
Vol.:(0123456789)1 3

Journal of Robotic Surgery (2022) 16:1249–1256 
https://doi.org/10.1007/s11701-022-01373-1

REVIEW ARTICLE

Factors affecting the learning curve in robotic colorectal surgery

Shing Wai Wong1,2   · Philip Crowe1,2

Received: 21 December 2021 / Accepted: 12 January 2022 / Published online: 1 February 2022 
© The Author(s) 2022

Abstract
Learning related to robotic colorectal surgery can be measured by surgical process (such as time or adequacy of resection) or 
patient outcome (such as morbidity or quality of life). Time based metrics are the most commonly used variables to assess the 
learning curve because of ease of analysis. With analysis of the learning curve, there are factors which need to be considered 
because they may have a direct impact on operative times or may be surrogate markers of clinical effectiveness (unrelated 
to times). Variables which may impact on operation time include surgery case mix, hybrid technique, laparoscopic and open 
colorectal surgery experience, robotic surgical simulator training, technology, operating room team, and case complexity. 
Multidimensional analysis can address multiple indicators of surgical performance and include variables such as conversion 
rate, complications, oncological outcome and functional outcome. Analysis of patient outcome and/or global assessment of 
robotic skills may be the most reliable methods to assess the learning curve.
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Introduction

The exponential increase in adoption of robotics for colo-
rectal surgery has occurred concurrently with improvements 
in technology. This may be related to improved ergonomics 
for the operating surgeon with benefits in the areas of visu-
alisation, posture and manipulation [1]. The learning curve 
describes the rate of progress in acquiring new skills and 
has implications for training, self-assessment, credentialing, 
clinical outcomes and cost–benefit decision regarding adop-
tion of new procedures and devices [2]. Learning related to a 
new surgical technique can be measured by surgical process 
or patient outcome [3]. Surgical process measures are gener-
ally easier to analyse and include factors such as operation 
time and adequacy of resection for cancer surgery. Patient 
outcomes include operative morbidity, patient satisfaction 
and quality of life.

Other variables should also be taken into account when 
the learning curve is assessed. Some of these factors may 

have a direct impact on operative times and other factors 
may be surrogate markers of clinical effectiveness (unrelated 
to times). Variables which may impact on operation times 
include operation case mix (selected or sequential cases), 
hybrid technique, prior laparoscopic and open surgery colo-
rectal surgery (LCS and OCS) experience, robotic surgical 
simulator training, advances in technology, dedicated operat-
ing room team and case complexity. Harryson et al., in their 
systemic review of learning curves for minimally invasive 
abdominal surgery, concluded that an ideal analysis should 
account for the degree of complexity of individual cases and 
the inherent differences between surgeons [4].

Multidimensional analysis can address multiple indica-
tors of surgical performance and include variables such as 
conversion rate, complications, oncological outcome and 
functional outcome. Multidimensional analysis of all sig-
nificant variables would be more representative of a new 
technique’s learning curve because a reduction in operation 
time can occur at the expense of optimal patient outcome 
[5]. Similarly, global assessment of robotic skills may be a 
better measure of surgeon expertise than time improvements. 
The aim of the review is to examine the literature concern-
ing factors which may impact the learning curve in robotic 
colorectal surgery, either by directly influencing operative 
times (Table 1) or by analysis of non-time based outcomes 
(Table 2).
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Case number

Studies have reported wide variation in the length of learn-
ing curves. In LCS, studies indicated that a learning curve 
of 40–70 cases is required for proficiency [6]. Most stud-
ies report a plateauing of the learning curve for robotic 
colorectal surgery after 15–20 cases [7, 8]. More compli-
cated rectal dissections may have a bimodal plateau after 
33–45 cases and again at 72–93 cases [9–11]. A systematic 
review of 28 LCS and 6 RCS studies indicated the number 
of operations to achieve proficiency to range from 5 to 310 
cases for LCS and 15–30 cases for RCS [12]. The authors 
noted that the definition of proficiency on the basis of sin-
gle parameters was useful but simplistic. Robotic surgery 
may attenuate the steeper learning curve of laparoscopic 

surgery by improving dexterity and efficiency. The learn-
ing curve for a novice rectal surgeon was noted to be 25 
cases and was attributed to flattening of the steep learning 
curve by the surgical robotic system, perhaps not taking 
into account simulation training [13].

The learning curve has historically been described as 
having four phases: rapid ascent, slower ascent, plateau or 
asymptote, and descent [3]. The rapid ascent indicates how 
quickly individuals learn and master stages of a complex 
procedure before a competent point is reached. Additional 
experience improves outcomes by small amounts until a pla-
teau is reached. Sometimes a temporary performance dete-
rioration is seen during this phase, which may be related 
to a more difficult case mix or over-confidence. The final 
phase of decent occurs much later with advancing age and 
deterioration in manual dexterity, eyesight and cognition.

Time based metrics have been the most commonly used 
variables to assess the learning curve [2]. Time changes dur-
ing the learning curve of RCS has been evaluated by raw 
times plotted in chronological order, the moving average 
method and cumulative sum (CUSUM) analysis. The mov-
ing average method is created by an average of subsets (e.g. 
a moving average order of 20), which are modified by add-
ing new data to the subsets and then by shifting forward all 
data set. This method can present the overall trend of data 
to detect cumulative changes from average values [8, 11]. 
The results from a study including this method and CUSUM 
analysis revealed similar patterns with low peak and high 
peak points at the same chronological case numbers [11].

CUSUM analysis can be used for monitoring perfor-
mance and detecting areas of improvement. The CUSUM is 
the running total of differences between the individual data 
points and the mean of all data points. This allows visualisa-
tion of data for trends not discernible with other approaches. 
The advantages of CUSUM analysis are independence from 
sample size, effectiveness in detecting small shifts in the 
system and ability to allow continuous analysis in time and 
rapid evaluation of data [14].

Three distinct performance phases with CUSUM analysis 
of surgeon console time (SCT) have been described during 
RCS. The initial phase typically has a positive slope which 
is associated with the longest console time (attributed to 
learning), followed by a plateau (attributed to competency), 
and finally a negative slope (attributed to mastery). However, 
the studies were not always consistent in their presentation 
of the three phases, with some studies displaying different 
orientation of the learning curve slopes (i.e. descent fol-
lowed by plateau and then ascent).

The most typical positive slope/ plateau/ negative slope 
pattern with CUSUM graphical analysis was demonstrated 
in several RCS studies [14, 15]. The CUSUM graph of two 
other studies had an initial negative slope, followed by pla-
teau and then positive slope [7, 16]. One study attributed the 

Table 1   Factors affecting operation time

Factors Assessment

Case number Chronological order
Moving average method
Cumulative sum analysis (CUSUM)

Surgery case mix All consecutive cases
One type of surgery only (e.g. rectal)

Hybrid surgery Laparoscopic mobilisation of part 
of colon

Total robotic approach
Experience Open colorectal surgery

Laparoscopic colorectal surgery
Surgical simulator training Proficiency-based learning
Advanced technology daVinci Si or Xi robot
Standardised surgical protocol Dedicated team
Case complexity Body mass index

Colon or rectal resection
Cancer tumour stage
Female or male pelvic case
Extent of inflammation

Table 2   Learning curve assessment unrelated to time analysis

Indicators of surgical performance Variables

Surgical outcome Conversion rate
Perioperative morbidity

Oncological outcome Adequacy of resection
Lymph node harvest
Local recurrence

Functional outcome Patient satisfaction
Quality of life

Global assessment of robotic skills Depth perception
Bimanual dexterity
Efficiency
Force sensitivity
Autonomy
Robotic control
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positive slope to more complicated cases during phase 3 [7]. 
In the other study, the decrease operative times over the three 
phases did not align with this slope pattern [16]. The sur-
geons in these studies may have not achieved mastery (and 
possibly not competency) because the CUSUM curves at the 
end of the cases were still ascending. The CUSUM robotic 
operation time curve of experienced laparoscopic colorec-
tal surgeons in two studies indicated a gradual decline of 
the console time CUSUM curve for the first 44/45 cases, 
perhaps demonstrating minimal learning process. [17, 18].

Surgery case mix

Two studies which included a heterogeneous group of con-
secutive colorectal procedures indicated that 83 and 88 cases 
were required to attain mastery [15, 18]. The longer time to 
attain mastery may be related to the fact that all consecu-
tive patients who underwent RCS were included in the stud-
ies. Learning may be facilitated when performing a variety 
of bowel resections. Some procedures are inherently more 
complex and challenging than others. However, each case 
type has a unique set of steps, instrument use and skill sets 
[15]. The case numbers required to complete the competency 
phase differ according to the consecutiveness of case mix, 
which may lead to selection bias. Most studies were single 
surgical procedure studies and do not account for learning 
during other procedures in between these nominated cases. 
The number of cases to reach competency for one type of 
surgery only (e.g. rectal) would be less because not all com-
pleted RCS cases have been included in the analysis.

Subgroup analysis has demonstrated different learning 
curves when certain case types are selected from consecu-
tive RCS cases. One RCS study with a study population of 
62 patients, compared the results before and after the 15th 
case [8]. There was non-significant increase in total opera-
tion time (TOT) from 261 to 312 min for the 11 patients 
who underwent robotic right hemicolectomy, significant 
reduction in TOT from 361 to 258 min (p = 0.03) for the 14 
patients who underwent robotic rectopexy, and significant 
reduction from 518 to 395 min (p = 0.02) for the 24 patients 
who underwent robotic proctectomy for rectal cancer. The 
improvement in time associated with experience in the group 
of patients undergoing rectal surgery may have been related 
to skills learnt during robotic colon surgery cases. Another 
study examined the consecutive SCT CUSUM graphs of all 
colorectal cases and of selected case types (right hemicolec-
tomy and rectal surgery) [18]. Unlike the graph displaying 
CUSUM of surgeon console time for all cases, the graphs 
for the selected surgery cases did not reveal any evidence of 
consistent upward or downward slope to indicate a learning 
process.

Hybrid surgery

Hybrid procedures involve laparoscopic mobilisation of 
part of the colon (typically splenic flexure and descend-
ing colon) and completion of the surgery with robotic 
assistance (typically sigmoid colon and rectal dissection). 
This was more common with use of the older da Vinci S/
Si systems which did not allow easy multi-quadrant sur-
gery. Park et al. argued that there should be no difference 
between the learning curve of the totally robotic approach 
and the hybrid technique of robotic rectal cancer surgery 
because manipulating robotic instruments in a narrow 
pelvic space was the most challenging part to learn [10]. 
However, SCT would be shorter and achieving compe-
tency should involve less cases as less skill sets need to 
be mastered when performing only the pelvic part of the 
surgery robotically.

Comparing the mean SCT to the mean TOT can indi-
cate how much of the operation was performed laparo-
scopically or via the open approach. Typically, the ratio 
is less than half with hybrid procedures and around two-
thirds for total robotic surgery. Two studies using the 
total robotic approach on the da Vinci Xi system reported 
ratios of 0.64 (180/280) and 0.71 (214/302) [14, 18]. 
Sng et al. performed total robotic dissection using the 
da VInci S robotic system, which required repositioning 
of the robotic arms between the two phases of surgery 
[9]. Their ratio was 0.5 (140/279). Studies using a hybrid 
approach revealed ratios of 0.47 (115/246), 0.39(82/212), 
and 0.32(64/200) [7, 11, 19].

One study included 39 patients who had hybrid or total 
robotic approaches for the management of rectal can-
cer [13]. More total robotic cases were performed with 
later phases but this was surprisingly not reflected by an 
increase in the SCT/TOT ratio. Even in third phase when 
7 of 14 patients had “total” robotic surgery, the mean ratio 
was 0.34, which would suggest a large proportion of the 
surgery was performed laparoscopically or open.

Experience

The surgeon’s previous experience may be a significant 
factor in the variability of the operating time learning 
curves. Some studies have shown that surgeons with 
greater experience require fewer robotic procedures to 
overcome their learning curves [2]. Odermatt et al. found 
in their study of two surgeons that prior experience in 
laparoscopic rectal surgery had an impact on the learn-
ing curve for robotic rectal resections [17]. For the sur-
geon with extensive laparoscopic experience (1500 LCS 
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procedures prior to starting robotic surgery), the CUSUM 
curves revealed minimal to no learning process for opera-
tion time and quality indicators such as lymph node har-
vest, length of stay and major complications. For the 
surgeon with less LCS experience (400 prior to starting 
robotic surgery), the CUSUM curves showed a clear learn-
ing process for operation time, length of stay (LOS) and 
major complications.

The main benefit of experience may be reflected in the 
low complication rate during the learning curve, rather than 
a reduction in TOT. Two studies reporting on RCS learn-
ing curve of consecutive unselected colorectal procedures 
reported different complication rates [15, 18]. The gastro-
intestinal complication rate (which included small bowel 
obstruction, ileus, anastomotic leak and abdominal/pelvic 
abscess) was 0.37 and 0.06 per patient (sixfold difference) 
in the two studies, possibly related to the difference in opera-
tive experience of the surgeons.

Inexperience in OCS and LCS may impact the learning 
curve. Inexperience in either surgery may be associated with 
longer operation times, higher open conversion rates and 
more complications [13, 21]. However, the robotic surgical 
system may allow smoother transition from open to mini-
mally invasive surgery. An experienced surgeon may be able 
to transfer open surgical skills to a minimally invasive set-
ting quicker with the help of the robotic system because 
of the already acquired proficiency in tissue handling and 
anatomic knowledge, as well as avoiding the visual/proprio-
ception disconnect from the fulcrum effect with laparoscopic 
surgery. Several studies reported a reduction in TOT during 
the first 20 RCS cases by experienced OCS surgeons with 
limited LCS experience, with a rapid transfer of surgical 
skills from open to the robotic approach [19–21].

The learning curve may be shorter in surgeons who are 
already proficient in OCS and LCS. Different skill sets are 
learnt from the two different approaches which can be trans-
ferable to a robotic setting. Familiarity with the instruments 
and foot pedals used in laparoscopic surgery and with the 
anatomy viewed through a video monitor can help when first 
performing robotic surgery [19]. Regained depth perception 
but reduced haptic feedback with the robotic system would 
help with the RCS learning curve when transitioning from 
LCS.

Surgical simulator training

Robotic simulation training allows surgeons to develop and 
improve skills that are directly transferrable to the operating 
room, and provide a record to track their progress [22]. Vol-
ume-based learning can be replaced with proficiency-based 
learning, as metrics are used to measure progress rather 
than number of procedures or years in training. Simulation 

can provide advanced procedural-based training, and can 
function as a warm-up exercise prior to actual surgery [23]. 
Increased robotic simulation training should have an impact 
on shortening the learning curve but the efficacy of virtual 
simulators in the acquisition of skills to the standard required 
for safe clinical RCS has not been studied [24]. Most RCS 
learning curve studies did not report surgeon simulation 
training experience [2].

Advanced technology

The ability to complete all cases with a total robotic 
approach without conversion may be related to the improved 
technology of the fourth-generation daVInci Xi. Multivari-
ate analysis by Ozben et al. demonstrated that the Xi robot 
was an independent factor associated with a reduced con-
sole time [25]. Other studies reported shorter operating 
time using the Xi (compared with Si) for robotic colorec-
tal surgery and TME as well as better ability to perform a 
fully robotic approach [26–28]. The advantages of the Xi 
include improved flexibility and manoeuvrability with over-
head rotating architecture, slimmer boom-mounted arms, 
extended instrument reach, guided targeting and integrated 
auxiliary technology [29]. Despite having a longer active 
chain and more robotic joints, the accuracy of the Xi was 
similar to the Si system [30]. The main problem of stud-
ies comparing outcomes of the Si and Xi platform relate to 
chronology bias and “proficiency-gain effect”. [27].

Standardised surgical protocol

A standardized surgical protocol for all RCS was imple-
mented in one study which included a dedicated team of 
operating room staff, standard instrument use, routine 
sequential operative steps and participation of two surgeons 
when warranted [31]. This was associated with a signifi-
cantly reduced TOT (431 vs 279 min, p < 0.01), open con-
version and LOS. Another study reported shorter learning 
curves in surgeons who were in a systematic institutional 
program [16]. The authors attributed this improved insti-
tutional efficiency to standardisation of patient and robot 
positioning, port placement, appropriate use of instruments, 
conflict resolution and dedicated assistant.

Case complexity

Differences in case complexity may have the greatest 
impact on SCT learning curves observed. Following initial 
improvement and subsequent stabilisation of performance, 
a decline is commonly observed. This may be related to 
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the willingness of surgeons to take on more challenging 
and complex cases once they have mastered the simpler 
surgical cases. Studies of simulated robotic tasks have 
observed variable learning curves for training tasks of 
different complexity [2].

Bokhari et al. found increase console time during the 
“mastery” phase compared with the initial phases, which 
they attributed to a greater number of difficult cases during 
that period [7]. The “mastery” phase may not have been 
accurate because the CUSUM curve was still ascending in 
their third phase. There was a greater proportion of more 
technically challenging case, morbidly obese patients, 
male patients and low pelvic malignancies during the mas-
tery phase. Sng et al. found not only a significant decrease 
in console time with experiences but also a significant 
increase in length of stay [10]. The authors attributed this 
finding to the increasing complexity of cases the surgeon 
performed during the later phases. Comparing phase I 
patients (first 35) with the later phase patients (next 162), 
there was a lower percentage of low rectal cancers (46% 
vs 64%), neoadjuvant chemoradiotherapy (3% vs 33%) and 
splenic flexure mobilisation (9% vs 57%).

Limiting the complexity of robotic colorectal resection 
cases in the initial training phase may improve patient 
outcome. One study reported no increase in morbidities 
over the learning phases with gradual performance of 
more complex cases such as low cancers and preoperative 
chemoradiation [19]. Miskovic et al. graded complexity 
of LCS cases on factors such as body mass index, colon 
or rectal resection, tumour stage of cancer, female or male 
pelvic case and extent of inflammation [32]. These factors 
are probably similar for RCS cases. Using the complexity 
score of Miskovic et al. Shaw et al. found an improve-
ment in mean operating time of 53 min with robot-assisted 
colorectal surgery after 15 cases, despite an increase in 
complexity of cases (10% vs 34% level IV complex cases, 
p = 0.03) [8]. Using the same score, Muller et al. reported 
a major complication rate in patients with high complex-
ity of 34.5% (10/29 patients) in the first time period and 
10.5% (2/10 patients) in the second time period [33]. The 
authors recommended limiting the complexity of robotic 
colorectal resection cases in the initial training phase.

In one study, the “learning” phase (with increase SCT) 
occurred in phase 2 and may have been related to perfor-
mance of more complicated multi-quadrant total colec-
tomy cases [18]. In another study, seven of eight excep-
tionally long TOT (more than one standard deviation 
above mean TOT) occurred in the middle phase (17 of 39 
patients) of the learning curve [13]. This was related to 
difficult cases and resulted in a significant increase in TOT 
compared with the other two phases.

Multidimensional analysis

Defining the learning curve on the basis of single param-
eters is useful but simplistic, with multidimensional 
assessment (MDA) more reliable [12]. MDA of the learn-
ing curve has been used to evaluate additional variables to 
operative time such as conversion, perioperative morbid-
ity, circumferential margin, harvested lymph nodes and 
local recurrence [11, 19, 32]. Using MDA, the three-phase 
learning cutoff points were after 33 and 72 cases, and after 
44 and 78 cases in two robotic rectal surgery studies; and 
after 44 and 90 cases for robotic right hemicolectomy 
surgery. These analyses can analyse the learning curve 
to reflect and adjust for surgical outcomes. There was 
variability in how MDA was performed in studies. Some 
studies calculated risk adjusted CUSUM graphs using uni-
variate analysis of risk factors and multifactorial logistic 
regression to calculate probability of failure, with fail-
ure and success assigned scores of 1 and 0, respectively. 
Odermatt et al. analysed CUSUM graphs for lymph node 
harvest, length of stay and major complications, using the 
surgeon’s matched laparoscopic reference group as a base-
line [17].

The learning curve has been demonstrated to be 
longer for recovery and safety metrics (LOS, complica-
tions). Improvements in these variables may continue for 
extended periods after the learning curve for operation 
time has been overcome [2]. Several studies defined sur-
gical failure by occurrence of any of the selected param-
eters: open conversion, positive resection margin, har-
vested lymph nodes less than 12, morbidity or mortality 
and local recurrence [11, 34]. In assessing learning curves, 
the “failure”, conversion and complication rates should be 
reported overall and ideally improvements over the three 
time-based phases should be demonstrated. In RCS stud-
ies, the conversion rate ranged from 0 to 11% [8, 10, 11, 
14, 15, 17–19, 21, 31]. The anastomotic leak rate ranged 
from 0 to 11% [8, 10, 11, 13, 14, 18, 19, 21]. Four studies 
reported more (1) and equivalent (3) Clavien–DIndo [35] 
grade III or IV complications in phase 3 [11, 14, 18, 19]. 
This may be related to selection of more complicated cases 
or indicate a need for more cases to achieve proficiency. In 
addition, there may be a relationship between open conver-
sions and worse patient outcomes. Surgeon inexperience 
has been reported to be a predictive risk factor for open 
conversion [36].

Bokkari et  al. proposed three important factors for 
surgeons to achieve to attain RCS mastery: overcoming 
lack of tactile feedback with compensation by visual cues, 
keeping track of robotic instrument positions when they 
are not in the field of vision and optimising maneuver-
ability of the robotic arms while operating at the console 
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without direct vision [7]. Overall assessment of surgeon 
robotic skills may be a more reliable method to assess 
learning. Global Evaluative Assessment of Robotic Skills 
(GEARS), modelled after global rating scales for open and 
laparoscopic surgery, has been validated as a clinical skills 
assessment tool. GEARS consists of six domains (depth 
perception, bimanual dexterity, efficiency, force sensitiv-
ity, autonomy and robotic control) scored on a 5-point Lik-
ert scale and has been used to classify surgeon expertise 
levels [37, 38]. The assessment of these skill domains may 
not be as applicable for robotic surgery compared with 
laparoscopic surgery because of technological factors. 
Depth perception (3-dimensional visualisation) provided 
by the robotic console has been shown to reduce task per-
formance time and error rates [39]. Robotic assistance has 
also been shown to improve the fine motor skills of the 
nondominant hand and confer virtual ambidexterity [40]. 
Conversely, lack of haptic feedback can result in excessive 
or inadequate application of force, causing damage or slip-
page of tissues [41].

Learning curve associated with other robotic 
surgery

The learning curves to gain proficiency based on time 
improvements with robotic urological, gynaecological 
and upper gastrointestinal surgery were similar to RCS 
studies. Studies have indicated that surgeons can perform 
robot-assisted prostatectomy, cystectomy and upper tract 
urological surgery safely after 30–40 cases [42, 43]. Flat-
tening of the learning curve of robotic hysterectomy based 
on operative time occurred after 20–30 cases [44, 45]. More 
complicated surgery may be associated with a longer time-
based learning curve. 150 robot-assisted partial nephrectomy 
cases were required before no further improvement in warm 
ischaemia time was observed [46]. The learning curve was 
longer if assessment of functional or oncological outcomes 
were assessed [42, 47]. In one study, robotic radical pros-
tatectomy surgery scores surpassed open surgery scores 
for sexual function after 99 cases, for urinary incontinence 
after 182 cases and for positive T2 surgical margin after 108 
cases. [47].

One study indicated that previous experience as a bedside 
assistant for robotic prostate surgery was associated with a 
significantly shorter surgery console time when the assis-
tant progressed to be the primary surgeon [48]. A period 
of robotic hysterectomy assistance (15 cases) before com-
mencing robot-assisted hysterectomy as the surgeon was 
also shown to bypass the time-based learning curve [44]. 
The benefit may relate to experience gained on collisions 
and trouble-shooting management from observations during 
their time as bedside assistant. One study investigating the 

impact of simulator training included assessment of supra-
cervical hysterectomies on real patients: 14 novice robotic 
surgeons who trained on a virtual simulator for an average 
of 20 h outperformed (with regard to time, blood loss and 
blinded video assessment) a control group with no simula-
tor exposure [49]. The learning curve may be shortened by 
pre-operative warm-up on a simulator, as well as sequen-
tially learning different steps of an operation until proficient 
before moving on to more complex steps [42]. Mentorship 
and formal robotic proficiency skills curriculum for robotic 
pancreaticoduodenectomy (divided into seven steps of resec-
tion and reconstruction) was found to be associated with 
reduced operating time and complication rate [50].

Conclusion

Procedural skills attained during open and laparoscopic 
colorectal surgery are transferable to robotic surgery. Expe-
rienced colorectal surgeons can perform robotic surgery 
safely, even on patients with high complexity early in the 
learning curve. Case complexity rather than case number 
may have the most impact on operation time. Analysis of 
patient outcome and/or GEARS may be more reliable for 
learning curve assessment.
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