Table 2.
Confusion matrix of prediction models in internal balanced and external imbalanced testing datasets
| Dataset | Model | Accuracy | Sensitivity | Specificity | PPV | NPV | F1 |
|---|---|---|---|---|---|---|---|
| Internal balanced | LR | 0.88 | 0.91 | 0.85 | 0.86 | 0.91 | 0.89 |
| RF | 0.88 | 0.90 | 0.85 | 0.86 | 0.89 | 0.88 | |
| ANN | 0.88 | 0.92 | 0.85 | 0.86 | 0.91 | 0.89 | |
| SVM | 0.88 | 0.91 | 0.86 | 0.86 | 0.91 | 0.89 | |
| XGB | 0.88 | 0.91 | 0.85 | 0.86 | 0.91 | 0.89 | |
| DNN | 0.87 | 0.89 | 0.86 | 0.86 | 0.88 | 0.87 | |
| External imbalanced | LR | 0.97 | 0.60 | 0.98 | 0.46 | 0.99 | 0.52 |
| RF | 0.97 | 0.51 | 0.98 | 0.42 | 0.99 | 0.46 | |
| ANN | 0.97 | 0.61 | 0.98 | 0.46 | 0.99 | 0.52 | |
| SVM | 0.95 | 0.64 | 0.96 | 0.31 | 0.99 | 0.42 | |
| XGB | 0.97 | 0.61 | 0.98 | 0.46 | 0.99 | 0.52 | |
| DNN | 0.97 | 0.58 | 0.98 | 0.43 | 0.99 | 0.50 |
PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; RF, random forest; ANN, artificial neural networks; SVM, support vector machines; XGB, extreme gradient boosting; DNN: deep neural network.