Skip to main content
. 2022 Nov 30;20(4):609–620. doi: 10.9758/cpn.2022.20.4.609

Table 2.

Confusion matrix of prediction models in internal balanced and external imbalanced testing datasets

Dataset Model Accuracy Sensitivity Specificity PPV NPV F1
Internal balanced LR 0.88 0.91 0.85 0.86 0.91 0.89
RF 0.88 0.90 0.85 0.86 0.89 0.88
ANN 0.88 0.92 0.85 0.86 0.91 0.89
SVM 0.88 0.91 0.86 0.86 0.91 0.89
XGB 0.88 0.91 0.85 0.86 0.91 0.89
DNN 0.87 0.89 0.86 0.86 0.88 0.87
External imbalanced LR 0.97 0.60 0.98 0.46 0.99 0.52
RF 0.97 0.51 0.98 0.42 0.99 0.46
ANN 0.97 0.61 0.98 0.46 0.99 0.52
SVM 0.95 0.64 0.96 0.31 0.99 0.42
XGB 0.97 0.61 0.98 0.46 0.99 0.52
DNN 0.97 0.58 0.98 0.43 0.99 0.50

PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; RF, random forest; ANN, artificial neural networks; SVM, support vector machines; XGB, extreme gradient boosting; DNN: deep neural network.