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Functional and metabolic alterations of gut
microbiota in children with new-onset type 1
diabetes

Xiaoxiao Yuan 1,23, Ruirui Wang 2,23, Bing Han3,4, ChengJun Sun 1,
Ruimin Chen5, Haiyan Wei6, Linqi Chen7, Hongwei Du8, Guimei Li9, Yu Yang10,
Xiaojuan Chen11, Lanwei Cui12, Zhenran Xu 1, Junfen Fu 13, Jin Wu14, Wei Gu15,
Zhihong Chen16, Xin Fang 17, Hongxiu Yang18, Zhe Su19, Jing Wu1, Qiuyue Li 1,
Miaoying Zhang 1, Yufeng Zhou 20,21, Lei Zhang2, Guang Ji 22 &
Feihong Luo1

Gut dysbiosis has been linked to type 1 diabetes (T1D); however, microbial
capacity in T1D remains unclear. Here, we integratively profiled gut microbial
functional and metabolic alterations in children with new-onset T1D in inde-
pendent cohorts and investigated the underlying mechanisms. In T1D, the
microbiota was characterized by decreased butyrate production and bile acid
metabolism and increased lipopolysaccharide biosynthesis at the species,
gene, and metabolite levels. The combination of 18 bacterial species and fecal
metabolites provided excellently discriminatory power for T1D. Gut micro-
biota from children with T1D induced elevated fasting glucose levels and
declined insulin sensitivity in antibiotic-treated mice. In streptozotocin-
induced T1D mice, butyrate and lipopolysaccharide exerted protective and
destructive effects on islet structure and function, respectively. Lipopoly-
saccharide aggravated the pancreatic inflammatory response, while butyrate
activated Insulin1 and Insulin2 gene expression. Our study revealed perturbed
microbial functional and metabolic traits in T1D, providing potential avenues
for microbiome-based prevention and intervention for T1D.

Type 1 diabetes (T1D) is characterized by beta-cell destruction and
insulin deficiency induced by autoimmune attacks associated with
genetic predisposition1. However, the incidence of T1D has been
steadily increasing annually worldwide over the past 30 years2, and
even two times higher in rapidly developing regions of China3,4, high-
lighting the importance of environmental shifts in the pathogenesis of
T1D5. The etiology of T1D is multifactorial, consisting of genetic sus-
ceptibility and environmental factors including viral infections, dietary
components, and gut microbiota alterations6.

Clinically, patients with T1D have been widely reported with “leaky
gut,” described as increased gut permeability7–9. Structural dysbiosis of
the gut microbiota in T1D has been reported, as indicated by the

decreased diversity9 and Firmicutes/Bacteroidetes ratio10, and the
absence of short-chain fatty acid (SCFA) producers11,12. Notably, a study
on the environmental determinants of diabetes in the young cohort
(TEDDY) revealed taxonomically diffuse but coherent functional
microbial signatures across geographically diverse centers, character-
ized by a decreased abundance of microbial genes related to fermen-
tation and SCFA biosynthesis13. Integrated metagenomics and
metaproteomics analyses have revealed the associations of structural
and functionalmicrobial signatureswith host proteomic traits in theT1D
genealogical14 and new-onset cohort7. A recent study showed the
alterationof gutmicrobiomecomposition inpatientswith long-standing
T1D and its association with glycemic control and complications15.
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Studies in animal models also showed that gut microbiota may
play a causal role in the onset and progression of T1D. Exposure of
congenicmice to the normal gut microbiota attenuates the process of
T1D in germ-free MyD88-deficient mice with T1D16. Further, maternal
cecal microbiota could rescue antibiotic-induced T1D enhancement in
non-obese diabetic (NOD) mice17. Furthermore, the impairment of gut
barrier integrity triggers the activation of islet-specific T cells and
autoimmune diabetes, which depends on the presence of gut
microbiota18.

However, the comprehensive profiling of functional and
metabolic dysbiosis of gut microbiota in T1D is lacking, and the
microbial signatures associated with T1D pathogenesis require
further identification. Here, to decipher the T1D-associated func-
tional features of gut dysbiosis, we performed integrative metage-
nomic and metabolomic analyses in the independent discovery and
validation cohort of pediatric patients with new-onset T1D and
identified T1D-associated microbial species, functional pathways,
and fecal metabolites that might be related to T1D risk. We also
performed fecal microbiota transplantation (FMT) and established
the T1Dmousemodel to elucidate the mechanisms whereby the gut
microbiota and its metabolites interact with the host in the pro-
gression of T1D.

Results
Anthropometric and biochemical measurements of T1D
Through a strict pathological diagnostic and exclusion process, chil-
dren with new-onset T1D and non-diabetic control (NC) subjects were
enrolled in the discovery and validation cohorts, respectively (Sup-
plementary Fig. 1 and 2). The two groups were matched for age, sex,
delivery, and feeding mode. With a lower body mass index (BMI), the
T1D group showed poor glycemic control and low C-peptide levels.
The levels of systemic inflammatoryparameters, includingwhite blood
cell (WBC) count, and neutrophil (NEUT) number, were significantly
increased in the T1D group compared with those in the NC group. In
addition, the T1D group showed a significant decrease in high-density
lipoprotein cholesterol (HDL-C) levels and an increase in triglyceride
(TG) levels compared with the NC group. Similar findings were
obtained in the validation cohort (Table 1).

Structural modulation of the gut microbiota in T1D
First, we performed high-throughput sequencing of the V3-V4 areas
of the 16 S ribosomal RNA (rRNA) gene to profile the structure of gut
microbiota in T1D. The Chao 1 and Shannon indices, which reflect
the richness and diversity of the microbiota, were significantly
lower in the T1D group than in the NC group (Fig. 1a, b). Principal
coordinate analysis (PCoA) based on weighted UniFrac distance
metrics showed a significant difference in the microbial community
structure between the two groups (permutational multivariate
analysis of variance [PERMANOVA]: p = 0.028; R-squared = 0.02).
We also observed increased compositional dissimilarity in the T1D
group, indicating a more heterogeneous community structure
among T1D individuals than in controls (Fig. 1c, d). At the phylum
level, the T1D group was characterized by a significantly lower
abundance of Firmicutes and higher abundance of Bacteroidetes
and Proteobacteria than in the NC group (Fig. 1e). At the genus level
(Fig. 1f and Supplementary Fig. 3), dysbiosis in T1D was character-
ized by a decrease in many butyrate-producing genera within Fir-
micutes, including Faecalibacterium, Blautia, Lachnospira,
Ruminococcus 2, and Roseburia, and an expansion of genera such as
Bacteroides, Parabacteroides, and Escherichia Shigella. A similar
microbiota profile of T1D was detected in the validation group
(Supplementary Fig. 4). Moreover, we performed subgroup analysis
according to geographical regions and disease status (experienced
diabetic ketoacidosis (DKA) or not), and no significant differences
were found in overall bacterial structures both in the discovery and
validation set (Supplementary Figs. 5 and 6).

Using random forest analysis, we constructed the optimal classi-
fier model of T1D using 126 highly abundant genera (Fig. 1g, h, and
Supplementary Data 1). A group of 22 genera was selected as the key
genera that provided the best discriminatory power by leave-one-out
cross-validation. These key genera showed a moderate distinguishing
effect on T1D, with area under the curve (AUC) values of 0.815 and
0.649 in the discovery and validation sets, respectively (Fig. 1i).

The microbial community structure at the species level was fur-
ther analyzed using metagenomic sequencing. As shown in the net-
work analysis, the abundances of many butyrate-producing species,
such as Faecalibacterium prausnitzii, Eubacterium rectale, and

Table 1 | Characteristics of study participants

Parameter Discovery set (n = 141) Validation set (n = 58)

NC group (n = 77) T1D group (n = 64) P value NC group (n = 29) T1D group (n = 29) P value

Female, n (%) 32 (41.6) 26 (40.6) 0.911 13 (44.8) 14 (48.3) 0.792

Age (years) 7.92 ± 2.92 7.53 ± 3.61 0.486 6.48 ± 2.21 6.58 ± 1.96 0.848

BMI (kg/m2) 15.81 ± 1.81 14.81 ± 2.26 0.005 16.12 ± 3.05 14.32 ± 1.61 0.014

BMI z score −0.17 ± 0.97 −1.11 ± 1.55 <0.001 0.11 ± 1.38 −0.98 ±0.99 0.002

HbA1c (%) 5.06 ±0.51 11.99 ± 2.46 <0.001 4.88 ± 0.41 12.16 ± 2.31 <0.001

FBG (mmol/L) 4.91 (4.74, 5.12) 17.20 (10.40, 24.69) <0.001 4.80 (4.02, 4.94) 15.13 (9.85, 29.15) <0.001

C-peptide (ng/mL) ND 0.195 (0.10, 0.40) ND 0.33 (0.17, 0.45)

WBC (×109/L) 6.70 (5.69, 8.13) 7.79 (5.43, 10.53) 0.032 6.82 (6.05, 8.20) 7.40 (6.38, 9.63) 0.195

NEUT (×109/L) 3.15 (2.56, 4.29) 4.03 (2.43, 6.32) 0.049 3.25 (2.69, 4.01) 3.70 (2.88, 5.43) 0.086

LYMPH (×109/L) 2.88 (2.18, 3.31) 2.95 (2.32, 3.68) 0.266 3.00 (2.47, 3.84) 2.85 (2.40, 4.16) 0.960

Cholesterol (mmol/L) 4.27 (3.70, 4.86) 4.46 (3.70, 5.70) 0.147 3.77 (3.55, 4.61) 4.09 (3.79, 5.61) 0.085

Triglycerides (mmol/L) 0.65 (0.51, 0.88) 1.31 (0.78, 3.38) <0.001 0.54 (0.47, 0.74) 1.21 (0.74, 2.11) <0.001

HDL-C (mmol/L) 1.43 (1.27, 1.74) 1.22 (1.03, 1.45) <0.001 1.48 (1.29, 1.78) 1.05 (0.94, 1.43) 0.002

LDL-C (mmol/L) 2.45 (2.10, 2.93) 2.74 (2.07, 3.27) 0.242 2.04 (1.87, 2.31) 2.30 (1.95, 2.69) 0.121

Vaginal delivery, n (%) 39 (52.0) 36 (56.3) 0.616 11 (40.7) 12 (41.4) 0.961

Breastfeeding time (months) 6.0 (2.0, 10.0) 6.0 (5.0, 10.0) 0.422 10.5 (5.0, 12.8) 6.0 (2.0, 12.0) 0.370

Complementary feeding (months) 6.0 (5.4, 6.1) 6.0 (5.0, 6.0) 0.142 6.0 (4.0, 6.0) 6.0 (5.0, 6.0) 0.502

Data are presented as mean ± standard deviation (SD), median with interquartile range (IQR), or n (%). The p values are based on the two-sided t test for variables expressed as mean ± SD, Wilcoxon
rank-sum test for variables expressed asmedian (IQR) and chi-square Test for variables expressed as percentages. NC vs T1D group.NC normal control, T1D type 1 diabetes,ND not determined, BMI
bodymass index,HbA1c hemoglobin A1c, FBG fasting blood glucose,WBCwhite blood cell, NEUT neutrophil, LYMPH lymphocytes,HDL-C high-density lipoprotein, LDL-C low-density lipoprotein.
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Roseburia intestinalis, were reduced in the T1D group, compared with
those in the NC group. In contrast, many opportunistic pathogens,
including Escherichia coli, unclassified Enterobacteriaceae, and Kleb-
siella pneumoniae, formed a close cluster andwere enriched in the T1D
group (Fig. 2a). Moreover, the network formed by the species in each
groupwasmore interconnected in theNC group than in the T1D group
(Supplementary Fig. 7). Based on the random forest model, 35 species
were selected as the most discriminatory species for T1D (Supple-
mentary Fig. 8). These bacterial species were grouped into two clus-
ters. Cluster 1 mainly consisted of butyrate-producing bacteria,

whereas Cluster 2 mainly comprised opportunistic pathogens. Spear-
man’s correlation analysis between clinical indices and discriminatory
species revealed that hemoglobin A1c (HbA1c), fasting blood glucose
(FBG), and TG levels were negatively correlated with the species in
Cluster 1 and positively correlated with those in Cluster 2, whereas
HDL-C showed the opposite pattern (Fig. 2b). Furthermore, indices
representing systemic inflammation, such as WBC, NEUT, and lym-
phocyte (LYMPH) levels, were negatively correlated withmany species
in Cluster 1. The multiple correlations between metabolic parameters
and key species suggest that the gutmicrobiotamaybe involved in the

Fig. 1 | The structural shift of gut microbiota in children with T1D. a, b The
microbial community richness (Chao 1 index; a, p = 0.003) and diversity
(Shannon index;b, p = 0.035). c,d Principal coordinate analysis (PCoA) analysis
based onweighted UniFrac distance (c) and inner-group distance by analysis of
similarities (ANOSIM) (d, p < 0.001). e, f The relative abundance of microbial
taxa at phylum and genus levels; phyla or genera with a relative abundance <1%
in each sample are merged into others. g Classification performance of the 22
most discriminant genera of the T1D group by a random forest model and

heatmap based on the relative abundance of the genera. hArea under the curve
(AUC) based on the cross-validation of the random forest model in the dis-
covery set. i Receiver operating characteristic (ROC) curves and their corre-
sponding AUCs employing 22 genera in the discovery and validation sets. For
the discovery set, NC: n = 77, T1D: n = 64. For the validation set, NC: n = 29, T1D:
n = 29. Violin plots show the median, quartiles, and min/max values. Two-sided
Wilcoxon rank-sum test. *p < 0.05, **p < 0.01, ***p < 0.001. Source data are
provided as a Source Data file.
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Fig. 2 | The T1D-associated microbial species revealed by metagenomic analy-
sis. a Co-abundance network constructed from the microbial markers of T1D by a
random forest model using the top 100 most abundant species. The node size
indicates the relative abundance of each bacteria species and color indicates the
phylum. The thickness of the line between nodes represents the Spearman coeffi-
cient. A total of 72 species were displayed with Spearman’s correlation values over

0.6 between each other. NC-enriched species are arranged on the left, while T1D-
enriched species are arranged on the right. b Heatmap of the Spearman’s correla-
tion between clinical indices and discriminatory species (*FDR<0.05). Red
squares indicate positive correlations, whereas blue squares indicate negative
correlations. NC: n = 77, T1D: n = 64. *FDR<0.05. Source data are provided as a
Source Data file.
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regulation of glucosemetabolism, lipidmetabolism, and inflammatory
responses in T1D.

Functional alterations of the gut microbiota in T1D
To further identify the functional features of the gut microbiome in
T1D, we performed the metagenomic sequencing of the fecal samples
(Supplementary Data 2 and 3). The T1D group showed a decreased
gene count (Fig. 3a) and Chao 1 (Fig. 3b) and Shannon (Fig. 3c) indices

compared with the NC group. PCoA based on the weighted UniFrac
distance of species also showed a significant difference between
groups (PERMANOVA: p =0.001; R-squared = 0.035), with a higher
compositional dissimilarity in the T1D group than in case of the con-
trols (Fig. 3d, e). A PCoA plot based on the Bray-Curtis distances of the
Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs (KOs)
indicated significant differences (PERMANOVA: p = 0.001; R-
squared = 0.036) between the two groups at the functional level
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(Fig. 3f, g and Supplementary Data 4). Using linear discriminant ana-
lysis effect size, we detected 27 upregulated and 29 downregulated
pathways in the T1D group compared with those in the controls that
were mainly involved in carbohydrate, amino acid, and nucleotide
metabolism (Supplementary Fig. 9). Notably, the T1D group showed
lower levels of starch and sucrose metabolism, and increased lipopo-
lysaccharide (LPS) synthesis than the NC group.

Furthermore, the total abundance of genes encoding
carbohydrate-active enzymes (CAZy) was significantly lower in the
T1D group than in the NC group (Fig. 3h, i, and Supplementary
Fig. 10). Notably, the most differentially expressed CAZy genes,
which were mainly related to starch, glycogen, sucrose, and fructose
metabolism, were all decreased in the T1D group compared with that
in the NC group (Supplementary Data 5). With a focus on butyrate
metabolism, we further performed alignment based on a database19

concerning butyrate-producing pathways and found that most genes
involved in the butyrate production pathway were downregulated in
the T1D group compared with that in the controls (Fig. 3j, k, and
Supplementary Data 6). We then constructed the draft genome of
Faecalibacterium prausnitzii (Supplementary Fig. 11) and found that
this species contributed up to 13.58% of the total abundance of genes
related to butyrate metabolism, whereas it accounted for 16.27% and
10.35% of the total abundance of genes in the NC and T1D groups,
respectively (Fig. 3l and Supplementary Data 7). Moreover, the total
abundance of genes related to LPS synthesis increased significantly
in the T1D group compared with that in the NC group (Fig. 3m). We
also found that the total abundance of genes encoding microbial bile
salt hydrolases (BSHs) and bile acid metabolism decreased sig-
nificantly in the T1D group compared with those in controls
(Fig. 3n–p and Supplementary Data 8). Overall, the metagenomic
analysis revealed a disturbed microbial functional profile in the T1D
group, including increased LPS biosynthesis and decreased butyrate
production, carbohydrate metabolism, and bile acid metabolism
compared with those in controls.

Aberrant metabolic activities in T1D
To further investigate the biological effects of the gut microbiota in
T1D, metabolomic analysis was performed using fecal samples.
Compared with those in the NC group, the levels of five metabolites
(L-pyroglutamic acid, pterine, 5-hydroxytryptophol, N1-acet-
ylspermine, and 3-(3-hydroxyphenyl)-3-hydroxypropanoic acid)
increased significantly, while those of 21 metabolites, including gly-
coursodeoxycholic acid, glycochenodeoxycholic acid, and DL-
benzylsuccinic acid, decreased significantly in the T1D group
(Fig. 4a and Supplementary Fig. 12). These discriminant metabolites
belonged to 11 metabolic pathways, mainly related to bile acid, car-
bohydrate, nucleotide, and amino acid metabolism (Supplementary
Data 9). According to KEGG pathway enrichment analysis, three
pathways were significantly enriched (Supplementary Fig. 12c):
fructose and mannose, galactose, and caffeine metabolic pathways.
We also found that the total concentrations of fecal SCFAs, butyrate,
and acetic acid were significantly lower in the T1D group than in the
NC group (Fig. 4b, c). Moreover, the serum concentration of
glucagon-like peptide 1 (GLP-1), whose secretion could be stimulated

by butyrate, was lower in the T1D group than in the NC group
(Fig. 4d). The level of fibroblast growth factor 19 (FGF19), a negative
feedback regulator of hepatic bile acid synthesis20, was significantly
elevated in the T1D group compared with that in the controls
(Fig. 4e). In addition, the level of LPS-binding protein (LBP), a sur-
rogate marker for antigen load derived from gut bacteria21, and the
level of interleukin-1 beta (IL-1β), a pro-inflammatory cytokine whose
production is stimulated by LPS22, were both significantly elevated in
the T1D group compared with that in the NC group (Fig. 4f, g).

Spearman’s correlation analysis between fecalmetabolites and
clinical parameters revealed that the concentrations of T1D-
enriched metabolites, such as pterine, N1-acetylspermine, and
L-pyroglutamic acid, were significantly positively correlated with
serum levels of HbA1c, FBG, and TG (Fig. 4h). Additionally, T1D-
reduced metabolites, such as butyric acid, acetic acid, and DL-
benzylsuccinic acid, were positively correlated with butyrate-
producing species, including Faecalibacterium prausnitzii, Eubac-
terium rectale, and Roseburia faecis, but negatively correlated with
opportunistic pathogen; however, the opposite pattern was
observed in case of T1D-enriched metabolites, such as pterine and
L-pyroglutamic acid.

Furthermore, we constructed random forest regression models
using a combination of key bacterial species and fecal metabolites to
screen for T1D-associated biomarkers. The combination analysis of the
key 35 bacterial species and 28 fecalmetabolites revealed that a group
of nine bacterial species and nine fecal metabolites provided the best
discriminatory power (Fig. 4i). Notably, compared to the use of
microbiome biomarkers alone, the combined markers of bacterial
species and fecal metabolites provided a large improvement in the
discrimination of T1D both in the discovery set (the AUC value
increased from 0.815 to 0.976) and validation set (the AUC value
increased from 0.649 to 0.809) (Fig. 4j). Therefore, the combination
analysis could optimize the accuracy of the discrimination of T1D, and
the combined biomarkers may provide novel insights into the for-
mulation of microbiome-based strategies for the prevention and
intervention of T1D.

Disturbed glucose homeostasis induced by the transplantation
of T1D-associated gut microbiota
To evaluate the causality between the gutmicrobiota and worsening of
glycemic control in T1D, gut bacteria were transplanted from children
with T1D and healthy children into antibiotic-treated mice (Fig. 5a and
Supplementary Fig. 13). Without an external stimulus, T1D-associated
mouse recipients (FMTT1D) showed higher levels of fasting glucose
(Fig. 5b) compared with the controls (FMTNC). The insulin tolerance
test also revealed a significantly increased glucose level after an insulin
challenge of 30min in the FMTT1D group compared with that in the
control, which indicated decreased insulin sensitivity (Fig. 5c). Inter-
estingly, supplementation with butyrate eliminated the difference in
FBG levels induced by different gut microbiota and significantly
improved insulin resistance (IR) (Supplementary Fig. 14). No differ-
ences were detected between the groups with regard to the results of
the oral glucose tolerance test (OGTT), insulin and C-peptide levels,
and histological structure of pancreatic tissues (Supplementary Fig. 15).

Fig. 3 | Alterationofmicrobial functions in childrenwithT1D. aTotal gene count
in theNC andT1D groups (p <0.001).b, cThemicrobial community richness (Chao
1 index;b,p =0.002) anddiversity (Shannon index;c).d, e PCoAbasedonweighted
UniFrac distance (d) and inner-group distance by ANOSIM (e, p <0.001). f, g PCoA
plot based on the Bray-Curtis distances of KOs (f) and inner-group distance by
ANOSIM (g, p <0.001). h The abundance of carbohydrate-active enzymes (CAZy)
genes (p <0.001). i The five most differential expressed CAZy genes. j The abun-
dance of the most differential expressed genes involved in butyrate metabolism
(EefB, p =0.044; HgCoAd_A, p =0.002; But, p <0.001; KamA, p <0.001; AtoA,
p =0.009). k The metabolic pathways for butyrate synthesis. The upward and

downward red arrows represent upregulation and downregulation in the T1D
group compared to the NC group. l The contribution of Faecalibacterium praus-
nitzii to genes involved in butyrate metabolism (p <0.001). m The abundance of
genes involved in lipopolysaccharide synthesis based on the KEGG database
(p =0.019). n The abundance of genes involved in BSHs based on the UniProt
database (p <0.001).o,p The abundance of genes involved in bile acidmetabolism
basedon the EggNOGdatabase (COG0385, p <0.001).NC: n = 77, T1D: n = 64. Violin
plots show the median, quartiles, and min/max values. Two-sided Wilcoxon rank-
sum test. *p <0.05, **p <0.01, ***p <0.001. Source data are provided as a Source
Data file.
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We further investigated whether the differences in the gut
microbiota could be transferred through FMT. The structure of the gut
microbiota showed a distinct deviation between the two groups in
Bray-Curtis distance-based PCoA (Fig. 5d). Alpha diversity was not
significantly different between the two groups (Supplementary
Fig. 16a, b). FMTT1D mice exhibited a decreased Firmicutes/

Bacteroidota ratio (Fig. 5e) and decreased relative abundance of
butyrate-producing Faecalibaculum (Fig. 5f) compared with the con-
trols.Moreover, the abundance of genera consistingof somebeneficial
bacteria, such as Akkermansia and Muribaculaceae norank, was
decreased in the FMTT1D group compared with that in the
FMTNC group.
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Then, the hepatic expression of toll-like receptor 4 (TLR4),
MyD88, and phosphorylated nuclear factor-kappaB (p-NF-κB) p65 was
detected to evaluate the systemic inflammatory response. The hepatic
relative expression of TLR4 and MyD88 was significantly increased in
the FMTT1D group compared with that in the FMTNC group, while the
ratio of p-NF-κB/NF-κB was also elevated; however, the difference was
not statistically significant (Fig. 5g–j). The serum level of the pro-
inflammatory cytokine IL-1β was also significantly increased in the
FMTT1D group relative to that in the controls (Fig. 5k). Therefore, these
data suggested that the T1D-associated gut microbiota could induce
inflammation and early symptom of diabetes.

Roles of butyrate and LPS in streptozotocin (STZ)-induced
T1D mice
Finally, the roles of the specific bacterial metabolites, butyrate, and LPS,
were explored in STZ-induced T1D mice (Fig. 5a and Supplementary
Fig. 17). Oral administration of butyrate exerted anti-diabetic effects in
the T1Dmouse model, as evidenced by the significantly decreased FBG,
glucose levels in the OGTT and ITT, and HbA1c values compared with
those in the untreated T1D mice (Fig. 6a-d). Notably, the serum
C-peptide level, one of the key diagnostic criteria for T1D, increased
significantly in the butyrate-treated group compared with that in the
model group (Fig. 6e). Increased serum insulin levelswere also observed
in the butyrate-treated mice compared with those in the model group,
although no statistical differencewas noted (Supplementary Fig. 18a). In
contrast, the LPS group showed increased FBG and glucose levels in the
OGTT and ITT anddecreased serumC-peptide levels comparedwith the
model group (Fig. 6f-j and Supplementary Fig. 18c).

We then evaluated islet function. Hematoxylin-eosin staining and
immunohistochemistry analysis of pancreatic sections showed that
butyrate treatment alleviated the STZ-induced islet lesions with
increased numbers of islets and total insulin-positive islets compared
with that in the T1D mice. The LPS-treated group displayed a lower
number of islets and more damaged islet structure than the model
group (Fig. 6k–m). Moreover, in the butyrate-treated group, the pro-
inflammatory cytokine IL-1βwas reduced, although the difference was
not significant, whereas LPS significantly increased the secretion of IL-
1β (Fig. 6n, o), which may cause inflammatory damage to both islet
structure and function. Altogether, these findings indicate that buty-
rate attenuates islet lesions and preserves functional beta cells,
whereas LPS further aggravates islet injury and dysfunction in STZ-
induced diabetic mice.

To explore the biological process and underlying mechanism, the
transcriptional response to butyrate and LPS in the pancreas was
monitored by RNA sequencing transcriptomic analysis. Based on the
pancreatic gene expression profiles across all samples, the LPS-treated
group showed a distinct profile relative to those of the other three
groups. We grouped the 625 differentially expressed genes (DEGs)
identified among the four groups into three clusters (Fig. 6p). Cluster 1
was mainly composed of genes associated with metabolic pathways,
which were significantly enriched in the control and butyrate groups.
Cluster 2 was mainly composed of pathways associated with immune

and stimulus responses, which were specifically upregulated in the LPS-
treated group compared with that in the remaining groups. Cluster 3
mainly consisted of pathways associated with biological processes and
signaling pathways that were enriched in the model and LPS-treated
groups (Fig. 6q, Supplementary Fig. 19).

Lastly, we identified DEGs using pairwise comparisons between
the groups. In Cluster 1, we mainly focused on the key pre-proinsulin-
coding genes Insulin (Ins) 1 and Ins2. The Ins1 and Ins2 expression levels
were significantly higher in the butyrate-treated group, but lower in
the LPS-treated group than in the model group (Fig. 6r), consistent
with the results of the immunohistochemical analysis. However,
representative genes in the NOD-like receptor signaling pathway (Il1b,
Il6, Il18, and Caspase 1) and the TLR signaling pathway (Tlr2, Tlr4, and
Tlr6) in Cluster 2 were upregulated in the LPS group but down-
regulated in the butyrate group compared with the case in the model
group (Fig. 6s, t). KEGG pathway enrichment analysis showed that
pathways related to inflammation and immune responses, including
the AGE-RAGE signaling pathway in diabetic complications and phos-
phatidylinositol 3-kinase-Akt signaling pathway, were mainly upregu-
lated in the LPS-treated group but downregulated in the butyrate-
treated group compared with the model group. Pathways related to
insulin signaling, including the forkhead box O signaling pathway, and
endocrine resistance, were significantly downregulated in the
butyrate-treated group compared with those in the model group
(Fig. 6u, v, and Supplementary Data 10,11). A schematic overviewof the
study was summarized in Fig. 7.

Discussion
Our multi-omics analyses and animal experiments deciphered the
functional and metabolic profile of gut dysbiosis and explored the
causal relationship and underlying mechanism between the gut
microbiota and glucose dysmetabolism in T1D. The main findings are:
(1) T1D-associated gut dysbiosis is characterized by increased LPS
biosynthesis and decreased butyrate production and bile acid meta-
bolism; (2) the combination of nine bacterial species and nine fecal
metabolites yields excellent discriminatory power of new-onset T1D;
(3) human T1D-associated gut microbiota could induce elevated fast-
ing glucose levels and declined insulin sensitivity in antibiotic-treated
mice; and 4) butyrate and LPS exert protective and destructive effects,
respectively, on glucosemetabolismand islet structure and function in
T1D mice.

Previous genealogical14 and longitudinal studies13 of T1D cohorts
have unveiled taxonomically diffuse but partly coherent functional
microbial features. Comparing the microbial structures in our study
with previous research, a consensus on T1D-associated microbial
features at the genus or species level has not been reached. While
most studies have reported a decrease in the abundance of butyrate-
producing bacteria and an increase in the abundance of opportu-
nistic pathogens from different taxa, which may be explained by
“functional redundancy,” that is, species with similar functions are
interchangeable in a given microbiota23. We profiled T1D-associated
functional microbial features, including increased LPS biosynthesis,

Fig. 4 | Aberrant fecalmetabolic patterns in childrenwithT1D. aHeatmap of the
relative abundance of 26 significantly different metabolites between the NC and
T1D group. Metabolites with VIP ≥ 1 and fold change ≥2 or fold change ≤0.5 were
considered differential metabolites. b, c The concentration of total and seven fecal
short-chain fatty acids, respectively (total SCFAs, p =0.004; AA, p =0.024; BA,
p =0.005). d–g The serum concentration of d GLP-1 (p <0.001), e FGF19
(p =0.002), f LBP (p =0.003), and g IL-1β (p =0.042) in the NC and T1D group (NC:
n = 40, T1D: n = 34). h Heatmap of the Spearman’s correlation between 28 dis-
criminatory metabolites and 35 key bacteria species as well as clinical parameters
(*FDR<0.05). The red squares indicate positive correlations, whereas the blue
squares indicate negative correlations. i Metabolomic and metagenomic markers
for detecting the T1D group from the NC group were identified from Random-

forest classifiers based on the combination of dual-omics markers. Markers are
ranked in descending order of their importance to the accuracy of the model.
j Receiver operating characteristic (ROC) curves and their corresponding area
under curve (AUC), employing the combination of dual-omics markers. AA acetic
acid, BA butyric acid, PA propionic acid, IBA isobutyric acid, VA valeric acid, IVA
isovaleric acid, HA hexanoic acid. GLP-1 glucagon-like peptide 1, FGF19 fibroblast
growth factor 19, LBP lipopolysaccharide-binding protein. For metabonomic ana-
lysis, NC: n = 77, T1D: n = 64 in the discovery set, NC: n = 29, T1D: n = 29 in the
validation set. Violin plots show the median, quartiles, and min/max values. Two-
sided Wilcoxon rank-sum test. *p <0.05, **p <0.01, ***p <0.001. Source data are
provided as a Source Data file.
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decreased butyrate production, and bile acid metabolism at the
species, gene, and metabolite levels. A combination of nine fecal
metabolites and nine bacterial species was identified as a T1D bio-
marker that yields efficiently improved discriminating performance
of T1D (AUC = 0.976 and 0.809 in the discovery set and validation

set, respectively), compared with that of the use of bacterial genera
as biomarkers alone (AUC = 0.815 and 0.649 in the discovery and
validation set, respectively). Among the nine metabolites, many are
bacteria-originated or bacteria-metabolized, such as glycocheno-
deoxycholic acid, DL-benzylsuccinic acid, and pterine, which are

Fig. 5 | Disturbed glucose homeostasis induced by the transplantation of T1D-
associated gut microbiota. a Schematic diagram of the study design. b Fasting
blood glucose level (p =0.025). c Glucose levels at 30min after insulin injection in
the ITT (p =0.040). d PCoA plot based on the Bray-Curtis distances (left) and inner-
group distance by ANOSIM analysis (right). e, f Microbial composition at the phy-
lum (e) and genus (f) level. gWestern blotting results depicting the TLR4, Myd88,
and p-NF-κB protein expression levels in the liver. h–j Quantification of band

intensities and normalization to β-actin (TLR4, p =0.041; Myd88, p =0.003). k The
serum concentration of IL-1β (p =0.043). FMTNC, mice recipients FMT with NC gut
microbiota; FMTT1D, mice recipients FMT with T1D gut microbiota; ITT, insulin
tolerance test. For b–f, k sample size is FMTNC: n = 6, FMTT1D: n = 6 as biologically
independent samples. For g–j sample size is FMTNC: n = 3, FMTT1D: n = 3. Data
represent the mean ± standard error of the mean (SEM). Unpaired two-sided t test.
*p <0.05, **p <0.01. Source data are provided as a Source Data file.
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significantly associated with FBG and HbA1c levels. Glycocheno-
deoxycholic acid, a bile acid, may play an important role in the reg-
ulation of glucose and lipid metabolism24. Succinate improves
glucose homeostasis via intestinal gluconeogenesis25, whereas pter-
ine positively correlates with inflammatory bowel disease26. These
T1D biomarkers may reflect functional gut dysbiosis and serve as
potential targets for T1D management. Our study highlights the

importance of exploring disease-associated microbial features at
functional and metabolic levels.

The origin of islet-specific excessive immune response in T1D
remains unclear; however, the gut microbiota has been proposed as
one of the culprits. LPS, an essential component of gram-negative
bacteria, is a direct pathogenic factor in the induction of systemic and
tissue-specific inflammatory responses27. Early exposure to LPS
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derived from different microbiota contributes to differentiated
immune modulation, which affects susceptibility to T1D in humans28.
Our integrative analysis revealed an increased relative abundance of
LPS-producing bacteria and elevated expression of genes related to
LPS biosynthesis in the feces of children with T1D, consistent with the
elevated serum levels of inflammatory indicators, including LBPand IL-
1β. Transplantation of the gut microbiota from children with T1D
upregulated the expression of LPS receptor TLR4 and downstream
adaptor MyD88, as well as increased serum IL-1β levels in the
antibiotic-treated mice. Previous study has shown that a one-time
injection of LPS into NOD mice could induce rapid inflammatory
reactions in the islets29. Our animal experiment further revealed that
the daily low-dose injection of LPS for six weeks could induce com-
prehensive inflammatory responses in the pancreas on the tran-
scriptome level, aggravate islet lesion, reduce the number of insulin-
positive islets and serum C-peptide level in the LPS-treated T1D mice,

which may explain the disruption of glucose metabolism. Our results
indicate that the LPS-mediated islet immune response may play a vital
role in T1D progression; thus, blocking LPS production and entrance
into the blood may be an effective therapy for T1D.

Butyrate has been widely reported to have a beneficial role in the
protection of the gut barrier30, systematic inflammation, and glucose
homeostasis31. The gut-derived hormone GLP-1, whose secretion is
promoted by butyrate, induces glucose-dependent insulin secretion,
and decreases postprandial glucagon levels32. We found that the levels
of fecal butyrate and GLP-1 decreased in the T1D group comparedwith
that in the control. Among all butyrate producers, Faecalibacterium
prausnitzii contributed to 13.58% of the total abundance of genes
related to butyrate metabolism, the level of which was significantly
decreased in the T1D group and negatively correlatedwith glucose and
lipid indices. Faecalibacterium prausnitzii regulates glucose metabo-
lism in T1D8,33 and T2D34–36. Previous animal studies have shown that

Fig. 6 | Roles of butyrate and LPS in STZ-induced T1D mice. a Fasting blood
glucose levels (Model vs Butyrate: 2th week, p =0.036; 4th week, p =0.057; 6th
week, p =0.011), b Glucose tolerance test (Model vs Butyrate: 0min, p =0.022;
60min, p =0.046; 120min, p =0.012), c Insulin tolerance test (Model vs Butyrate:
0min, p =0.006; 15min, p =0.009; 30min, p =0.077, 60min, p =0.097), the levels
of dHbA1c (Ctrl vs Model, p <0.001; Ctrl vs Butyrate, p <0.001, Model vs Butyrate,
p =0.053) and e C-peptide (Ctrl vs Model, p =0.041; Model vs Butyrate, p =0.026)
in the experiments involving butyrate gavage. The sample size is Ctrl: n = 12, Model:
n = 11, Butyrate: n = 11 as biologically independent samples. f Fasting blood glucose
levels (Model vs LPS: 6th week, p =0.011), g Glucose tolerance test (Model vs LPS:
0min, p =0.029; 30min, p =0.053; 60min, p <0.001; 120min, p =0.035), h Insulin
tolerance test (Model vs LPS: 0min, p =0.035; 15min, p =0.015; 30min, p =0.044;
120min, p =0.004), the level of i HbA1c (Ctrl vs Model, p <0.001; Ctrl vs LPS,
p < 0.001) and jC-peptide (Ctrl vsModel,p =0.006; Ctrl vs LPS,p <0.001;Model vs
LPS, p =0.033) in the experiments involving LPS injection. The sample size is Ctrl:
n = 10, Model: n = 12, LPS: n = 12 as biologically independent samples.
k Hematoxylin-eosin (H&E) staining and immunohistochemical staining of the
pancreas (40-fold and 400-foldmagnification, respectively). lQuantification of the
number of islets using the Image J software (Ctrl vs all other groups, p <0.001;

Model vs Butyrate, p =0.030; Model vs LPS, p =0.008; Butyrate vs LPS, p < 0.001).
mQuantification of insulin-positive staining using Image J software (Ctrl vs all other
groups,p <0.001;Model vs Butyrate, p =0.008; Butyrate vs LPS, p =0.001). Images
are representative of at least two sections permouse, n = 3mice per group.n,o The
serum concentration of IL-1β in the experiments involving butyrate gavage or LPS
injection (Ctrl vs LPS, p =0.005; Model vs LPS, p =0.021), respectively. pHeatmaps
showing global RNA-seq expression patterns (n = 6 mice per group). q Venn dia-
gram displaying the overlap between quantified mRNAs. r–t Pancreatic gene
expression levels of r insulin secretion genes (Ins1: Model vs Butyrate, p =0.046;
Model vs LPS, p =0.052; Butyrate vs LPS, p =0.017) (Ins2: Model vs Butyrate,
p =0.022; Butyrate vs LPS, p =0.010) s the NOD-like receptor signaling pathway (Il
18: Model vs Butyrate, p < 0.001; Butyrate vs LPS, p =0.075) and t TLR pathway
(Tlr2: Model vs LPS, p =0.062, Butyrate vs LPS, p =0.043) (Tlr4: Model vs Butyrate,
p <0.001; Model vs LPS, p =0.093; Butyrate vs LPS, p =0.006). u KEGG pathway
enrichment analysis between the Model and Butyrate-treated group. v KEGG
pathway enrichment analysis between the Model and LPS-treated group. Box and
whisker plots show median ± quartiles (box), min/max (whiskers). Unpaired two-
sided t test. *p <0.05, **p <0.01, ***p <0.001, #0.05 < p <0.1. Source data are pro-
vided as a Source Data file.

Fig. 7 | Schema summarizing keyfindings. In-depthmulti-omics analyses revealed
a deteriorated gut microbial pattern of T1D involving butyrate metabolism, LPS
biosynthesis, and bile acidmetabolism. The combination of 18 bacteria species and
fecal metabolites as gut biomarkers excellently discriminated T1D from controls.

The animal experiments further unraveled that gut microflora of T1D was a cau-
sative factor in the regulation of glucose metabolism. Butyrate and lipopoly-
saccharide exerted protective and destructive effects, respectively, on islet
structure and function in the T1D mouse model. Created with Biorender.com.
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butyrate attenuates the development of necrotizing pancreatitis by
reducing the serum endotoxin levels37 and protecting against T1D38.
Our animal experiments further indicate that butyrate activates the
expression of the Ins1 and Ins2 genes in the pancreas and increases
insulin-positive islets and serum C-peptide levels, thus improving
glucose metabolism in butyrate-treated T1D mice, relative to that in
untreated mice. Our FMT experiment also showed that butyrate sup-
plementation improves insulin sensitivity in FMT mice with T1D-
associated gut microbiota. Thus, T1D is characterized by a significant
decrease in the abundance of important butyrate producers, such as
Faecalibacterium prausnitzii, and the levels of their product butyrate,
which may affect islet function and histopathological integrity.

In conclusion, our multi-omics study and animal experiments
extend our insights into microbial functional and metabolic dysbiosis
in T1D, indicating that specific gut bacteria and metabolites may serve
as novel adjuvant diagnostic, preventative, and therapeutic targets
for T1D.

Methods
The study was approved by the Institutional Review Board and Ethics
Committee of Children’s Hospital of Fudan University ([2016]210,
[2019]210, and [2021]181). The participants provided written informed
consent; there was no financial compensation.

Study population
This is a multi-center and cross-sectional study, centering on the Chil-
dren’s Hospital of Fudan University with other top-level tertiary hos-
pitals in nine regions in China. A total of 158 subjects in the discovery
cohort and 65 in the validation cohort were initially recruited from nine
regions in China from north to south area including Harbin, Chang-
chun, Taiyuan, Jinan, Zhengzhou, Suzhou, Shanghai, Nanchang, and
Fuzhou between January 2018 and July 2019. Children with T1D were
firstly diagnosed according to the American Diabetes Association
diagnostic criteria39. These children newly diagnosed with T1D were
divided into two subgroups: those with DKA and those without DKA.
Finally, 77 NC and 64 children with new-onset pediatric T1D were
included in the discovery set, with 60.94% of T1D children experiencing
DKA (n = 39) at T1D diagnosis. The validation set included 29 NC chil-
dren and 29 children with T1D, with 58.62% of T1D children experien-
cing DKA (n = 17). Individuals were excluded if they met one of the
following criteria: diagnosed with acute or chronic inflammatory dis-
eases, infectious diseases, chronic gastrointestinal disease, other severe
organic lesions, or metabolic diseases, or received antibiotics, probio-
tics, prebiotics, or any other medical treatment within one month.

Sample collection
Fecal and blood samples of newly diagnosed T1D patients were col-
lected after receiving conventional treatment for ~1 week in the hos-
pital, to recover from metabolic decompensation, if present40. The
control subjects were recruited from individuals who visited the out-
patient clinic for health status check-ups, and sample collection was
performed upon enrollment. Samples were stored at −80 °C until
assayed.

DNA extraction and 16 S rRNA gene sequencing
Fecal DNA was extracted using the Dneasy PowerSoil Kit (Qiagen,
12888-100). DNA quality and quantity were analyzed by agarose gel
electrophoresis and Nanodrop 2000 spectrophotometry. DNA sam-
ples were diluted to 1 ng/μl and stored at −20 °C until further use. The
total DNA was used as a template for PCR amplification for the V3-V4
regions of bacterial 16 S rRNA genes with universal primers 343 F and
798R. The PCR-amplified librarywaspurified using Agencourt AMPure
XP beads and amplified for another round of PCR. After being purified
again, the final ampliconwasquantifiedwith theQubit dsDNA assay kit
(Life Technologies, Q32852). The purified amplicon was pooled in

equal amounts for sequencing. 16 s rRNA gene sequencing of the fecal
DNA was performed using an Illumina MiSeq platform (MiSeq PE300,
Illumina, USA) at Shanghai OE Biotech Co., Ltd.

Bioinformatic analysis of 16 S rRNA gene sequencing data
To detect and remove the ambiguous bases, raw reads were pre-
processed with Trimmomatic software (version 0.35)41. Next, low-
quality sequences with an average quality score below 20 were trim-
med with a sliding window approach. Paired-end reads were then
assembled using FLASH (version 1.2.11)42. The assembly parameters
were 10 bp minimal overlapping, 200 bp maximum overlapping, and
20% maximum mismatch rate. Reads containing ambiguous, homo-
logous sequences or lower than 200bp were discarded. Reads with
75% of bases above Q20 were retained and reads with chimera were
removed, which were achieved with QIIME software (version 1.8.0)43.
After the removal of primer sequences, clean reads were clustered to
generate operational taxonomic units at a similarity cutoff valueof 97%
using the Vsearch software (version 2.4.2)44. Representative sequences
for each OTU were obtained using the QIIME software package (ver-
sion 1.8.0)43. Representative reads were annotated and blasted against
Silva database Version 123 using an RDP classifier with a 0.70 con-
fidence threshold45. Rarefaction was performed to standardize the
difference in the sequencing depth.

DNA extraction and shotgun sequencing
Total genomic DNA was extracted from fecal samples using the
E.Z.N.A.® Soil DNA Kit (Omega Bio-Tek, Norcross, GA, USA). DNA
concentration and purity were determined using Qubit4.0 and Nano-
Drop2000, respectively. Genomic DNA was fragmented to an average
size of about 400bp using Covaris M220 (Gene Company Limited,
China) for paired-end library construction. The NEXTflex™ RapidDNA-
Seq Kit (Bioo Scientific, Austin, TX, USA) was used to build the paired-
end library. The blunt ends of fragments were ligated with adapters
containing a full complement of hybridization sites for sequencing
primers. Shotgun sequencing was performed on the Illumina NovaSeq
(Illumina Inc., San Diego, CA, USA) at Honsunbio Technology Co., Ltd.
(Shanghai, China) with NovaSeq Reagent Kits (www.illumina.com).

Bioinformatic analysis of shotgun sequencing data
Illumina paired-end reads were processed to remove the adaptors and
low-quality reads (length <50 bporwith a quality value <20or havingN
bases)46. Burrows-Wheeler Aligner (version 0.7.9a) aligns reads to the
human genome, and any hit related to reads and their paired reads
were removed47. Reads from themetagenomicdatasetwere assembled
using Megahit (version 1.1.2). Finally, contigs of at least 300 bp in
length were further used for gene prediction and annotation. Meta-
Gene (http://metagene.cb.k.u-tokyo.ac.jp/) was used to predict open
reading frames (ORFs) from the assembled contigs48. Predicted ORFs
with a length being or over 100 bp were obtained and converted to
amino acids using theNCBI translation table (http://www.ncbi.nlm.nih.
gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=tgencodes#
SG1). A non-redundant gene catalog was constructed with a 90%
sequence identity (90% coverage) using CD-HIT (version 4.6.1)49. The
high-quality reads were then mapped to the non-redundant gene cat-
alog with a 95% identity using SOAPaligner (version 2.21)50, and the
gene abundancewas calculated. Sample normalization was conducted
by rarefaction and the gene abundance was normalized by the reads
per kilobase per million51. Representative sequences of the non-
redundant gene catalog were aligned to the NCBI NR database with an
e-value cutoff of 1e−5 using Diamond (version 0.8.35)52. The KEGG
annotation was conducted using Diamond against the KEGG database
(http://www.genome.jp/kegg/) with an e value cutoff of 1e−5. The
cluster of orthologous groups of proteins (COG) annotation was per-
formed using Diamond against the eggNOG database with an e-value
cutoff of 1e−5. CAZy annotation was conducted using hmmscan (http://
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hmmer.janelia.org/search/hmmscan) against the CAZy database
(http://www.cazy.org/) with an e-value cutoff of 1e−5. Genes encoding
BSHswere annotated by theUniProt database53. Significant differences
in taxonomic and functional features between groups were performed
using the Wilcoxon rank-sum test. Random-forest classifier model
training was performed using the randomForest R package with 10-
fold cross-validation. Cutoff values were determined by receiver
operating characteristic (ROC) curve analysis. Cluster analysis was
performed by hierarchical clustering using the Spearman correlation
similarity measure and average linkage algorithm.

Metabolomic profiling
Fecal metabolites were quantified by widely targeted metabolomics
based on the ABSciex QTRAP®6500+ LC-MS/MS platform (Metware
Biotechnology Co., Ltd., Wuhan, China). First, the fecal sample was
thawed on ice. 50mg of one sample was homogenized with 500uL of
ice-cold methanol/water (70%, v/v). The samples were vortexed for
3min, sonicated in a water bath for 10min, and then vortexed for
1min. After centrifugation at 12,000 rpm for 10min at 4 °C, the
supernatantwas used for LC-MS/MSanalysis. Then the sample extracts
were analyzed based on the LC-ESI-MS/MS system (UPLC, ExionLC AD
https://sciex.com.cn/; MS, QTRAP® System, https://sciex.com.cn/) and
the analytical conditions were as follows: UPLC: column, Waters
ACQUITYUPLCHSST3C18 (1.8 µm, 2.1mm× 100mm); solvent system,
water (0.04% acetic acid): acetonitrile (0.04% acetic acid); gradient
program, 95:5 V/V at 0min, 5:95 V/V at 11.0min, 5:95 V/V at 12.0min,
95:5 V/V at 12.1min, 95:5 V/V at 14.0min; injection volume, 2μL; flow
rate, 0.4mL/min; column temperature, 40 °C. Linear ion trap (LIT) and
triple quadrupole scans were carried out based on a triple quadrupole-
linear ion trap mass spectrometer (QTRAP), QTRAP® LC-MS/MS Sys-
tem, equipped with the ESI Turbo Ion-Spray interface, operated in a
positive and negative ionmode and processed using AB SCIEX Analyst
software (version 1.6.3). Operation parameters of electrospray ioniza-
tion (ESI) source were set as follows: ion-spray voltage (IS) 5500V
(positive), −4500V (negative); source temperature 500 °C; ion source
gas I (GSI), gas II (GSII) and curtain gas were set at 55, 60, and 25 psi,
respectively; and the collision gas (CAD) was high.

Quantification of short-chain fatty acids
Fecal SCFA concentrations were measured by gas chromatography-
mass spectrometry (GC-MS). First, fecal samples (20mg) were weighed
in a 2ml EP tube and added 1mL phosphoric acid (0.5% v/v) solution,
then vortexed for 10min and subjected toultrasound for 5min using an
ultrasonic wave. After that, 0.1mL supernatant was transferred to a new
1.5ml tube, and 0.5mL MTBE (containing internal standard) solution
was added, then vortexed for 3min, ultrasound for 5min, and cen-
trifuged for 10min at 12000 r/min at 4 °C. After centrifugation, the
0.2mL supernatant was collected for subsequent GC-MS analysis. The
GC-MS analysis was conducted on an Agilent 7890B gas chromato-
graphy coupled to a 7000Dmass spectrometer with a DB-FFAP column
(30m length ×0.25mm i.d. × 0.25μm film thickness, J&W Scientific,
USA). The carrier gas (helium) was set at a flow rate of 1.2mL/min, and
2μL samples were injected in the splitless mode. The temperature
program was as follows: initial oven temperature was 95 °C (held for
1min), increased to 100 °C at a rate of 25 °C/min, then to 130 °C at a rate
of 17 °C/min (held for 0.4min), then raised to 200 °C at a rate of 25 °C/
min (held for0.5min). The temperaturewas set as follows: inlet, 200 °C;
transfer line, 230 °C; ion source, 230 °C; quad, 150 °C. The solvent delay
was set at 3min, the electron energy was 70 ev and all samples were
analyzed using the multiple reaction monitoring modes.

FMT experiment in an antibiotic-treated and germ-free
mouse model
All animals were randomly assigned to either control or experimental
groups and acclimated for 2 weeks before any experiments. C57/BL6

male mice (6 weeks old; Vital River Laboratory Animal Technology Co.
Ltd., Beijing, China) were housed under specific pathogen-free condi-
tions with food and water ad libitum at 22 °C under a 12:12 h light/dark
cycle with 55–60% humidity (n = 6mice per group).Mice were fed on a
normal chow diet (Pu Lu Teng Biotechnology, Shanghai, China). The
mice were administered filter-sterilized water supplemented with
ampicillin (1 g/L), metronidazole (1 g/L), neomycin sulfate (1 g/L), and
vancomycin (0.5 g/L) (Aladdin, Shanghai, China) for 2 weeks to
establish the antibiotic-treated mouse model. The counts of viable
bacteria in the feces of the mice were reduced by more than 90%,
indicating that the antibiotic-treated animal model was successfully
established. Fresh fecal samples from three children with T1D and
three healthy childrenwere randomly collected in aweek and stored at
−80 °C. The fecal suspension was prepared as a mixture of samples
from three subjects of the same group, as previously described54.
Lastly, 100μL of the mixed fecal suspension was administered via oral
gavage to each antibiotic-treated mouse for three consecutive days
and the gavage processwas repeated biweekly. Bodyweights and food
intake were measured weekly. Fasting blood glucose (fasting for 6 h)
from the tail vein bloodwas detectedbiweeklyby theAccu-ChekBlood
Glucose Meter (Roche). The OGTT was performed by oral gavage of
2 g/kg glucose (Sangon Biotech, Shanghai) to the mice fasted for 6 h.
The insulin tolerance test was performed by intraperitoneal adminis-
tration of human insulin (Novolin, 0.75 IU/kg body weight) to the mice
fasted for 4 h. Mice were sacrificed at week 4. The blood samples and
tissues were collected and snap-frozen.

Germ-freemice (8weeks old, C3H/Orlmalemice) were purchased
from Shanghai Slack Laboratory Animal Co., Ltd (n = 9–10 mice per
group) and were housed at the gnotobiotic facility under strict germ-
free conditions. 100μL dose of the fecal suspension was administered
to each germ-free mouse by oral gavage for two consecutive days.
Mice were killed in week 14.

STZ-induced diabetic mouse
Mice were repeatedly injected intraperitoneally with low doses of
STZ (Sigma-Aldrich, St. Louis, MO, USA) (50mg/kg body weight/
day) for five consecutive days to induce T1D55, while control mice
were injected with sodium citrate buffer (n = 10–12 mice per group).
From the first day of model establishment, mice in the butyrate-
treated group were administered daily gavage with sodium
butyrate (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China)
(500mg/kg body weight). Mice in the LPS-treated group were
intraperitoneally administered 100 µg/kg body weight LPS (L2630
from Escherichia coli 0111:B4, Sigma-Aldrich) daily. The control and
model groups were gavaged or injected with an equal volume of
normal saline or PBS in butyrate-treated and LPS-treated experi-
ments, respectively. Mice were fasted for 12 h before the OGTT.
Mice were sacrificed at week 6.

Laboratory measurements
In the cohort study, participants’ blood HbA1c, FBG, C-peptide,
WBC, NEUT, LYMPH, TC, TG, HDL-C, and LDL-C levels were mea-
sured according to uniform national quality control protocols.
Serum GLP-1 (Abcam, Cambridge, UK; ab184857), FGF19 (R&D Sys-
tems, Minneapolis, MN, USA; DF1900), LBP (Panchao Biotechnol-
ogy, Shanghai, China; PCDBH0284), and IL-1β (Panchao
Biotechnology, PCDBH0247) concentrations were measured using
enzyme-linked immunosorbent assay kits, according to the manu-
facturer’s instructions.

In the animal experiments, HbA1c was determined by an enzy-
matic method using a Hitachi 7180 Clinical Analyzer (Hitachi, Tokyo,
Japan). Serum insulin (Crystal Chem Inc., 90080), C-peptide (Crystal
Chem Inc., 90050), IL-1β (Abcam, ab197742), and LBP (Abcam,
ab269542) concentrations were measured using the mouse ELISA kits
as per the manufacturer’s instructions.
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Western blot
Total protein was extracted from the liver tissue and separated by
denaturing sodium dodecyl sulfate-polyacrylamide gel electrophor-
esis. Proteins were then transferred onto polyvinylidene difluoride
membranes (MilliporeSigma, Burlington, MA, USA). The membranes
were blocked with 5%milk for 1 h and incubated overnight at 4 °Cwith
primary antibodies against TLR4 (Proteintech Group, Rosemont, IL,
USA; 19811-1-AP), MyD88 (Proteintech Group, 23230-1-AP), NF-κB p65
(Immunoway, Plano, TX, USA; YM3111), phospho-NF-κB p65 (Immu-
noway, YP0847), and β-actin (Immunoway, YM3028). The membranes
were washed three times with phosphate-buffered saline with Tween-
20 and incubated with secondary antibodies for an hour. Goat anti-
rabbit IgG-HRP (Immunoway, RS0002) and goat anti-mouse IgG-HRP
(Immunoway, RS0001) were used as secondary antibodies. Dilutions
for primary antibodies and secondary antibodies were 1:1000 and
1:10,000, respectively. Band intensities were quantified using the
Image J software (version 1.52) and normalized to β-actin levels. Ori-
ginal blots can be found in the accompanying Source Data file.

Histopathology and immunohistochemistry
Pancreatic tissues were fixed with 4% paraformaldehyde and embed-
ded in paraffin, and 3μm sections were cut for hematoxylin-eosin
staining or immunohistochemistry. Anti-insulin primary antibody
(Servicebio, GB13121, 1:300) and HRP-conjugated goat anti-mouse IgG
(Servicebio, GB23301, 1:200) were applied in immunohistochemistry.
For quantitative analyses, randomly chosen stained pancreatic sec-
tions were used to compute the area and number of insulin-positive
islets. Insulin expression was digitally quantified using the Image J
software (version 1.52).

RNA sequencing
Total RNA was isolated from mouse pancreas tissue using the Trizol
reagent (Invitrogen, Waltham, MA, USA). The concentration, quality,
and integrity were determined using a NanoDrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). Sequencing libraries
were constructed using the TruSeq RNA Sample Preparation Kit (Illu-
mina, San Diego, CA, USA), which consisted of an mRNA purification
process using poly-T oligo-attached magnetic beads, mRNA fragmen-
tation, cDNA synthesis, end repair process, the addition of a single ‘A’
base followed by ligation of adapters, and purification and enrichment
with PCR. Products were purified using the AMPure XP system (Beck-
man Coulter, Beverly, CA, USA) and quantified using the Agilent high
sensitivity DNA assay on a Bioanalyzer 2100 system. The purified
products were subjected to paired-end sequencing using the NovaSeq
6000platform (Illumina) by Shanghai Personal Biotechnology Cp. Ltd.
The quality of raw data in FASTQ format was evaluated using FastQC
(version 0.11.8). Cutadapt software (version 1.15) was used to filter the
sequencing data to get high-quality clean data for further analysis.
HTSeq (version 0.9.1) was used to count the read counts mapped to
each gene and then Fragments Per Kilo bases per Million fragments
(FPKM) was used to standardize the expression. The samples were
further analyzed for differential gene expression analysis and func-
tional enrichment analysis.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. All
analyses were performed blinded to the identity and clinical char-
acteristics of the participants. For animal studies, investigators were
not blinded to allocation during experiments but were blinded to
outcome assessments.

Thedatawereprocessed usingMicrosoft Excel 2019, SPSS version
21, GraphPad Prism version 8, and R version 3.5.1. Clinical character-
istics were described as numbers (proportions) for categorical vari-
ables and means (standard deviations) or medians (interquartile
range) for continuous variables, unless otherwise specified. A chi-

square test was used to compare categorical variables. For normally
distributed continuous variables, a two-tailed t test (unpaired) was
used to compare the differences between the two groups, and the
Wilcoxon rank-sum test was used if the variables were inconsistent
with the normal distribution. The outliers were identified as values
outside of the mean plus or minus three standard deviations (SD) and
removed from further analysis. Statistical parameters, including the
exact value of n and statistical significance (p value), are reported in
Figure Legends. A two-sided p value of <0.05 was considered sig-
nificant. Spearman’s correlation p values were corrected using the
Benjamini–Hochberg false discovery rate.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1–6 and Supplementary Figs. 3–19 are
provided as a Source Data file. The sequencing data have been
deposited in the NCBI Sequence Read Archive (SRA) database (http://
www.ncbi.nlm.nih.gov/sra) with the accession numbers PRJNA664632,
PRJNA669199, PRJNA668202, PRJNA877820, and PRJNA868392. The
metabolomics data are available in the MetaboLights database
(MTBLS5898, MTBLS5919, and MTBLS5920) (http://www.ebi.ac.uk/
metabolights). The datasets supporting this study are available in the
Zenodo repository (https://doi.org/10.5281/zenodo.7073918). Source
data are provided in this paper.

Code availability
Associated codes are available on GitHub (https://github.com/
Luofhlab/Luofhlab).
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