
come into contact with each other and give rise to desired shapes.
Such higher-order organization emerges from simple behaviours of
individual cells guided by local information1. While many studies
investigate self-organization within a lineage2,3, the literature is limited
on functional studies elucidating mechanisms of self-organization
across multiple cell lineages.

Oogenesis is a prime example of a developmental process that
depends on the close interaction of two lineages. From invertebrates to
vertebrates, oocytes develop within a germline cyst that is enveloped
by somatic cells4. The germline cyst consists of the oocyte itself and so-

called nurse cells5–8. The role of nurse cells is to supply the oocyte with
essential materials during oogenesis, but eventually, nurse cells are
removed to generate a single mature oocyte6,7,9. The maturation of the
oocyte, as well as the removal of nurse cells is strictly dependent on the
cooperation with somatic cells enveloping the germline cyst. These so-
called follicle cells (FCs) differentiate into diverse cell fates, which,
among others, specialize to facilitate oocyte maturation by eggshell
secretion or nurse cell removal by phagoptosis4,7,9–12. Thus, it is essential
that germline cells and somatic cells match each other, such that nurse
cells are in contact with FCs that facilitate nurse cell removal, and the
oocyte is in contact with FCs that enable oocyte maturation.

In Drosophila oogenesis, the establishment and maintenance of
this match is a complex process that involves major cell
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redistributions. Oocytes develop within so-called egg chambers that
consist of the germline cyst and a surrounding monolayer follicle
epithelium. The germline cyst consists of 1 oocyte and 15 nurse cells,
and the approximately850FCsdifferentiate into threemajor fates4,10,12.
Whereas the fate of germline cells is determined already prior to egg
chamber assembly8, FCs differentiate and specialize under the control
of JAK/STAT, EGF and Notch signalling pathways during early egg
chamber development13–20.

At the anterior tip of the egg chamber, approximately 10% of FCs
differentiate into so-called anterior FCs (AFCs), which specialize to
facilitate nurse cell removal and thus must cover the entire nurse cell
compartment by mid-oogenesis. The remaining ~90% of FCs differ-
entiate into main body FCs (MBFCs) and posterior FCs (PFCs), which
specialize to facilitate oocyte maturation and thus must eventually
cover the entire oocyte. However, at the time point of fate specifica-
tion, germline cells and FCs do not match yet: MBFCs are initially in
contact with nurse cells and AFCs cover only a small proportion of the
nurse cell compartment4,10,12,21,22. Thus, FCs must redistribute over the
germline surface to establish the right match. This redistributionmust
be coordinatedwith germline growth and changes in oocyte and nurse
cell proportions, as the oocyte comprises only ~6% of the germline (1/
16th) when FCs are specified butmakes up ~40% of the germline inmid-
oogenesis21. Consequently, germline and FCs must establish the right
match under constantly changing morphologies. How germline and
FCs coordinate to establish inter-lineage functional units essential to
produce a fertile egg is currently not understood.

Here, we show that the transcriptional regulator Eyes absent (Eya),
expressed in FCs, induces cell–cell affinity betweennurse cells andEya-
expressing FCs in Drosophila oogenesis. Employing functional studies
and phase field modelling, we demonstrate that differential cell–cell
affinity and the resulting forces drive FC redistribution over the
germline and control oocyte growth to establish a functional inter-
lineage match between germline cells and FC populations.

Results
Egg chamber morphogenesis is divided into three phases with
distinct soma-germline matching dynamics
To analyse the dynamics of the soma-germline matching process, we
performed an in-depth quantitative description of egg chamber mor-
phogenesis. We quantified 24 morphological parameters in egg
chambers from stages 2 to 12 (Fig. 1a, Supplementary Fig. 1). These
parameters included among germline-, and FC-specific descriptors21,23,
importantly, 10 parameters that characterized interactions between
germline and FCs. To extract the dynamics of global egg chamber
morphogenesis, we analysed the multidimensional dataset using
UMAP (UniformManifold Approximation and Projection)24 (Fig. 1b, c).
In the UMAP projection, individual egg chambers organized along a
developmental trajectory of classical egg chamber stages (Fig. 1c).
Importantly, germline sizes steadily increased along the trajectory,
demonstrating that germline area canbe used as a continuous variable
representing developmental progression (Fig. 1d). This represents an
advancement over classical egg chamber staging, which is dependent
on morphological features often disrupted by genetic manipulations
(for example ref. 22) and produces only a discrete description of a
continuous process (see Methods).

The UMAP analysis revealed that egg chamber morphogenesis is
subdivided into three phases. To characterize these phases, we
assigned egg chambers based on their germline size to their respective
phase and analysed individualmorphological parameters as a function
of germline size (Fig. 1e). As the differentiation of FCs into AFCs,
MBFCs and PFCs at stage 6, is a crucial step for egg chamber devel-
opment and coincides with an arrest of mitotic divisions10,14,15, we
analyzed the number of FCs (Fig. 1f). We found that FCs cease to
multiply, and thus receive the information with which germline cell
they must match, at the end of phase 1 (Fig. 1f, i). To understand the

dynamics of FC redistribution that matches FCs and germline cells, we
analysed the proportion of FCs that was in contact with the oocyte
(Fig. 1g). Throughout phase 1, 17 ± 3% of FCs were in contact with
the oocyte. By phase 3, this proportion had increased to 84 ± 3%. Thus,
the redistribution of FCs and therefore the active matching between
FCs and germline cells is executed during phase 2 (Fig. 1i). This sug-
gests that the right match is essential for phase 3. Indeed, nurse cell
dumping, during which nurse cell volume decreases massively, has
been shown to depend on the right match and takes place during
phase 325,26 (Fig. 1h, i).

Taken together, our multidimensional analysis reveals that global
egg chamber morphogenesis is subdivided into three phases, which
correlate with three distinct soma-germline interaction dynam-
ics (Fig. 1i).

FC distribution over germline cells co-evolve with Eya expres-
sion patterns
The matching of FCs and germline cells must be coordinated by
interactions at the soma-germline interface (Fig. 2a). Cell–cell inter-
actions are controlled by surface tension at the interface2,3 and can be
described along a spectrum of cell–cell affinity to cell–cell repulsion,
where affinity causes an increase in contact size between cells and
repulsion a decrease (Fig. 2b). We therefore quantified the size of
apical FC surfaces, which are in contact with the germline, to char-
acterize how FCs interact with germline cells (Fig. 2c, d, f). We found
that throughout phase 1, contact areas of FCs were similar, suggesting
that coverage of the available germline surface was evenly distributed
among all FCs. However, during phase 2, a gradient in contact areas
developed, with AFCs increasing their apical contact surfaces more
rapidly than the remaining FCs. The gradient resolved by phase 3 and
resulted in a segregation of FCs with large contact surfaces over nurse
cells and FCs with comparatively small surfaces over the oocyte.

The gradual increase of AFC contact surfaces during phase 2 is
called AFC flattening and is specific to AFC fate22,27,28. Previous studies
suggested that the increase in AFC areas could solely be a result of
AFCs being stretchedwithin the epithelium to accommodate germline
growth12,21,29,30. To test this idea, we reduced intra-epithelial cohesion
by removing the cell–cell adhesion molecules E-Cadherin and/or
N-Cadherin3,22 (Supplementary Fig. 2a, b). We found that this manip-
ulation did not disrupt AFC expansion nor flattening. Secondly, we
fully uncoupled individual AFCs by limiting cellular growth via ectopic
expression of hpo31. As the germline grows, the reduced cell size of
affected AFCs caused them to detach from each other. Yet, these FCs
maximized contacts with nurse cells by spreading out via elaborate
protrusions (Supplementary Fig. 2c). We therefore propose that AFCs
expand apical surfaces independent of intra-epithelial cohesion by
actively and autonomously increasing their contact surface with
nurse cells.

In search for a regulator of FC interaction with the germline, we
identified Eya (Eyes Absent). Eya is a highly conserved transcriptional
co-regulator andphosphatase, andwell-characterized for its role in eye
specification32–35. Eya is also reported to distinguish FC fate from polar
and stalk cell fate during egg chamber assembly and is used as a
functionally uncharacterized marker for AFC fate13,21,36–38. We found
that Eya expression patterns appeared with similar dynamics as apical
FC surface sizes, with uniform expression in phase 1, a gradient in Eya
levels from anterior to posterior during phase 2 and a strict segrega-
tion of Eya-positive FCs over nurse cells and Eya-negative FCs over the
oocyte by phase 3 (Fig. 2e, f, Supplementary Fig. 2d, e). A cell row-wise
analysis revealed that this dynamic robustly led to 6 rows of FCs in
contact with nurse cells by phase 3 and confirmed that exclusively
these 6 rows maintained Eya expression (Fig. 2g, h).

As Eya expression patterns track with AFC fate after phase 1
(Supplementary Fig. 2f), we asked if the signalling pathways deter-
mining AFC fate also control Eya dynamics. FC specification is
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controlled by the Jak-Stat, EGFR and Notch signalling pathways
(Fig. 2i). Specifically, polar cells at each egg chamber pole secrete the
ligand Upd and thereby induce a gradient of Jak-Stat signalling in
surrounding FCs. In addition, the oocyte secretes the ligandGrk, which
activates EGFR signalling inposterior cells. Lastly, thegermline induces
Notch signalling in all FCs by providing Delta, which allows FCs to
adopt the fate they were primed for by Jak-Stat and EGFR signalling.

Thus, FCs with Jak-Stat and Notch activation differentiate into AFCs,
FCs with Jak-Stat, EGFR and Notch activation differentiate into PFCs
and FCs which solely activate Notch become MBFCs13–20 (Fig. 2i). We
found that Eya expression was positively regulated by an ectopic Upd-
induced Jak-Stat signalling gradient (Fig. 2j, Supplementary Fig. 2g),
negatively regulated by EGFR activation (Fig. 2k, Supplementary
Fig. 2g) and that the switch from uniform levels to an anterior-
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posterior Eya-gradient was dependent onNotch signalling inducing FC
differentiation (Fig. 2l, Supplementary Fig. 2g). Thus, by the end of
phase 1, Eya expression becomes dependent on AFC fate specification
and therefore tracks with AFCs during phase 2 and 3.

Eya controls the size of FC contacts with germline cells
The correlation between Eya patterns and FC contact surfaces in
combination with the clear segregation of Eya-positive FCs over nurse
cells and Eya-negative FCs over the oocyte made us question whether
Eya played a role in soma-germline matching. To test this, we
manipulated Eya expression in FC clones during phase 2, when FC-

germline matching takes place. First, we ectopically expressed Eya in
MBFC clones, which normally lose Eya expression and transition onto
the oocyte. Ectopic Eya was sufficient to cause an increase of MBFC
surfaces in contact with nurse cells, which occurred via broad apical
protrusions extending towards and displacing apical surfaces of
neighbouring Eya-negative MBFCs (Fig. 3a–c). Next, we reduced Eya
expression in AFCs, which normally express Eya and expand their
contact with nurse cells and found that clonal expression of eya-RNAi
caused a failure of contact surface increase (Fig. 3d–f). Lastly, we
ectopically expressed Eya in MBFC clones, which had already transi-
tioned onto the oocyte and found that Eya expression had no effect on

Fig. 1 | Egg chamber morphogenesis is divided into three phases with distinct
soma-germline matching dynamics. aMedial confocal sections of wild type (wt)
egg chambers depicting developmental stages from the germarium to stage 12,
stained for E-Cadand F-Actin. Numbersdenote germline areas in µm2.bHeatmapof
the quantified 24 morphological parameters (see Supplementary Fig. 1). Each row
represents an individual egg chamber, with increasing germline sizes from top to
bottom. Breaks separate morphogenetic phases. c UMAP of multidimensional
quantification of egg chamber morphogenesis. Egg chambers are coloured
according to their respective developmental stage. Note that the developmental

trajectory is subdivided into three phases. d UMAP with germline areas visualized.
e UMAP with egg chambers assigned to the three phases based on their germline
size. f Follicle cell (FC) count as a function of germline area. g Proportion of FCs in
contact with the oocyte as a function of germline area. h Nurse cell compartment
area as a function of germline area. Dotted lines mark germline sizes at the tran-
sition between two phases. All curves are LOESS fitted with a 95% CI area. n = 126
egg chambers (ECs). i Illustration of the threemorphogenetic phases ofDrosophila
egg chamber development. See Supplementary Table 7 for detailed statistical
information. Source data are provided as a Source Data file.
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jMaxprojection of a phase 2 ECwith clonal expression of upd1 andGFP, stained for
Eya. Ectopic JAK/STAT signalling leads to ectopic Eya gradients in MBFCs, but not
PFCs. kMax projection of a phase 2 grk(2B6) /grk(2E12) (EGF)mutant EC, stained for
Eya and E-Cad. Loss of EGFR signalling in PFCs leads to ectopic Eya expression.
l Max projection of a phase 2 EC expressing delta(dl)-RNAi using MTD-Gal4
(germline driver), stained for Eya and E-Cad. Loss of Notch signalling causes failure
of Eya downregulation inMBFCs and PFCs. See Supplementary Table 7 for detailed
statistical information. Source data are provided as a Source Data file.
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the apical surface size of FCs in contact with the oocyte (Fig. 3g–i).
Thus, Eya induces FCs to expand their contact surface exclusively with
nurse cells, which led us to hypothesize that Eya causes FCs to
experience cell–cell affinity towards nurse cells, but not towards the
oocyte.

Interestingly, as Eya is also expressed in the two somatic cells that
enwrap each germline cyst in testis, we asked if Eya might also control
affinity-like interactions in developing spermatocytes39,40. We found
that the somatic cells closely envelope each cell within the cyst and
thereby maximize the soma-germline interface (Supplementary
Fig. 3a, c). When we expressed eya-RNAi in somatic cells, they failed to
extend in between germline cells (Supplementary Fig. 3b, c) and
caused an overall change in spermatocyte morphology reflecting a
minimization of the soma-germline interface (Supplementary Fig. 3d).
Thus, Eya controls soma-germline interfaces, possibly via regulating
soma-germline affinity, in both ovaries and testis.

Eya induces FC affinity for nurse cells in a level-dependent
manner
To test if cell–cell affinity between Eya-positive FCs and nurse cells
alone could account for the observed FCmorphologies, we designed a

phase fieldmodel that allowed us to simulate cell shapes as a function
of interface dynamics41,42. We modelled 3 FCs and specified affinity as
the energetic preference of an FC to be in contact with a defined
boundary, representing the nurse cell surface (Supplementary Fig. 3e).
First, we assigned low and equal affinities to all 3 FCs, simulating low
Eya levels in MBFCs during phase 2 (Fig. 3j). This gave rise to an even
distribution of FCs with equal germline-contacting surfaces, recapitu-
lating the shapeof phase 2MBFCs (Fig. 3j, k). Next, we replicated clonal
ectopic expression of Eya by assigning higher affinity to the central cell
(Fig. 3l, SupplementaryMovie 1). This caused the central cell to expand
its contact with the simulated nurse cell surface at the expense of
neighbouring cells, recapitulating the dominant apical surface expan-
sion of MBFCs with ectopic Eya expression (Fig. 3m, n, Supplementary
Fig. 3e). Thus, translating Eya levels into differential affinities towards
nurse cells was sufficient to account for Eya-dependent FC shapes.

To further explore howEya levels determine the interaction of FCs
with nurse cells, we analysedAFCsduringphase 2. As describedbefore,
AFCs expand their contact surface with nurse cells in a gradient27,
which positively correlatedwith Eya levels (Supplementary Fig. 3f).We
found that AFCs increased their contact surface with nurse cells in a
polarized manner by extending a broad actin-rich protrusion
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posteriorly (Fig. 3o). The polarized apical expansion deformed pos-
terior adherens junctions, and coincided with a trailing edge-like
structure on the basal side and a tilt in lateral membranes (Fig. 3o–r).
To test if Eya-controlled affinity for nurse cells could give rise to such
polarized cell morphologies during phase 2, we assigned a gradient of
affinities based on Eya levels to the 3 simulated FCs. This recapitulated
polarized protrusions of “apical” surfaces towards decreasing affinities
and a tilt of lateral membranes (Fig. 3s, SupplementaryMovie 2). Thus,
an Eya-dependent gradient in affinity for nurse cells can account for
the polarized expansion of AFCs during phase 2.

Importantly, Eya-controlled affinity for nurse cells could also
account for the prominent differences in FC shapes during phase 1
and 2 (Fig. 3t, u). During phase 1, uniform Eya levels in FCs translate
into uniform apical expansion forces that are balanced at cell–cell
junctions and thereby give rise to a regular quasi-hexagonal
arrangement of cells. In contrast, an affinity gradient causes imbal-
anced expansion forces at junctions, which resolve into a polarized
expansion towards decreasing affinities giving rise to the observed
fish-scale like pattern in AFCs during phase 2. The experimental data
combined with the mathematical modelling of cellular behaviors as a
function of affinity propose that Eya induces level-dependent affinity
of the apical FC surface for the nurse cell surface and thereby con-
trols FC shapes.

Eya-controlled affinity dynamics account for FC distribution
over germline cells
To test if Eya-controlled affinity is sufficient to account for the shape as
well as distribution of FCs throughout the 3 phases of egg chamber
morphogenesis (Fig. 4a, b), we designed a more elaborate phase field
model (Supplementary Fig. 4a–d). Wemodelled 14 FCs representing 6
rows of AFCs, and for simplicity, just 5 rows of MBFCs and 3 rows of
PFCs (Supplementary Fig. 4b). The boundary, representing the germ-
line surface, was divided into an affine (nurse cells) and non-affine
(oocyte) compartment (Supplementary Fig. 4c). Our model did not
include germline growth and FC volumes were set to be constant. We
measured Eya levels in rows 1-6 (AFCs) and row 7 (MBFC) in egg
chambers during stages 5-10b (phase 1-3) and used the estimated
length of developmental stages12,43 to interpolate the temporal devel-
opment of Eya levels within each row (Fig. 4c). The resultant Eya
dynamics were then used as direct proxy for affinity dynamics, with

row 7 dynamics being assigned to rows 7–14 (MBFCs & PFCs). Simu-
lating affinity based on measured Eya levels was sufficient to recapi-
tulate FC behavior throughout development (Fig. 4d, Supplementary
Movie 3). During phase 1, all FCs had similar contact surface sizes,
cuboidal shapes and maintained their relative positions. During phase
2, AFCs progressively increased their contact surface in a gradient
from anterior to posterior and consequently displaced MBFCs (row 7-
11) onto the oocyte (Fig. 4e, f). Eventually, in phase 3, FCs stably seg-
regated with high affinity cells in contact with nurse cells and low
affinity cells positioned over the oocyte. Thus, simulating FC behavior
based on Eya-controlled affinity recapitulates FC positions, shapes and
contact surface sizes throughout all three phases and is sufficient to
establish amatch between Eya-positive AFCs and nurse cells, as well as
between Eya-negative MBFCs+PFCs and the oocyte.

To understand if the Eya-gradient itself is required to drive proper
matching of AFCs with nurse cells during phase 2, we abolished the
gradient in simulations by assigning all 6 AFC rows the high-affinity
dynamic of row 1 (Fig. 4g, Supplementary Movie 4). This disrupted the
AFC surface area gradient during phase 2, as recapitulated by experi-
mental data (Supplementary Fig. 4e, f), but more significantly, caused
row6 to displace row 7 and 8 from the nurse cell surface. This suggests
that steep affinity differences between neighboring cells result in for-
ces that are strong enough to displace low-affinity cells from the
germline surface.

Lacking an experimental setup to manipulate specifically the Eya-
gradient in AFCs during phase 2, we created steep differences in affi-
nity between individual AFCs by expressing eya-RNAi in small AFC
clones. We observed that single eya-RNAi-expressing AFCs as well as
eya-RNAi-expressing AFC clones lost nurse cell contact (Fig. 4h, i, S4g,
h). Single cells extruded as spheres, while clones retained epithelial
features and formed a cyst with an apical lumen. When we recapitu-
lated this experiment in simulations by reducing the affinity of cell row
3, row 3 failed to increase its contact surface area with nurse cells and
was eventually displaced from the germline surface (Fig. 4j, Supple-
mentary Movie 5). Thus, steep differences in Eya levels and the
resulting differences in affinities cause displacement and exclusion of
low affinity FCs from nurse cells. Consequently, the gradient in Eya
levels during phase 2 is essential to retain all FCs in contact with the
germline while driving the redistribution of FCs to establish the right
match between FCs and germline cells.

Fig. 3 | Eya expression in FCs inducesAffinity for Nurse Cells. aMBFCs in contact
with nurse cells during phase 2with clonal expression ofutrABD-gfp and ectopically
expressing Eya (eyaOE), stained for E-Cad. Apical surface projection and xz-reslice
shown.bQuantification of apical contact surface areas of controlMBFCs and eyaOE-
MBFCs in contact with nurse cells during phase 2.Mean+95%CI. Two-tailedWelch’s
t-test. n (control: 71MBFC, eyaOE: 64MBFC). c Illustrationof cellmorphologies upon
ectopic eyaOE expression inMBFC clones in contact with nurse cells during phase 2.
d AFCs in contact with nurse cells during phase 2 with clonal expression of eya-
RNAi, stained for E-Cad and nuclei (DAPI). Yellow line depicts clonal outline. Apical
surface projection and xz-reslice shown. e Quantification of apical contact surface
areas of control and eya-RNAi AFCs during phase 2. Mean+95% CI, two-tailed
Welch’s t-test, n (control: 20 AFCs, eya-RNAi: 20 AFCs). f Illustration of cell
morphologies upon eya-RNAi expression in AFCs during phase 2. g MBFCs in
contact with the oocyte during phase 2 with clonal expression of utrABD-gfp and
Eya (eyaOE), stained for E-Cad. Apical surface projection and xz-reslice shown.
h Quantification of apical contact surface areas of control MBFCs and MBFCs
ectopically expressing Eya (eyaOE) in contact with the oocyte. Mean+95% CI.
Unpaired Student’s t-test. n (control: 75 cells, eyaOE: 83 cells). i Illustration of cell
morphologies upon Eya (eyaOE) expression in MBFC clones in contact with the
oocyte during phase 2. j Phase fieldmodel of 3 FCs in contact with nurse cells with
low and equal affinities. k MBFCs in contact with nurse cells during phase 2 with
clonal expression of utrABD-gfp and hts-mCherry (membrane), stained for β-
catenin. Apical surface projection and xz-reslice shown. l Phase fieldmodel of 3 FCs
in contact with nurse cells with the central cell developing a relatively higher affi-
nity.mMBFCs in contact with nurse cells during phase 2with oneMBFC expressing

utrABD-gfp and Eya (eyaOE), stained for β-catenin. xz-reslice shown. White arrow-
heads point to apical actin-rich protrusions extending towards neighbouring Eya-
negative FCs.nQuantification of apical to lateral area ratios (see illustration and Fig
S3a) for control MBFCs, eyaOE-MBFCs and direct neighbours of eyaOE-MBFCs. Mean
+95% CI, Welch one-way Anova with Dunnett’s T3 multiple comparisons test. n
(control MBFCs: 16 cells, eyaOE-MBFCs: 14 cells, neighbours: 18 cells). o AFCs in
phase 2with clonal expressionof utrABD-gfp and hts-mcherry, stained for β-catenin.
Dotted linesoutline apical (green), lateral (light blue) andbasal (darkblue) surfaces.
Arrowhead of same colourmarks surfaces in xz. Yellow arrow points at actin-based
filopodium. White arrow points at actin rich apical surface protrusion. Max pro-
jection of whole cell and xz-reslice shown. p Medial confocal section of a phase 2
egg chamber expressing hts-mCherry under the control of tj-GAL4 (FC driver),
stained for β-cat. Germline area in µm2. q Tilt of lateral membranes in AFCs. Angle
for quantification is depicted in yellow. r Quantification of angles between lateral
membranes and the germline surface in AFCs andMBFCs. Mean+95%CI, two-tailed
unpaired t-test, n (45 AFCs, 82 MBFCs, 4 ECs). s Phase field model of 3 FCs with an
affinity gradient. t Illustration of cell-autonomous spreading as a function of affi-
nity, the resulting forces and apical surface shapes as a result of phase 1 and 2
affinity patterns. Grey bar represents anterior tip in egg chambers. u Local
z-projection of the FC junctional network. wt ECs, stained for E-Cad. Orange
arrowheads point at junctions between cells of the same row that remain straight,
and red arrowheads point at convex junctions between FCs of different rows with
different affinities. See Supplementary Table 7 for detailed statistical information.
Source data are provided as a Source Data file.
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chamber development. a Medial confocal sections of ECs stained for E-Cad,
F-Actin and Eya. b Segmented apical surface areas of FCs in ECs. Red dotted line
marks nurse cell–oocyte boundary. Colour scale bar shows apical surface area sizes
in (µm2). c Average Eya fluorescence intensities of the 7 anterior rows as a function
of time. Time denotes hours after the beginning of stage 5. Intensities are assigned
to the midpoint of each stage. Eya dynamics serve as proxy for affinity dynamics in
simulations (Supp. File S1). Row 1-6 dynamics were assigned to cells 1-6 (AFCs) and
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vanishing derivatives at t =0 and t = 36hours. d Phase field model simulating col-
lective behaviour of FCs as a function of their affinity for germline cells. wt affinity
dynamics are based on measured Eya levels. e Apical surface area of the 7 anterior
cell rows in stage 7-10 wt ECs. Apical surface area gradient first appears at stage 8.
Stage 10a and 10bwere pooled (stage 10). n (stage 7: 4 ECs, stage 8: 3 ECs, stage 9e:

5 ECs, stage 9m: 5 ECs, stage 10: 3 ECs). f Apical surface areas of the 7 anterior cells
in the simulation ((apical length)2). Apical surface area gradient first appears at
stage 8 and developswith similar dynamics as observed in vivo. g Phase fieldmodel
simulating collective behaviour of FCs as a function of their affinity for germline
cells. All 6 AFCs share row 1 high-affinity dynamics. h AFCs expressing eya-RNAi
under the control of c306-GAL4 (variegated AFC driver, c306>eya-RNAi). AFCs of a
phase 3 EC, stained for β-cat, F-Actin and nuclei (DAPI). Formation of an apical
lumen (yellow star) in eya-RNAi AFC cluster (yellow dotted line). NC marks nurse
cells. Section through apical lumen and xz-reslice shown. i Illustration of cell
morphologies upon eya-RNAi knockdown in a group of AFCs in contact with nurse
cells during phase 3. j Phase field model simulating the collective behaviour of FCs
as a function of their affinity for germline cells. Reduction in affinity in row 3 causes
a failure to flatten and drives displacement of AFC from the nurse cell surface. See
Supplementary Table 7 for detailed statistical information. Source data are pro-
vided as a Source Data file.
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Controlling FC distribution over the germline surface by con-
trolling Eya-expression
If Eya levels determinewhether FCs remain in contact with nurse cells
or not, we should be able to control FC distribution by simply
changing Eya expression patterns. To test if we can retain more FCs
in contact with nurse cells, we assigned the high affinity dynamic of
row 2 to rows 6-8 in our model (Fig. 5a, Supplementary Movie 6). The
simulation revealed an ectopic increase of their contact surfaces with
nurse cells and a failure of their transition onto the oocyte, resulting
in a reduced number of FCs in contact with the oocyte by phase 3.
Experimentally, we tested this hypothesis by forcing MBFCs to
ectopically express Eya after phase 1 using mirr-GAL4 (mirr > eya)
(Fig. 5b, c). In control egg chambers, the first mirr-GAL4 positive cell
row reached the oocyte at a germline size of 11650 µm2 (95% CI:
10630–12570 µm2) (Supplementary Fig. 5a–d), defining a critical size
at which ectopic eya expression (eyaOE) bymirr-GAL4was expected to
prevent further FC transition onto the oocyte. As predicted by the
simulation, mirr > eya MBFCs ectopically increased their contact
surface with nurse cells and failed to transition onto the oocyte once

the critical size was reached (Fig. 5d–f, Supplementary Fig. 5e). The
forced mismatch of Eya-expressing MBFCs with nurse cells caused
the UMAP trajectory to divert from the control trajectory exactly at
the critical germline size, highlighting the importance of appropriate
germline-soma matching for overall egg chamber morphology
(Fig. 5g, h, Supplementary Fig. 5f–h).

Thus, Eya expression patterns and resulting differential affinities
dictate FC distribution over the germline. Accordingly, linking Eya
expression with AFC fate ensures robust matching of AFCs with nurse
cells and MBFCs+PFCs with the oocyte.

Oocyte growthdynamics correlatewith Eya-expression patterns
in FCs
After characterizing how Eya expression in FCs controls their interac-
tion with the germline, we switched perspectives and asked if Eya
expression in FCs also affects how germline cells interact with FCs. To
analyse a possible differential interaction of nurse cells and the oocyte
with the follicle epithelium,we characterized the angle at the interface,
where oocyte and nurse cells compete for FC contact (Fig. 6a). The
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the switch from black to grey in themirr > eyaOE trajectory correlates with the point
of diversion from the control trajectory. See Supplementary Table 7 for detailed
statistical information. Source data are provided as a Source Data file.
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angle depicts which germline cell type preferentially expands its con-
tact surface with the follicle epithelium, and thereby serves as a read-
out for whether nurse cells or the oocyte harbour effective affinity for
the follicle epithelium (Fig. 6b). An angle of 90° is the result of
balanced forces, whereas an angle >90° represents effective nurse cell
affinity and an angle <90° effective oocyte affinity. We found that the
angle was larger than 90° during phase 1, decreased below 90° during
phase 2, and increased above 90° again in phase 3 (Fig. 6c, d). This
suggested that the oocyte harbours effective affinity for FCs exclu-
sively during phase 2. We then analysed Eya levels in FCs overlying the
nurse cell–oocyte boundary and found that these appeared with
similar dynamics as the interface angle (Fig. 6e). To characterize the
relationship between Eya levels and the interface angle, we performed

a linear regression of the interface angle as a function of Eya levels and
found a positive correlation, with Eya levels <72 arb. unit predicting an
interface angle <90° (effective oocyte affinity) and Eya levels >72
arb.unit predicting an interfaceangle >90° (effective nurse cell affinity)
(Fig. 6f). A phase-wise analysis suggested that exclusively during phase
2 Eya levels in FCs at the nurse cell–oocyte boundary are low enough to
establish effective oocyte affinity (Fig. 6g). In line with that, we found
that the contact surface of the oocyte with the follicle epithelium only
started to increase at the transition from phase 1 to phase 2 and came
to a halt at the end of phase 2, before it further increased during nurse
cell dumping in phase 3 (Fig. 6h). Remarkably, the increase in interface
with the follicle epithelium was accompanied by an increase in oocyte
size (Fig. 6i).
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Eya-controlled effective germline affinities account for oocyte
growth and shape dynamics
We therefore hypothesized that Eya levels in FCs non-cell auton-
omously regulate the contact surfaces of germline cells with the
follicle epithelium and that this subsequently controls oocyte
expansion. To test this hypothesis, we designed a phase field
model, simulating the oocyte and the nurse cell compartment, and
defined the outer boundary as the contact surface with FCs (Sup-
plementary Fig. 6a, b). We quantified Eya levels in FC rows from
stage 5-10b and the row’s relative position along the AP-axis,
covering all three morphogenetic phases (Fig. 6j, k). We used these
spatio-temporal dynamics as proxy for effective-affinity-inducing
conditions on the boundary, with Eya levels of 72 arb.unit inducing
0 effective affinity (Fig. 6j). The resulting simulation recapitulated
interface angle and oocyte expansion dynamics very well (Fig. 6l,
Supplementary Movie 7). The interface angle was >90° during
phase 1 and dropped below 90° at the end of phase 1, when the
switch from effective nurse cell to effective oocyte affinity took
place (Fig. 6m). This switch also caused an expansion of the oocyte
contact surface with FCs and oocyte growth (Fig. 6n, o). Once, the
oocyte had expanded along the entire Eya-negative FC surface, the
angle increased above 90° and the oocyte seized to grow. Thus,
these simulations suggest that Eya in FCs controls effective
germline affinity for the follicle epithelium, causing the oocyte to
expand its surface specifically along Eya-negative FCs. Next to Eya-
controlled FC redistributions, this would result in an additional
morphogenetic dynamic ensuring the establishment of the right
match between FCs and germline cells.

Premature loss of Eya in FCs during phase 1 induces premature
oocyte expansion
To test the role of FC Eya expression in controlling oocyte expansion,
we first manipulated Eya expression in phase 1. We hypothesized that
the uniform expression of Eya above the critical level of 72 arb.unit
during phase 1 resulted in effective nurse cell affinity, which prevented
the oocyte from increasing its contactwith FCs and grow in size. In line
with that, simulating an early switch to effective oocyte affinity during
phase 1 led to a premature decrease in the interface angle below 90°
and a premature expansion of the oocyte (Fig. 7a–d, Supplementary
Movie 8). Experimentally, we reduced Eya levels in phase 1 egg
chambers by GR1-GAL4 driven eya-RNAi (gr1 > eya-RNAi) (Fig. 7e, f),
which led to a substantial decrease in Eya levels when egg chambers
reached a germline size of 1600 µm2 (95% CI: 1300–1918 µm2) (Sup-
plementary Fig. 7a, b). The loss of Eya caused a premature decrease of

the interface angel below 90°, indicating a switch from effective nurse
cell affinity to effective oocyte affinity (Fig. 7g, Supplementary Fig. 7c).
The premature loss of effective nurse cell affinity also caused a loss of
nurse cell organizationwithin the germline cyst (Fig. 7h). In control egg
chambers, nurse cells were of similar sizes and distributed evenly
along the follicle epithelium, whereas a loss of Eya in FCs resulted in a
high variance of nurse cell-FC interface lengths and nurse cell sizes
(Fig. 7i, j, Supplementary Fig. 7d, e). Thus, Eya expression in FCs non-
autonomously controls nurse cell arrangement and morphology.
Furthermore, as predicted by simulations, the eya-RNAi-driven switch
from effective nurse cell affinity to effective oocyte affinity caused a
premature expansion of the oocyte-FC interface and oocyte size
(Fig. 7k, l, Supplementary Fig. 7f–h). The disruption of the gr1 > eya-
RNAi UMAP trajectory from the control during phase 1 further high-
lighted the importance of FC Eya expression and the resulting soma-
germline affinity for global egg chamber morphogenesis (Fig. 7m, n).
Taken together, during phase 1, uniform Eya levels in FCs above the
critical level give rise to effective nurse cell affinity, which inhibits
premature oocyte expansion and is essential to organize the germ-
line cyst.

Ectopic Eya expression in MBFCs inhibits oocyte expansion
Next, we hypothesized that the loss of Eya in MBFCs and the
resultant switch to effective oocyte affinity drives oocyte expan-
sion during phase 2. To test this, we simulated ectopic effective
nurse cell affinity in the region of MBFCs after phase 1 (Fig. 8a,
Supplementary Movie 9). As a consequence, the interface angle
failed to decrease, and the oocyte failed to expand its contact with
FCs and to increase in size during phase 2 (Fig. 8b–d). Experi-
mentally, we forced MBFCs to ectopically express Eya during
phase 2 using mirr-GAL4 (mirr > eya) (Fig. 8e, f). As predicted,
ectopic Eya expression in MBFCs retained the interface angle
above 90° representing a failure in switching to effective oocyte
affinity (Fig. 8g, Supplementary Fig. 8a), once egg chambers had
reached the critical size for mirr-GAL4-driven interference (Sup-
plementary Fig. 5a-d). Accordingly, the oocyte failed to increase its
interface with FCs, as posterior nurse cells outcompeted the
oocyte for FC contact disrupting germline cluster organization
(Fig. 8h, i). Ultimately, the ectopic effective nurse cell affinity
resulted in a failure of oocyte growth (Fig. 8j, Supplementary
Fig. 8b, c). Thus, the loss of Eya expression in MBFCs and the
resultant switch to effective oocyte affinity is essential for oocyte
growth and consequently egg chamber morphogenesis (Fig. 5g, h,
Supplementary Fig. 5f–h).

Fig. 6 | Eya-controlled effective germline affinities account for oocyte growth
and shape dynamics. a Illustrations of ECs depicting the interface angle and Eya
expression patterns. b Illustration of the interface angle as a parameter char-
acterizing effective affinities of oocyte or nurse cells towards FCs. c Interface angle
as a function of the germline area. Dotted linesmark germline sizes at the transition
between two phases. LOESS fitted with a 95% CI area. n = 126 ECs. d Interface angle
of wt ECs grouped into the three morphogenetic phases. Box plot with whiskers
marking the 5th and 95th percentile. Numbers state the median of the corre-
sponding phase. n (phase 1: 62 ECs, phase 2: 39 ECs, phase 3: 15 ECs) e Eya levels in
FCs at the nurse cell–oocyte boundary as a function of germline area. Dotted lines
mark germline sizes at the transition between two phases. LOESS fitted with a 95%
CI area. n = 54 ECs. f Linear regression between the interface angle and Eya levels of
FCs in contact with the nurse cell–oocyte boundary. Dashed line marks 90° angle.
Linear regression with 95% CI area, n = 36 ECs. g Eya levels of FCs at nurse
cell–oocyte boundaryofwt ECs grouped into the threemorphogenetic phases. Box
plot with whiskers marking the 5th and 95th percentile. Number states median of
the corresponding phase. n (phase 1: 19 ECs, phase 2: 29 ECs, phase 3: 4 ECs)
h Oocyte–FC interface proportion of germline-FC interface as a function of
germline area. LOESS fittedwith a 95%CI area.n = 126 ECs. iOocyte area proportion
of the germline as a function of the germline area. Dotted linesmark germline sizes

at the transition between two phases. LOESS fitted with a 95% CI area. n = 126 ECs.
j Average Eya fluorescence intensity of the first 7 anterior FC rows as a function of
time. Timedenoteshours after the beginning of stage 5. Eyadynamics of rows serve
as proxy for effective affinity dynamics implemented in simulations (Supp. File S1).
n (stage 5: 5 ECs, stage 6: 5 ECs, stage 7: 5 ECs, stage 8: 4 ECs, stage 9e: 8 ECs, stage
9m: 9 ECs, stage 10a: 5 ECs, stage 10b: 5 ECs). 6th order polynomial fit constrained
to have vanishing derivatives at t =0 and t = 36hours. k Average normalized dis-
tances to anterior pole of the 7 anterior FC rows as a function of time.Distances and
intensity dynamicswereused to simulate effective affinities of germline cells (Supp.
File S1). Row 7 affinity dynamic was assigned from the distance of row 7 to the
posterior pole. n (stage 5: 5 ECs, stage 6: 5 ECs, stage 7: 5 ECs, stage 8: 4 ECs, stage
9e: 8 ECs, stage 9m: 9 ECs, stage 10a: 5 ECs, stage 10b: 5 ECs). l Phase field model
simulating germline cell behaviour as a function of their affinity for the follicle
epithelium. wt affinity dynamics are based on measured Eya levels.m–o Individual
morphological parameters of the simulation as a function of time. m Interface
Angle. n Oocyte-FC interface proportion of the germline-FC interface. o Oocyte
proportionof the germline. Phase boundarieswereassigned tomid stage 7 andmid
stage 10a. See Supplementary Table 7 for detailed statistical information. Source
data are provided as a Source Data file.
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Creating an entirely Eya-negative follicle epithelium results in
ectopic oocyte expansion
We found that establishing the rightmatch between germline cells and
FCs by the end of phase 2 correlated with a switch back to effective
nurse cell affinity and a cessation of relative oocyte expansion up until
nurse cell dumping is initiatedmidphase 3 (Fig. 6c–g).Of note, herewe
do not describe the total growth of the oocyte, but the relative
expansion of the oocyte within the growing germline. We hypothe-
sized that the match of the oocyte with all available Eya-negative FCs
and the consequent positioning of Eya-positive FCs at the nurse
cell–oocyte boundary at the transition from phase 2 to 3 causes the
temporary halt in relative oocyte expansion.We thus tested if we could
override this halt in relative oocyte growth by turning the entire

epithelium Eya-negative. We simulated this by modelling effective
oocyte affinity along the entire interface from phase 2 onwards. This
caused the interface angle to remain smaller than 90° and resulted in a
continuation of relative oocyte expansion after phase 2 (Fig. 9a–d,
SupplementaryMovie 10). In vivo, we expressed a constitutively active
EGFR under the control of TJ-Gal4 (tj > egfrλtop) throughout the epi-
thelium, which prohibited FCs at the anterior tip to adopt AFC fate20,
consequently producing egg chambers with an Eya-negative follicle
epithelium from phase 2 onwards (Fig. 9e, f). We found that these egg
chambers retained their interface angles below 90° even after phase 2,
reflecting prolonged effective oocyte affinity (Fig. 9g, Supplementary
Fig. 8d). In line with that, the Eya-negative follicle epithelium failed to
halt relative oocyte expansion at the end of phase 2 (Fig. 9h, i,
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ver), stained for E-Cad, F-Actin and nuclei (DAPI). Yellow stars mark oocytes.
Numbers denote germline areas in µm2. g Interface Angle as a function of germline
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are provided as a Source Data file.
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Supplementary Fig. 8e, f), which caused a disruption of egg chamber
morphogenesis (Fig. 9j, k, Supplementary Fig. 8g, h). Hence, the
oocyte expands its contact exclusively with Eya-negative FCs and
therefore halts its relative expansion once the right match is estab-
lished at the endof phase 2. Thus, our data demonstrate that Eya in FCs
non-cell autonomously controls the interaction of germline cells with
the follicle epithelium, and thereby regulates oocyte growth dynamics.
Taken together, Eya in FCs drives the matching of FCs and germline
cells by controlling soma-germline coordination in a bilateral manner,
giving rise to a robust matching mechanism (Fig. 10).

Discussion
Our study demonstrates how germline and soma self-organize into
functional units by using differential cell–cell affinity to match cell
populations across cell lineages. We identify the co-transcriptional

regulator Eya as the master regulator of this process. Our data
demonstrate that Eya-expressing FCs cell-autonomously experience
affinity towards nurse cells, but not towards the oocyte, while
Eya-negative FCs experience affinity for neither. Additionally, we show
that Eya in FCs regulates non-cell-autonomously the interaction of
germline cells with the follicle epithelium, such that nurse cells
experience effective affinity for Eya-positive FCs, whereas the oocyte
experiences effective affinity for Eya-negative FCs. Moreover, our
experiments demonstrate that these Eya-controlled bilateral affinity
dynamics underlie the critical matching of FC subpopulations with
germline cells.

Importantly, our phase field simulations provide a controlled
environment to isolate the effects of changing affinity between cell
lineages. We see that an affinity differential between cell types pro-
portional to their relative Eya expression very closely recovers
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experimentally observed morphologies of both FCs and the germline.
Furthermore, with parameters only adapted to wild-type models, the
numerical simulations correctly predict significant morphological
changes, such as FC-germline contact loss or premature oocyte
expansion when affinities are suitably altered. This lends additional
credence to our finding that Eya controlled differential affinity of cell
lineages is underlying soma-germline matching.

Taken together, we demonstrate that Eya-controlled bilateral
affinity dynamics at the soma-germline interface create a robust self-
organizing system to drive the establishment of inter-lineage func-
tional units. Thus, it represents a prime example of how differential
cell–cell affinity can be utilized to drive complex morphogenetic
events of multi-lineage tissues.

Yet, molecular and cellular details of Eya-dependent interactions
remain unknown. A previous study revealed that MBFCs display high
levels of apical-medialmyosinwhen in contactwith nurse cells and that
MBFCs lose apical-medial myosin as soon as they encounter the
oocyte22.Whilewe show that Eyadownregulation inMBFCs is sufficient
to remove affinity for nurse cells and displace MBFCs onto the oocyte,

the contact-dependent myosin enrichment suggests that Eya-negative
FCs may not just lack affinity for nurse cells but experience
active repulsion from the nurse cell surface. However, either
mechanismwill ensure reliablematching between Eya-negativeMBFCs
and the oocyte.

Furthermore, as we cannot experimentally separate the interac-
tion of nurse cell or the oocyte with FCs, we introduced ‘effective
affinities’ to characterize the interaction of germline cells with FCs in a
relative manner. Consequently, we cannot distinguish whether effec-
tive oocyte affinity is the result of active cell-autonomous affinity of the
oocyte for Eya-negative FCs or the consequence of a repulsion
between nurse cells and Eya-negative FCs. However, both scenarios
will result in the same effective affinity which would control oocyte
expansion.

The most pressing question might be how differential affinity at
the soma-germline interface is established at the molecular level. We
expect that Eya regulates the expression of transmembrane receptors
in FCs, which recognize nurse cell or oocyte-specific ligands or
receptors. Subsequently, signaling downstream of these receptors
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Fig. 9 | Inhibition of AFC differentiation causes ectopic oocyte affinity and
oocyte expansion during phase 3. a Phase field model simulating germline cell
behaviour as a function of their affinity for the follicle epithelium. wt affinity
dynamics vs. ectopic effective oocyte affinity after phase 1 (simulating an Eya-
negative follicle epithelium after phase 1). b–d Individual morphological para-
metersof the simulation as a functionof time.b Interface Angle. cProportionof the
germline-FC interfacemade upby the oocyte.dOocyte proportion of the germline.
Phase boundaries were assigned to mid stage 7 and mid stage 10a. e Medial con-
focal sections of egg chambers expressing CD8-tom and gfp under the control of tj-
GAL4 (tj > gfp, FC driver), stained for F-Actin and nuclei (DAPI). Numbers denote
germline areas in µm2. fMedial confocal sections of egg chambers expressing CD8-
tom and egfrλtop under the control of tj-GAL4 (tj> egfrλtop, FC driver), stained for

F-Actin and nuclei (DAPI). Numbers denote germline areas in µm2. g–i Individual
morphological parameters as a function of germline area for tj > gfp and tj> egfrλtop

egg chambers. g Interface Angle. h Proportion of the germline-FC interface made
up by the oocyte. iOocyte proportion of the germline. Dotted lines mark germline
sizes at the transition between two phases. Curves are LOESS fitted with a 95% CI
area. n (tj > gfp: 119 ECs, tj> egfrλtop: 109 ECs). j UMAP comparing tj > gfp and tj >
egfrλtop egg chamber morphogenesis. k UMAP of tj > gfp and tj > egfrλtop grouped
into phase 1 (black, germline area<6500µm2), phase 2 (darkgrey, germline area
>6500 µm2 & <31500 µm2), and phase 3 (lightgrey, germline area > 31500µm2). See
Supplementary Table 7 for detailed statistical information. Source data are pro-
vided as a Source Data file.
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must alter interfacial tensions by targeting the cytoskeleton and
adhesion complexes in FCs and germline cells2,3.

Methods
Drosophila stocks and genetics
All experiments were performed on Drosophila melanogaster. Stocks
(Supplementary Table 1) and experimental crosses (Supplementary
Table 2) were maintained on standard fly food (10 L water, 74.5 g agar,
243 g dry yeast, 580 g corn meal, 552mL molasses, 20.7 g Nipagin,
35mL propionic acid) at 18 °C, 22 °C and 25 °C. Formirr-GAL4 and fru-
GAL4 driven expression, newly hatched females were shifted to 27 °C
or 30 °C for 48 h to relieve tub-GAL80-mediated repression of GAL4.
Mosaic analysis was performed using the ‚flip-out’ and themitotic FLP/
FRT system44. For follicle epitheliumclones,flp expressionwas induced
in young adult females using a heat shock varying from 4 to 20min
depending on the hsflp construct (hsflp [122] vs. hsflp[1]) for ‚flip-out’
experiments, or 1 h using hsflp [122] for FRT/FLP experiments at 37 °C.
Flies were fed yeast paste for 24 to 48 h prior to dissection.

Immunohistochemistry and imaging
Ovaries, gonads and testis were dissected and fixed in 4% paraf-
ormaldehyde/PBS for 15min at 22 °C. Washes were performed in
PBS +0.1% Triton X-100 (PBT). Samples were incubated with primary
antibodies in PBT overnight at 4 °C: mouse anti-β-catenin (1:100,
DSHB, N27A1), rat anti-E-cadherin (1:50, DSHB, DCAD2), rabbit anti-
GFP (1:200, Thermo Fisher, G10362), rat anti-RFP (1:20, gift from H.
Leonhardt, 5F8), mouse anti-β-gal (1:1000, Promega Z378B) mouse
anti-Eya (1:100, DSHB eya10H6), rabbit anti-pMad (1:200, abcam
ab52903). Ovaries were incubated with secondary antibodies for 2 h at
22 °C. DAPI (0.25 ng/μl, Sigma), Phalloidin (Alexa Fluor 488, Alexa
Fluor 647 and Alexa Fluor 555, Molecular Probes, or Phalloidin-TRITC,
Sigma) was used to visualize DNA and filamentous Actin. Following
secondary antibodies were used: goat anti-mouse Alexa Fluor488
(Abcam, AB150117, 1:500), goat anti-rat Alexa Fluor488 (Abcam,
AB150153, 1:500), goat anti-rabbit Alexa Fluor488 (Invitrogen, A11008,
1:500), donkey anti-mouse Alexa Fluor555 (Abcam, AB150110, 1:500),
donkey anti-rat Alexa Fluor555 (Abcam, AB150154, 1:500), donkey anti-

Eya levels

Phase 3 - Stable match between Eya+ FCs and nurse cells, and between Eya- FCs and the oocyte

Eya+ FCs maintain maximal contact with nurse cells
Eya in FCs induces cell-autonomously affinity for nurse cells

Oocyte maintains maximal contact with Eya- FCs
Eya- FCs non-autonomously induce effective oocyte affinity

Phase 2 - Bidirectional matching of Eya+ FCs with nurse cells and Eya- FCs with the oocyte

Eya+ AFCs spread out to maximize contact with nurse cells
Eya in FCs induces cell-autonomously affinity for nurse cells

Oocyte contact with Eya- FCs becomes maximized
Eya- FCs non-autonomously induce effective oocyte affinity

Phase 1 - Uniform distribution of contact surfaces between FCs and germline cells

Eya+ FCs distribute evenly over nurse cells
Eya in FCs induces cell-autonomously affinity for nurse cells

Eya+ FCs inhibit oocyte expansion
Eya+ FCs non-autonomously induce effective nurse cell affinity

Fig. 10 | Eya-driven matching of FCs and germline cells. Illustration of Eya-
controlled soma-germline coordination during Drosophila egg chamber morpho-
genesis. Eya in FCscell-autonomously induces affinity for nurse cells, but not for the
oocyte. This causes Eya-positive AFCs to spread out posteriorly to maximize their
contact with nurse cells, which consequently displaces Eya-negative MBFCs onto
the oocyte. Additionally, Eya in FCs non-autonomously controls effective germline
affinity, such that Eya-positive FCs induce effective nurse cell affinity, while Eya-

negative FCs induce effective oocyte affinity. As a result, the oocyte expands
anteriorly during phase 2 tomaximize its contact exclusively with Eya-negative FCs.
Ultimately, these bilateral affinity dynamics result in a bidirectional matching
dynamic that ensure robust matching of Eya-positive FCs with nurse cells and Eya-
negative FCs with the oocyte. The established match represents the energetically
preferred and therefore highly stable state.
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mouse Alexa Fluor647 (Abcam, AB150111, 1:500), donkey anti-rat Alexa
Fluor647 (Abcam, AB150155, 1:500), goat anti-rabbit Alexa Fluor647
(Invitrogen, A21244, 1:500). Samples were mounted using Molecular
Probes Antifade Reagents and imaged using Leica TCS SP8 confocal
microscopes. Control and experimental samples were processed in
parallel, and images were acquired using the same confocal settings.

Image acquisition, analysis and quantification
Images were obtained with a LEICA TCS SP8 using the software LAS X.
Images were processed in FIJI45 or MATLAB (R2021a, The Mathworks).
Statistical analysis and generations of graphs were performed in R (R
version 4.0.5), GraphPad (GraphPad Prism 9) and MATLAB (R2021a,
The Mathworks).

Quantification of Egg chamber morphology
Egg chambermorphologymeasurementswere performed in FIJI, using
the polygon, line, multi-point and angle tools. In total 24 parameters
(Supplementary Table 3) were determined in 2Dmedial cross sections
(through the anterior and posterior pole) for each genotype and its
respective control (Supplementary Fig. 1b, Supplementary Table 4).
Egg chambers were selected to sufficiently cover the entire develop-
mental range and are therefore not representing frequencies of
developmental stages or sizes. Wild type and control egg chambers
were staged by previously described criteria12,46.

Heatmap
Heatmaps were produced in R on standardized data. The wild type
dataset was standardized independently, whereas datasets of geneti-
cally manipulated egg chambers were standardized in combination
with their respective control dataset (i.e. from GAL4-driver back-
grounds). Individual egg chamberswere orderedby germline area size,
smallest to largest from top to bottom. Egg chamberswere assigned to
their respective phase based on their germline area size. Additionally,
all control egg chambers were assigned their respective stage
according to classical staging criteria.

UMAP Analysis
Analysis was performed in R (R version 4.0.5). Multidimensional mor-
phology description datasets of all genotypes were pooled (N = 1026)
and standardized. PCAwasperformedon the standardizeddataset and
the first 5 PCs (cumulative variance > 90%) were selected. Con-
secutively, uniformmanifold approximation (UMAP) was applied with
the following parameters: n_neighbors = 15, min_dist = 0.224. UMAP
analysis revealed three phases of egg chamber morphologenesis.
Phase 1 was characterized by high UMAP_2 values and increasing
UMAP_1 values, Phase 2 covered egg chambers with stable high
UMAP_1 values and decreasing UMAP_2 values. Phase 3 consisted of
egg chambers with low UMAP_2 levels and decreasing UMAP_1 levels.
Germline size was increasing steadily along the trajectory allowing to
assign egg chambers based on their germline size to their respective
phase (Supplementary Table 5).

Analysis of individualmorphometric parameters as a functionof
germline area
Since classical egg chamber staging relies on morphology, it can only
be reliably applied to wild type egg chambers but not to genetically
manipulated egg chambers with disrupted morphology22. Moreover,
classical staging is a method that leads to a discrete description of a
continuous process. As live imaging of the entire egg chamber devel-
opment is still impossible47, we were looking for a variable, as an
alternative to temporal length, to identify developmental progression.
Based on our previous work indicating that germline growth is to a
large extent independent of follicle cell morphogenesis22, we decided
that germline size would allow for a continuous and morphology-
independent description of developmental progression. While we are

aware of possible limitations to the assumption that the germline size
increases independently, we are convinced that representing devel-
opmental progression by germline size is an advancement to classical
staging and at this time point the best alternative to time.

Using germline size as a continuous independent variable allowed
us to compare parameters as a function of germline area between
control and manipulated egg chambers. Differences in curves of con-
trol and manipulated egg chambers were statistically compared by
multiple linear regression with an interaction term.

Y ~ germline size + genotype+ germline size * genotype ð1Þ

Since the interpretation of main effects is limited upon the exis-
tence of an interaction effect first p-values of the interaction term are
stated. If the interaction effectp value ≥0.05multiple linear regression
without interaction was performed to analyze the main effect of the
genotype.

Y ~ germline size + genotype ð2Þ

Additionally, egg chambers were grouped into egg chamberswith
smaller germline areas than the critical size and egg chambers with
larger germline areas than the critical size. Genotypes were compared
by a two-way Anova and multiple comparisons testing. This analysis
reduced the impact of the assumption that germline size was
independent.

Eya immunofluorescence intensity measurement
All images were processed in FIJI45. Images that were used for Eya
fluorescence intensity measurements were acquired from the same
sample,mounted on the same slide and imagedwith identical settings.
Eya was detected with an Alexa647-tagged secondary antibody to
reduce auto-fluorescence interference. Maximum Intensity projec-
tions of a stack covering half of an egg chamber were used to quantify
Eya intensities. Intensities were measured in FIJI with the polygon tool
by creating nuclear (DAPI) ROIs and determining the mean Eya fluor-
escence intensity within each ROI.

Analysis of apical area morphology
For the measurements of apical areas along the AP axis throughout
development, wemade use of a FIJI and Matlab pipeline to correct for
3D curvature in 2D images48. Egg chambers expressing utrABD-gfp and
cd8-tomwere used and stained for E-Cad to facilitate the segmentation
of apical areas throughout egg chamber development. 3D confocal
stacks of egg chambers were first projected on a 2D plane using the
LocalZProjector Fiji plugin (ref. 49; https://gitlab.pasteur.fr/iah-public/
localzprojector, v1.5.4). The LocalZProjector tool produces for each
input stack the 2D projection of the tissue, restricted to include only
voxels close to the tissue surface, and the height-map. The height-map
is a 2D image where the pixel value stores the Z position of the tissue.
The projected images were then segmented in Fiji, using the Tissue
Analyzer49. There segmentation results were analyzed in a second step
using DeProj (ref. 49; https://gitlab.pasteur.fr/iah-public/DeProj/) in
MATLAB (R2021a, The Mathworks). Briefly, cells obtained from the 2D
segmentation on projected images were mapped back onto the 3D
surfaceof the tissue, obtained via the height-mapgeneratedduring the
projection step. From the apical contour of cells now in 3D, morpho-
logical parameters such as cell area, cell orientation and tissue slope
were calculated and exported for subsequent analysis.

Nurse cell morphology quantification
Individual nurse cell morphology was quantified in FIJI using the
polygon tool. For each nurse cell a 2D-section was selected that cut
through the center of the nucleus. In this section, the perimeter and
area of the nurse cell, the length of the shared interface with FCs and
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the area of the nucleus (DAPI) weremeasured. Additionally, each nurse
cell was assigned to a NC rowwithin its egg chamber. Parameters were
then used to calculate proportions and coefficients of variance (Sup-
plementary Table 6).

Morphological parameter quantification of simulations
Images representing the stages and the transition between stages were
quantified in FIJI using the polygon, line, and angle tools. Measured
data were plotted as a function of the reported duration of develop-
mental stages12,43.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study are provided in the Source Data
file. Source data are provided with this paper.

Code availability
The C++ program code for the finite element phase field simulations is
available from https://doi.org/10.5281/zenodo.7116639.
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