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Abstract: In the last three decades, several flaviviruses of concern that belong to different antigenic
groups have expanded geographically. This has resulted in the presence of often more than one virus
from a single antigenic group in some areas, while in Europe, Africa and Australia, additionally,
multiple viruses belonging to the Japanese encephalitis (JE) serogroup co-circulate. Morphological
heterogeneity of flaviviruses dictates antibody recognition and affects virus neutralization, which
influences infection control. The latter is further impacted by sequential infections involving diverse
flaviviruses co-circulating within a region and their cross-reactivity. The ensuing complex molecular
virus–host interplay leads to either cross-protection or disease enhancement; however, the molecular
determinants and mechanisms driving these outcomes are unclear. In this review, we provide
an overview of the epidemiology of four JE serocomplex viruses, parameters affecting flaviviral
heterogeneity and antibody recognition, host immune responses and the current knowledge of the
cross-reactivity involving JE serocomplex flaviviruses that leads to differential clinical outcomes,
which may inform future preventative and therapeutic interventions.

Keywords: Japanese encephalitis serogroup; Japanese encephalitis virus; Murray valley encephalitis
virus; West Nile virus; Usutu virus; envelope protein; cross-reactivity

1. Introduction

Members of the genus flavivirus within the family Flaviviridae cause a substantial
global burden of disease and mortality each year and pose a constant threat for future
outbreaks. Yet, treatment for human flavivirus infections is lacking [1]. Depending on
the type of vector involved in virus transmission, these arthropod-borne animal viruses,
or arboviruses, are broadly divided into three groups: the mosquito-borne flaviviruses,
the tick-borne flaviviruses and a third group with yet unidentified vectors. Historically,
members of the family Flaviviridae were classified based on serological assays such as
neutralization tests, hemagglutination inhibition assays, complement fixation and immun-
odiffusion [2,3]. Eight antigenic groups or serocomplexes in the genus flavivirus within the
family Flaviviridae, classified on the basis of serological assays, have been described [4]. The
tick-borne encephalitis antigenic group comprises members such as Omsk haemorrhagic
fever virus, Russian spring–summer encephalitis virus (RSSE), Louping Ill virus, Kyasanur
forest disease virus, Langat virus and Powassan virus. The Japanese encephalitis (JE)
serocomplex includes Murray valley encephalitis virus (MVEV), Japanese encephalitis
virus (JEV), West Nile virus (WNV), Kunjin virus (KUNV), Usutu virus (USUV), Kokobera
virus, Alfuy virus and St. Louis encephalitis virus (SLEV). The four dengue serotypes form
the Dengue serocomplex and the Spondwenii serocomplex includes Zika virus (ZIKV) and
Spondwenii virus (SPOV). Yellow fever virus (YFV) forms a distinct serogroup. Genome
sequencing and subsequent genomic and phylogenetic quantitative and bootstrapping
analyses using pair-wise nucleotide sequence identity and clustering reveal the genetic
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relatedness of newly identified member strains and inform parameters influencing virus
evolution, transmission and discovery [5,6]. A second classification system developed by
Kuno et al. [5], defining fourteen clades (I–XIV), relies on the nucleotide and amino acid
sequence identity of certain genes in the viruses. Similar to the serologic classification,
the mosquito-borne viruses form a distinct cluster. Of these, the members of the Japanese
encephalitis serocomplex discussed in this review, MVEV, JEV, WNV, KUNV and USUV,
fall under clade XIV; DENV serotypes form clade IX; ZIKV and SPOV belong to clade X;
the Nataya serocomplex members Bagaza virus, Tembusu and Israel meningo-encephalitis
virus are part of clade XI; and YFV (Asibi) is part of clade VII [5,7]. These serological and
phylogenetic relationships among flaviviruses provide a framework for understanding the
host-immune interplay of viruses within and between antigenic complexes and flavivirus
biology. For instance, antigenic classification correlates with the vector species involved
in transmission; for the JE serogroup, this is largely the Culex spp., although other vector
species are known to transmit these viruses as discussed below (Table 1) [4].

Table 1. Listed are some vectors and animal hosts of the four viruses from Japanese encephalitis
serocomplex and the clinical symptoms in human infections.

Virus Mosquito
Vectors

Natural
Reservoir/Amplifying

Hosts

Animal
Hosts/Animals

Infected
Human Clinical Symptoms References

JEV

Culex spp. including
Cx. tritaeniorhynchus

Cx. vishnui
Cx. gelidus

Cx. annulirostris
Cx. annulus

Cx. fuscocephala
Cx. sitiens

Cx. quinquefasciatus
Cx. bitaeniorhynchus; Aedes,

Anopheles, Mansonia and
Armigeres spp. including

Aedes albopictus

Ardeidae family such
as egrets, herons;

ducklings, chicken,
American crow, house
finch, house sparrow,

ducklings

Feral and domestic
pigs, horses, boars,
racoons, dogs, bats,

cattle, goats

Febrile illness without any
other clinical manifestation;
acute encephalitis including

headache, vomiting, seizures;
flaccid paralysis, facial

paralysis, hepatomegaly,
splenomegaly,

Thrombocytopenia, Guillain
Barré syndrome, neurological

sequelae

[8,9]

MVEV
Cx. annulirostris,
Cx. australicus

Aedes normanensis
Ochlerotatus tremulus

Ciconiiformes such as
herons, egrets

Kangaroos, rabbits,
mice, dogs, pigs

Febrile illness, encephalitis,
neurological sequelae,

flaccid paralysis
[10]

WNV

Culex spp. including
Cx. tarsalis

Cx. quinquefasciatus
Cx. stigmatosoma

Cx. thriambus
Cx. pipiens

Cx. nigripalpus

Corvidae family such
as American

Crows and blue jays,
common grackles,

house
sparrows,

American robins,
house finches

Rabbits, lemurs,
hamsters, squirrels,

chipmunks

Fever, myalgia, encephalitis,
meningo-encephalitis,

meningitis, flaccid paralysis
[11,12]

USUV

Culex spp. Including
Cx. pipiens
Cx. neavei

Cx. modestus
Cx. perfuscus

Cx. quinquefasciatus
Aedes, Anopheles Mansonia and

Ochlerotatus spp.
Aedes albopictus
Aedes japonicus

Passeriformes
(such as Eurasian
blackbirds, house

sparrows and Magpies),
Strigiformes (such as

Great grey owl),
Coraciiformes

Horses, bats, dogs,
cattle, wild boar, deer,

rodents, shrew

Fever, skin rash,
meningo-encephalitis, facial

paralysis
Asymptomatic

infections/presence in
donated blood from

healthy adults

[13,14]

Arboviruses are zoonotic agents that transmit disease from vertebrate hosts (wild
animals) to human beings via arthropod vectors such as mosquitoes and are maintained
in the environment in zoonotic transmission cycles [15,16]. In the enzootic or sylvatic
cycle, the female mosquito vector feeds on the infected vertebrate host that acts as the
reservoir; when the virus replicates and infects the mosquito, the latter transmits the
amplified virus to the next vertebrate via its salivary glands during a subsequent blood
meal. Vertebrate reservoirs are typically birds, small wild animals or non-human primates;
these are the natural hosts of the virus, and frequently transmission does not result in
disease. In the epizootic or rural cycle, domestic animals are infected by either a primary or
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accessory vector which leads to outbreaks in the animal population. When humans are in
close proximity, the virus can get transmitted to humans via the vector as well (urban or
epidemic cycle). In the case of sufficient viremia, there is enough virus amplified to infect a
new mosquito vector; otherwise, humans are dead-end hosts and do not perpetuate the
virus transmission in the population. Non-vector modes of flavivirus transmission are
less common and these have been described for DENV, JEV, WNV and ZIKV in humans
and animals. Examples include transmission via organ transplantation, blood transfusion,
oro-nasal secretions and horizontal transmission, and an uncommon, atypical case of WNV
transmission via lactation [17–21]. Isolation from non-mosquito vectors such as ticks with
transmission has been reported for WNV [22], as well as viral transmission in the absence
of mosquito vectors in farmed crocodiles [23]. Sexual transmission of most flaviviruses in
humans is uncommon. However, sexual and vertical transmission are established routes
of ZIKV infection in humans [24]. Due to the overlapping ecological and geographical
distribution of vectors and amplifying hosts, transmission of more than one virus by a
single vector, simultaneously or consecutively, is feasible. Therefore, virus particles can
adapt and survive the temperature and cellular milieu of multiple host and vector species
and thrive in a broad diversity of micro-environments and tissues. Furthermore, multiple
sequential infections with the same JE serocomplex virus or with a second flavivirus of the
same or different serogroup can influence the host immune response and disease outcomes.

2. Distribution and Disease

JE serogroup viruses circulate in both temperate and tropical zones, with an expanse
corresponding to a population of over three billion people (Figure 1). This wide distribution
can be attributed to evolution, high genetic diversity, emergence and re-emergence of strains
and natural spread of the virus due to vector proliferation and avian migration [25–27].
Distribution of specific strains is directly linked with climate change [25,28]. Based on
the geographical distribution and phylogenetic analyses of whole genome, the NS5 or the
envelope (E) gene, genotypes 1–4 (G1–4), genotypes I–V (GI–V) and eight lineages each
have been described for MVEV, JEV, WNV and USUV, respectively (Table 2).
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Figure 1. Global distribution of flaviviruses. Multiple flaviviruses co-circulate in most continents; of 
these, at least one virus belongs to the JE serocomplex. Co-circulation of more than one JE serocom-
plex virus occurs in Africa, Europe, Asia and Australia. The figure was generated using an online 
tool, URL: https://mapchart.net. (DENV: Dengue virus; IHLV: Ilheus virus; JEV: Japanese encepha-
litis virus; MVEV: Murray valley encephalitis virus; POWV: Powassan virus; ROCV: Rocio virus; 
SPOV: Spondwenii virus; USUV: Usutu virus; WSLV: Wesselsbron virus; WNV: West nile virus; 
YFV: Yellow fever virus; ZIKV: Zika virus). 

Table 2. Listed are the lineages of JEV, MVEV, WNV and USUV with a few representative strains, 
their geographical distribution and disease incidences. 

Virus Lineage 
Alternative 

Name/Included 
Strains 

Accession 
Numbers 

Geographical 
Distribution Disease Prevalence References 

JEV      

Genotype I 

KV1899 AY316157 Asia including 
Korea, China, 

Japan, Cambodia, 
Vietnam, Thailand 

Epidemics in 
temperate regions, 

predominant in 
humans 

[8,9,29] Ishikawa AB051292 

HEN0701 FJ495189 

Genotype II FU AF217620 Asia, Australia, 
Korea 

Endemic disease 
in tropical regions 

[8,9,29] 

Genotype III 
p3 

SA14-14-2 
Vellore P20778 

U47032 
AF315119 
AF080251 

Asia including 
India, China, 
Japan, Korea 

(Temperate zones) 

Epidemics in 
temperate regions, 
endemic activity, 
predominant in 

humans 

[8,9,29] 

Genotype IV JKT6468 AY184212 
Indonesia and 

Australia 
Endemic disease 

in tropical regions [8,9,29] 

Figure 1. Global distribution of flaviviruses. Multiple flaviviruses co-circulate in most continents; of
these, at least one virus belongs to the JE serocomplex. Co-circulation of more than one JE serocomplex
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virus occurs in Africa, Europe, Asia and Australia. The figure was generated using an online tool,
URL: https://mapchart.net. (DENV: Dengue virus; IHLV: Ilheus virus; JEV: Japanese encephalitis
virus; MVEV: Murray valley encephalitis virus; POWV: Powassan virus; ROCV: Rocio virus; SPOV:
Spondwenii virus; USUV: Usutu virus; WSLV: Wesselsbron virus; WNV: West nile virus; YFV: Yellow
fever virus; ZIKV: Zika virus).

Table 2. Listed are the lineages of JEV, MVEV, WNV and USUV with a few representative strains,
their geographical distribution and disease incidences.

Virus Lineage Alternative
Name/Included Strains Accession Numbers Geographical Distribution Disease Prevalence References

JEV

Genotype I
KV1899 AY316157 Asia including Korea, China,

Japan, Cambodia,
Vietnam, Thailand

Epidemics in temperate regions,
predominant in humans [8,9,29]Ishikawa AB051292

HEN0701 FJ495189

Genotype II FU AF217620 Asia, Australia, Korea Endemic disease
in tropical regions [8,9,29]

Genotype III
p3

SA14-14-2
Vellore P20778

U47032
AF315119
AF080251

Asia including
India, China, Japan, Korea

(Temperate zones)

Epidemics in temperate regions,
endemic activity, predominant

in humans
[8,9,29]

Genotype IV JKT6468 AY184212 Indonesia and Australia Endemic disease
in tropical regions [8,9,29]

Genotype V Muar strain
XZ0934

HM596272
JF915894

Asia including Malaysia,
China and Korea

Re-emerged
strain,

Human
encephalitis

[8,9,29,30]

MVEV

Genotype 1
MVE-1-51

K49077
08-154300

AF161266
EF015056
JN119766

Australia Epidemics,
sporadic cases [31]

Genotype 2 OR156
K6454

EF015074
EF015070 Australia Human

encephalitis [32]

Genotype 3 NG156 EF015076 Papua
New Guinea

Human
encephalitis [10,33,34]

Genotype 4 MK6684 EF015075 Papua
New Guinea - [31]

WNV

Lineage I

HNY1999
VLG4

LEIV-Vlg99-27889
Eg101

Kunjin MRM61C

AF202541
AF317203
AY277252
AF260968

D00246

Europe, Russia, North Africa,
Israel, United States, Middle-east,

Australia and India
Outbreaks in humans [12,35–37]

Lineage II Sarafend
Ug37

AY688948
NC_001563

Sub-saharan Africa including
South Africa, Madagascar;

Europe including Greece, Russia

Zoonotic outbreaks in South
Africa, avian and
human outbreaks

in Europe
[12,35,37,38]

Lineage III Rabensburg virus
(RABV/97-103) AY765264 Europe - [35,36,39]

Lineage IV LEIV-Krnd88-190 AY277251 Russia - [36]

Lineage V 804994
G16146

DQ256376
GQ851605 India Outbreaks in humans [12]

Lineage VI HU2925/06 GU047875 Spain - [40]

Lineage VII Koutango virus
ArD96655 KY703855 Africa, Malaysia, Senegal Sporadic outbreaks in Africa [37]

Lineage VIII ArD94343 KY703856 Senegal Sporadic outbreaks in Africa [37]

Lineage XI WNV-Uu-LN-AT-2013 KJ831223 Austria - [37,40]

USUV

Africa 1
Central African
Republic 1969

(CAR 1969)
KC754958 Africa - [13,41,42]

Africa 2
South Africa1959

(SAAR 1776)
Spain 2006

AY453412
KF573410

Africa
Europe - [13,41,42]

Africa 3

Central African
Republic (CAR 1981)

Senegal 2007
Netherlands 2016

KC754955
KC754957
KY128482

Africa
Europe Human illness [41,43]

https://mapchart.net
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Table 2. Cont.

Virus Lineage Alternative
Name/Included Strains Accession Numbers Geographical Distribution Disease Prevalence References

Europe 1
Austria 2001 (Vienna

2001)
Hungary 2005

AY453411
EF206350 Europe Human meningo-encephalitis [13]

Europe 2
Italy 2009

Austria 2016
Hungary 2016

HM569263
MF063042
MF063043

Europe
Human meningo-encephalitis,

meningitis, asymptomatic
blood donors

[42,44,45]

Europe 3
Germany 2011
Belgium 2016
France 2016

KJ438769
KX977447
KY128481

Europe Asymptomatic blood donors [13,42]

Europe 4 Italy 2009
Italy 2010

HM138711
JF834562 Europe Asymptomatic blood donors [13,42]

Europe 5 Germany 2016
France 2016

KY113091
LT854220 Europe Atypical human illness [13,14]

The geographic distribution of JEV includes countries in Asia and Southeast Asia. JEV
causes an estimated annual burden of 68,000 cases every year; the global disease burden
is unknown but is estimated to be approximately 20,000 fatalities. JEV encephalitis has a
mortality rate of up to 30% and survivors can have permanent neurological or psychological
sequelae. GIII used to be the dominant genotype in temperate zones, and it was associated
with human outbreaks in the past. GI represents the dominant genotype of JEV in the
world [25]. MVEV is spread across the Northern Territory, Western Australia and the
south-eastern region in Australia. It infects humans and animals from time to time, causes
meningitis and encephalitis in rare cases and varying degrees of brain dysfunction. GI
is the dominant strain across all areas of distribution, whereas some others like GIB (a
sub-strain of GI) and GII are more restricted [31]. WNV is one of the most widespread
viruses in this antigenic complex and has caused outbreaks in many countries. By 2002,
WNV lineage I strain, NY99, had spread across the USA with the emergence of new, more
virulent strains [35]. WNV lineage II, with a dissemination in Europe around 2008–2009,
is currently the dominant strain in the region and responsible for multiple epidemics in
humans and animals. Both WNV lineages cause a neuro-invasive disease in 1% of the
infected human population [35]. USUV is currently restricted to Europe and is mostly
asymptomatic in humans [46]. Two cases of human illness have been reported from Africa,
whereas European strains are the cause of severe illness in humans only in rare cases.

The WNV and JEV distribution overlaps with that of other heterotypic flaviviruses
such as ZIKV and DENV in parts of Asia and South America, whereas WNV and JEV
overlap in Asia. In Europe, WNV and USUV share a large geographic distribution, as
well as many vectors and amplifying hosts. The overlap of geographic distribution has
implications for disease diagnosis and control and host immune response (discussed below).
A multitude of factors add to the ecological interplay, such as the genetic diversity of the
virus, co-circulation of multiple strains and viruses and distinct pathology displayed by
different lineages.

3. Virus Morphology and Host Interplay

Flavivirus pathogenicity, extensively studied using molecular and structural biology
together with animal models in ZIKV as well as in the hemorrhagic DENV, is intricately
linked with virus assembly, maturation, host cell interactions, the immune response and
membrane fusion [47–51]. Virus morphology affects disposition of structural proteins
and surface residues and hence impacts interactions with host receptors and immune
cells [52,53]. Previous reports are recommended for an in-depth review of the current
understanding of the flavivirus life cycle, domain organization and the structural biology
of the envelope protein (E), the premembrane protein (prM), the capsid protein (C), and
structures of complexes of these proteins with receptors and antibodies [52,54,55]. Fun-
damental structural understanding stemming from investigations in DENV, WNV, ZIKV,
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TBEV and JEV structures suggests that many molecular interactions and mechanisms may
share some similarity within flaviviruses [56].

3.1. Distinct Structures Correlate with Specific Stages of the Viral Life Cycle

Within infected cells, flavivirus interaction with host proteins in the endoplasmic
reticulum (ER) alters its morphology at specific sites where replication of the RNA genome
and assembly of new virions takes place [57–59]. Immature flavivirus particles are roughly
60 nm in diameter, assemble at neutral pH and bud into the ER lumen [60]. An immature
flavivirus is composed of the structural proteins, E, prM and C, and the viral RNA genome;
the transmembrane regions of E and prM are embedded in a lipid envelope that surrounds
the nucleocapsid [60,61]. Sixty heterotrimers of E and prM form ‘spikes’ that project out
from the virus surface; the trimer is positioned at the quasi-threefold of the asymmetric
subunit, and the fusion loop (FL) at the distal end of the E:prM trimer is protected by prM
(Figure 2) [60–64]. However, FL in the immature virion can be targeted by antibodies and
must be accessible [65,66]. Immature virus is non-infectious by virtue of the presence of
prM, which shields the fusion loop (FL) of E and prevents membrane fusion [67–69]. Low
resolution, asymmetric cryo-EM reconstruction suggests that immature virions bud with
an eccentrically positioned nucleocapsid core relative to the outer icosahedral glycoprotein
shell [70]. The electron density present at the base of the spike formed by transmembrane
domains of three E/prM monomers and positioned between the inner leaflet and the
nucleocapsid core was observed in immature ZIKV structures; this corresponds to a single
capsid protein which interacts with the glycoprotein transmembrane domain [71–73].Fig2

Figure 2. Models of the flavivirus structural proteins corresponding to various stages in the virus
life cycle. (A–C): Immature DENV1 trimer, mature USUV dimer and the fusogenic DENV hairpin
conformation, respectively. Corresponding top views are depicted in (D–F), respectively. For the
immature E trimer and the E dimer, the E-stem region is also shown. The models are color coded as
follows: DI (red), DII (yellow), DIII (blue), fusion loop (green), glycosylation sites (orange) and prM
(cyan); for (B,E), the E-stem is in light blue and M protein is in teal.

As the immature virus traverses the acidic compartments of the trans-Golgi network,
conformational changes in E and concomitant processing of prM facilitate flavivirus matura-
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tion. Acid-induced conformational rearrangement leads to the formation of an icosahedral
shell of 90 E:prM antiparallel heterodimers that lie ‘flat’ on the virus surface, resulting
in a smooth outer appearance; prM is subsequently cleaved into ‘pr’ and ‘M’ proteins
by the host furin enzyme and ‘pr’ is released when exposed to the neutral pH of the ex-
tracellular milieu [62,68,74–76]. The mature flavivirus is 50 nm in diameter and displays
the ‘herringbone’ array of E rafts, a hallmark of the mature virion (Figure 2) [77]. Mature
flavivirus is infectious, multiple molecular determinants within E confer specific tropism
and subsequent virus entry in the host cells is mediated via attachment factors [78,79]
which represent a primary target for host antibodies. Multiple high-resolution structures
showed the absence of capsid density near the E/M transmembrane domain and between
the lipid layer and nucleocapsid core, which suggests a rearrangement of C in the mature
virus [62,71,74,75]. More significant structural changes occur in the M-TMD than in the
E-TMD between the immature and mature forms of flavivirus [80].

Infectious, assembled flavivirus particles are an assortment of mature and mosaic par-
ticles that interact with multiple, often redundant, host cell surface receptors/attachment
factors to gain entry into a cell [81]. However, purified JE serocomplex viruses expressed in
mammalian cells are relatively less heterogeneous than those observed for DENV, which
may possibly be a type-specific difference. Known flavivirus receptors/attachment factors,
including those for JE serocomplex viruses, fall under the broad classification into families
of proteins such as C-type lectins or CLRs (e.g., dendritic cell-specific ICAM-3 grabbing
non-integrin or DC-SIGN, a homologue of DC-SIGN named DC-SIGNR, C-type lectin
domain family 5 member A or CLEC5A), integrins (e.g., αVβ3, αVβ5, αVβ1), phosphatidyl
serine receptors of the TIM/TAM families (T cell immunoglobulin mucin domain; Tyro3,
Axl and Mer), heat-shock proteins (e.g., heat shock proteins HSP70 and HSP90, heat shock
cognate HSC70) as well as tight junction proteins (Claudin-1), heparin sulfate proteogly-
cans (HSPGs) and glycosaminoglycans (GAGs), laminin receptors and natural-killer-cell-
activating receptor NKp44 [82–87]. Interactions with receptors/attachment factors affect
cellular and tissue tropism and hence disease manifestation. However, successful cellu-
lar infection is a multiple-step process (attachment, recognition, binding, viral entry and
virus internalization) that requires both receptors/attachment factors and additional host
factors that facilitate viral replication in a permissive cell [87]. For the JE serocomplex,
some receptors/attachment factors have been identified using in vitro experiments, but
their role in viral entry and the molecular mechanisms of highly specific receptor binding
are unclear [50,82]. For instance, JEV is neuroinvasive and known to breach the BBB; it
infects pericytes, glial cells and developing neuronal cells, and utilizes CLRs, TIMs, HSPG
and GAG, integrins and heat-shock proteins as receptors/attachment factors, yet the JEV
receptor responsible for viral entry in the central nervous system remains elusive [50,82,88].
Virus–receptor interactions greatly depend on particle morphology and can trigger cellular
changes that facilitate virus internalization and clathrin-mediated endocytosis.

Extensive reviews have described flavivirus characteristics and structural heterogene-
ity that pertain to viral entry (discussed in Section 3.2) [50,81,87]. Molecular determinants
on E confer binding to various receptors/attachment factors, but these are not always well
defined. Specific amino acid residues in JEV, MVEV and WNV can drive viral entry and
these reside on different domains of the E protein [89]. The surface properties of the E
protein, in particular the presence of Lys-rich residues in the DI or DIII domains, confer
positive charge, which drives the interaction with the negatively charged GAGs in JEV,
WNV and MVEV [90,91], and similarly localized Lys residues in some USUV strains may
confer preferential GAG binding [75,92]. In the mature, infectious form, these receptor-
binding determinants would need to be exposed for interactions, as is indeed the case
for some interactions, while, conceivably, some E elements that participate in interactions
may become accessible only during intermediate stages, possibly post-attachment. Known
findings on CLR and integrin interactions attest to these differences, for instance, glyco-
sylation at the Asn-154 site on the glycan loop is a marker of virulence in JEV, WNV and
MVEV and mediates differential binding to CLRs [93]. On the other hand, while integrins
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have been implicated in WNV and JEV entry, the role of the RGD motif in mediating WNV
entry has been inconclusive from in vitro studies and high-resolution details showed the
RGD motif in USUV to be unavailable for interactions [74,75,94,95]. DENV and USUV are
the only two flaviviruses that contain a second glycosylation site, at Asn-67 and Asn-118,
respectively. All serotypes and strains within the two respective antigenic complexes are
known to possess the second glycosylation site; however, other JE serocomplex members
including WNV, JEV and MVEV lack this site, which prompts a question of evolutionary
conservation and suggests some entry/fitness advantage of the DII glycan site for DENV
and USUV. Structural knowledge of E protein with receptors/attachment factors revealing
atomic-resolution details of the virus–host interface in complexes is lacking [96]. An inte-
grated structural approach involving X-ray crystallography and cryo-electron microscopy
(cryoEM) may be essential to fully decode the structural basis of flavivirus recognition
and binding of cognate attachment factors or receptors as well as define the molecular
determinants and key interactions involved in viral entry.

Once endocytosed in a newly infected cell, an irreversible, acid-induced conforma-
tional change occurs in the mature virus that leads to the realignment of inter-domain
interactions and dissociation of the E:M heterodimers; the repositioning of DII, DIII and
the E-stem; and subsequently the formation of sixty E:E:E homotrimers [64,97]. Formation
of the acid-induced trimeric fusion-competent form is essential for fusion and a requisite
prelude to the release of viral RNA into host cytoplasm [98]. E homotrimers expose three
FLs at the distal end for insertion into the endosomal membrane (Figure 2) [99]. However,
since the process is dynamic and transient, the intermediate states are often captured by
complexing with antibody fragments. Complex formation of WNV with monoclonal anti-
body (mAb) E16, which blocks WNV membrane fusion by inhibiting E-trimer formation,
followed by a drop in pH, arrests the virus in a pre-fusion state [100]. The WNV pre-fusion
state reveals an expansion of the E shell, with a gap of 60 Å between the E and lipid layers.
DENV post-fusion intermediates further detail the “open” and “closed” states that are
on the continuum leading to fusion: in the “open state”, the FLs are inserted into the
endosomal membrane but the DI-DII hinge angle is the same as that in the E:M heterodimer
of mature virus, whereas in the “closed” state, additionally, E-stem helices and DIII are
repositioned to facilitate E-stem “zippering” [99,101,102].

3.2. The Sources of Heterogeneity Are Multifactorial

Flavivirus particles produced in an infected cell are a heterogeneous mixture of ma-
ture, partially mature and immature virus particles [103,104]. This primarily results from
inefficient furin processing of the prM, which has been observed primarily in DENV and
JEV [105]. The mature and immature particles contain M and prM, respectively, whereas,
in partially immature particles, both M and prM are present in the same particle and
prM and E associate as a heterodimer that lies close to the viral surface [106]. The latter
may represent an intermediate along the continuum of prM processing; indeed, structural
studies confirmed that these particles contain features characteristic of both the mature
and immature virions [106,107]. Mutational analysis of DENV prM residues at and around
the furin cleavage site and chimeras containing prM segments from JEV, YFV and TBEV
showed enhanced cleavage for the JEV chimera and delayed egress of the virions but no
change in infectivity [108]. Cleavage efficiency and hence the degree of heterogeneity varies
among flaviviruses and may also vary between viruses/strains within the JEV serogroup;
for instance, purified SAAR-1776 USUV displayed mostly mature particles with a low
number of immature particles and fewer partially immature particles. However, the visual
appearance of particles, without further analysis with virometry or mass spectrometry, is
insufficient to conclude the nature of heterogeneity [75,105,108]. The cell type used for virus
production is important as mammalian cells result in less heterogeneity; however, it remains
to be established whether the range of variation in heterogeneity might correlate with the
pathogenicity of strains for specific hosts, within and between serogroups [103,109].
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Fundamental knowledge of the structural biology of flaviviruses comes from inves-
tigations of DENV serotypes and their interactions with host components. However, in
the broader context of the structural architecture of flaviviruses that is pertinent for patho-
genesis, common features are shared while finer details may differ between type-specific
viruses or strains. The morphology of the mature DENV virions spans a broad range: the
particles include those with a ‘smooth’ (diameter of ~500 Å) appearance or a rough, ‘bumpy’
appearance (somewhat variable sizes with reported diameters between 360–550 Å), de-
pending on the host infected or types of cells used for virus production, and a non-spherical
structure referred to as the club-shaped particles [110–112]. Dengue virions change to the
‘bumpy’ morphology above 33 ◦C, and, therefore, at the physiological body temperature
of the human host (37 ◦C), this form is expected to dominate, whereas in the mosquito
vector (28 ◦C), Aedes spp. mosquitoes for DENV, the smooth form would predominate. This
phenomenon of temperature-dependent particle expansion is referred to as viral ‘breathing’.
Structurally, the ‘bumpy’ particle shows expansion of the protein shell and some structural
rearrangements of the E protein domains compared to the smooth morphology. The protein
shell containing E lies at a greater radius from the center of the particle whereas the radial
distance of the lipid layer remains unchanged, protrusions of E domains I and III (DI and
DIII) are observed between the five- and three-fold icosahedral axes, weakening of E dimer
interactions at the icosahedral two-fold shifts the raft arrangement, and a hole is present
at the icosahedral three-fold vertices that is surrounded by the DI and DIII domains [111].
Structural studies reveal that the temperature-dependent expansion observed in DENV is
serotype-specific and is shown only by DENV2.

Evidence for viral breathing in JE serocomplex viruses comes from functional studies
on WNV (described below) using antibodies E60, E16 and E53, and Thr198 of WNV E
(and Phe193 in DENV1) [113,114]. In the JE serogroup, cryo-EM structures of mature
viruses have been determined for USUV, WNV and JEV (resolutions of 2.4, 3.1 and 4.3 Å,
respectively) and for chimeras of Binjari virus with WNV and with MVEV (resolution
of 2.9 and 3.7 Å, respectively), where WNV or MVEV structural proteins, respectively,
form the icosahedral glycoprotein shell [74,75,115]. USUV structures represent the highest-
resolution maps of a mature flavivirus solved to date using cryo-EM, and these are also
the highest-resolution structures from the JE serogroup [75]. The maps reveal densities
for three lipid sites; none of the other recent structures of mature flaviviruses reveal the
presence of all three sites and this could be due, in part, to the higher number of particles
used for the reconstruction and the biological component pertaining to the disposition of
M helices in the membrane, which is most similar for ZIKV and USUV [75,116]. One of
the two sites near the E-stem (referred to as ‘S2’) is also present in the flavivirus cryo-EM
structures of ZIKV, SPOV and the chimera of Binjari virus and DENV; therefore, the two
sites may be functionally distinct and S2 may represent an essential lipid interaction site
across flaviviruses [62,74,75,116,117].

A non-spherical morphology for DENV, called the club-shaped particle, was recently
described [118]. Morphologies with a head and a tail (HAT particles), albeit a slack tail,
similar to club-shaped particles have been observed in some purified flavivirus samples
where the number of HAT particles increased with time and were observed with a concomi-
tant decrease in the number of spherical virions. However, these changes are differentially
observed for flaviviruses (unpublished data). A structurally distinguishable subpopulation
of USUV was also recently described where the differences were restricted to side-chain
conformations of residues and the presence of an FL disulfide bond in one of the three
monomers of the asymmetric subunit; the simultaneous existence of virions displaying
different conformations in a sample and elucidation of their cryo-EM structures has been
reported for other viruses [75,119]. This subpopulation represented about 33% of the sam-
ple size in USUV, comparable to the class III particles of the ‘bumpy’ DENV2 extracted for
cryo-EM reconstruction, emphasizing that the presence of flavivirus subpopulations within
a sample may have functional implications for host interactions [75,111].
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3.3. Particle Architecture Affects Host Interactions

Mature and immature forms of flaviviruses, by virtue of the presence of prM, and
the fusion-competent forms of the virus possess distinct particle architecture and hence
display differences in the surface-exposed regions of the structural proteins; this has direct
implications for antibody recognition and binding. Antibodies can target both structural
forms of flaviviruses and antibodies that target all three domains as well as the DI–DII
and DII–DIII hinge regions of E have been identified and structurally characterized for
DENV [55]. The neutralization potency of the antibodies varies. Some antibodies target
the same region in multiple flaviviruses, including DENV and ZIKV, such as the E dimer
epitope (EDE)-recognizing monoclonal antibodies that crosslink the two E proteins in
the homodimer [55,65]. EDE antibodies can be further classified into EDE-1 and EDE-2
antibodies, where only the latter require the Asn154 glycosylation on the adjacent E of the
dimer for recognition. Furthermore, EDE antibodies can bind both mature and partially
mature virion, exemplifying the interplay of antibodies and virion architecture. Binding of
antibodies such as CR4354 and 14C10, specific for WNV and DENV1, respectively, results
from recognition of quaternary epitopes on the E dimer of the mature virion; however,
the occupancies of the antibodies on the flaviviruses vary, further specifying the residues
recognized by different antibodies on mature virions (Figure 3) [55,120]. The maturation
state, virion stability and “viral breathing” affect antibody recognition and hence virus
neutralization in WNV and DENV [65]. For instance, DENV E-specific antibody 1A1D-
2 binds to the mature virus after incubation at 37 ◦C as the epitope is not accessible at
4 ◦C [121].

Fig3

Figure 3. Models of some JE serocomplex flavivirus particles with bound Fabs. (A). Immature WNV
particle with bound E53, which is cross-reactive and preferentially binds immature flavivirus particle
but not the mature particles. The Fab chains are depicted in green and light green. (B). Mature
WNV with bound CR4354, which binds two neighboring E molecules and neutralizes by blocking
the conformational rearrangement essential for membrane fusion. Fab chains are shown in blue and
light blue.

Epitopes recognized by antibodies in the immature virus may become inaccessible
when E monomers form dimers in the mature virus. A change in neutralization sensitivity
and hence potency was observed in response to WNV maturation as a result of epitopes
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becoming less accessible in the mature virion [122–124]. Conversely, studies in MVEV
revealed that prM in the immature particle conceals epitopes accessible in the mature
particle and the prM-associated immature particles are more acid-resistant [125]. Another
“cryptic” or inaccessible epitope on the immature virions is the fusion loop epitope (FLE)
that is recognized by the WNV E53 antibody [126]. These antibodies bind immature virions,
as well as the partially mature particles or particles undergoing viral “breathing”, all
scenarios where FLE is exposed [65]. FLE–recognizing antibodies in DENV were shown to
be strain- and DENV serotype-dependent, suggesting the need for evaluation of individual
strains [127]. E53 preferentially recognizes partially mature WNV virions and fails to
neutralize mature virus [126].

FL-recognizing antibodies tend to be weakly neutralizing and cross-reactive with
other flaviviruses due to the strong conservation of the FL; however, Vogt et al. showed
that weakly neutralizing WNV FL antibody E28 conferred protection in mice in vivo via
effector activation and phagocytic activity even though E28 showed poor neutralization
in vitro [128]. Vogt et al. further speculated that the protective effects of cross-reactive
FL antibodies could be protective for secondary WNV infections in geographical areas
where more than one flavivirus is circulating; this may be relevant for the observed protec-
tion recently reported for WNV lineage II in Europe in patients with pre-existing USUV
immunity (discussed later). Immuno-dominance of FLE antibodies is also reported in
other flaviviruses in studies using polyclonal sera from infected and vaccinated individu-
als [129]. While morphology affects infectivity and antigenicity [65,126], antibody binding
can affect viral function. The flavivirus humoral response generates antibodies against E
and prM; a peculiar feature of some prM antibodies is their ability to render immature
particles infectious as these facilitate binding and internalization into cells containing Fcγ
receptors [69,130].

4. JE Serocomplex Flavivirus Immune Response
4.1. Innate Immunity

Clinical manifestations of JE serocomplex virus infections in humans span a wide
range, from asymptomatic prevalence or mild febrile illness to neuro-invasive disease
and encephalitis. Severe neurological disease is more likely to afflict the elderly and
immune-compromised individuals. Studies aimed at understanding the molecular basis
of pathogenesis and the host immune response in these diverse scenarios, using in vitro
and in vivo murine models such as mice with single or double knock-outs of effector
molecules, their receptors or other components, helped identify cellular components and
biomarkers critical for viral restriction and the spread of infection in peripheral tissues as
well as identify factors that may contribute to neuro-invasive disease, immunopathology
or exacerbation of outcomes toward severe disease [105,131,132]. In addition to the three
structural proteins (E, C and prM), the flavivirus polyprotein encodes seven non-structural
proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) [53]. Protection emanating
from the innate defense against these viral components generates a non-specific, broad-
range response that is essential for viral restriction and clearance and limiting progression
of the disease. Pattern recognition receptors (PRRs) on mammalian antigen-presenting
cells, Langerhans, human primary keratinocytes and dermal dendritic cells in the skin
detect pathogen-associated molecular patterns (PAMPs) such as double-strand viral RNA.
Binding of viral components triggers a downstream signaling cascade, beginning with
the activation of one or more of the three kinds of receptors: retinoic-acid inducible gene-
I (RIG-I)-like receptors (RLRs); melanoma-differentiation-associated-gene 5 (MDA5) in
the cytoplasm; and nucleotide oligomerization domain (Nod)-like receptors (NLRs) and
Toll-like receptors (TLR; e.g., TLR3, TLR7 and TLR8) in endosomes [132–135]. Activation
of downstream adapter molecules with kinase activity (e.g., NEMO, IKKα, IKKβ; TBK,
IKKε) activates transcription factors (e.g., IRF3 and IRF7) and NF-κB in a cell-type-specific
manner [132,133]. IRF1, IRF3, IRF5 and IRF7 all restrict WNV replication; however, IRF5
plays a non-redundant, immunomodulatory role in shaping the early immune response
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events via production of pro-inflammatory cytokines in the lymphoid tissues, but not type
I interferons, and also affects the trafficking and activation of immune cells entering the
draining lymph node [136]. IRF5 further adversely impacts early antibody response in mice.
In vivo experiments revealed that IPS-1, a key adaptor in the RIG-I signaling pathway, and
a transcription factor Batf3 regulate inflammation via interactions with T cells [137,138].
Once translocated to the nucleus, each transcription factor induces the expression of specific
genes, and, subsequently, the production of inflammatory cytokines (type I (IFN-α, IFN-β),
type II (IFN-γ) and type-III (IFN-λ) interferons), and a multitude of interferon-stimulating
genes (ISGs), which have antiviral effects as they restrict viral replication and dissemination
in the host [105,133,139–142]. Eliciting production of interferons with a different virus
was also shown to reduce WNV titers in vitro [143]. Secreted cytokines further interact
with interferon receptors in virus-infected cells (autocrine or paracrine) and activate the
Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. The
interactions of effectors of this pathway with interferon regulatory factors (IRFs) and
binding to interferon-stimulated response elements triggers the expression of ISGs that
eventually exert an antiviral state directly through effectors [144].

Known viral features that play a role in conferring neuro-invasiveness in WNV, as in
many other flaviviruses, including those of JE serogroup, reside on the structural envelope
protein, and N-linked glycosylation specifically is in the E protein [145]. In contrast, in
USUV, N-linked glycosylation is present at Asn154 and Asn118 across strains, yet human
USUV infections display a wide range of manifestation from asymptomatic presence with
antibodies against the virus to meningo-encephalitis, suggesting that, in USUV, other
features in the structural proteins or factors may facilitate neuroinvasion. The host milieu
and components therein are also known to affect WNV neuro-invasiveness: the blood–
brain barrier (BBB) is present at the blood-to-brain interface and is a physiologically and
functionally distinct region made up of a vascular basal lamina; brain capillary endothelia
cells (BCECs) characterized by the presence of tight junctions, adherens junctions and low
vesicular traffic; and the neurovascular unit (NVU) consisting of pericytes, perivascular
fibroblasts, glial cells and astrocytes [146]. Breaching the BBB may precede neuroinvasion
and occurs via the compromised permeability of BCECs or the NVU, and in WNV infection,
the underlying mechanisms of CNS entry and infection may involve cytokines like IL-6
and TNFα, semaphorin 7A, metalloproteinases, a ‘Trojan horse’ route utilizing infected
immune cells, direct axonal retrograde transport, infection via the olfactory bulb and
direct infection of cells of the NVU or neuron-to-neuron infection [134,147–150]. The
neuroinvasion property differs across WNV strains and may involve variable mechanisms
among WNV strains and between JE serocomplex viruses and is yet to be elucidated [151,152].

The innate immune response to WNV is essential for limiting viral dissemination to
the CNS. In WNV-infected mice and patients with West Nile virus fever (WNF) and West
Nile virus neuro-invasive disease (WNND), upregulation and elevated concentrations of
a multitude of cytokines and chemokines were observed in sera and cerebrospinal fluid
(CSF), with higher levels of pro-inflammatory cytokines in patients with WNND compared
to those with WNF, and also during JEV infection [153–155]. These included markers of
inflammation (such as IL1α, IL4, IFNα and TNFα), type 2 cytokines (such as IL4 and IL13)
and IL10, which may be associated with the exacerbated immune response in patients with
WNND. Neurological damage in WNND results from both neuro-inflammation and direct
viral infection of the brain cells such as astrocytes, microglia and neurons. Studies in mouse
models revealed an essential role for interferon γ (IFN-γ) in restricting viral replication,
viral infection of peripheral tissues and the early onset of CNS infection. While the innate
immune response is best described for WNV and investigated in JEV, these pathways are
yet to be understood in-depth for USUV; however, animal models for in vivo and in vitro
studies of USUV pathogenesis have been described [156]. Emerging research provides
comparable insights into USUV and WNV pathogenesis and the immune response within
a system: the use of distinct cellular tropism that involves specific receptors (langerin and
DC-SIGN) and differential infection, replication and activation and the susceptibility of the
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innate immune response in different cell types such as Langerhans cells or human neural
stem cells (hNSC) [157–159]. For instance, both WNV and USUV (strain Vienna_2001)
induce a robust innate response in hNSC with high levels of type I and III IFNs and
caspase-3, but WNV may be more efficient in evading the host immune response; the latter
effect was also observed in dendritic cells [157,158]. JE serocomplex viruses, like other
flaviviruses, have adapted multiple mechanisms to evade some innate immune response;
therefore, these are not primary targets for therapeutic development [133,139].

4.2. Adaptive Immunity

The essential roles of CD4+ and CD8+ cells in modulation, control and protection
in JE flavivirus infections have been described for JEV and WNV [105,142,160]. These
involve viral clearance by CD4+ cells via its multitude effector functions including cytokine
production, CD8+ response enhancement and maintenance of antibody response, and CD8+
cell-mediated lysis of infected cells by secretion of effectors such as Fas receptor, perforin
or granzymes; however, the determinants of T cell immunity are better explored for WNV
than for JEV or other JE serocomplex flaviviruses. For instance, in a mouse model of JEV
encephalitis, the role of T helper cells was essential to maintain humoral immunity and
counteract infection and lethality, and a robust CD8+ activation was marked by an increase
in CD69 and CD25. However, the CD8+ response didn’t uniquely contribute to animal
survival while the viral burden in the CNS of mice lacking this response was higher [161].
On the other hand, CD8+ is essential for clearance of WNV and in the CNS and recovery
in mouse models [162], and variation in susceptibility was observed in mice deficient in
Fas- or perforin-dependent cytolytic pathways between WNV lineage I and II, JEV and
MVEV [161], which highlights the importance of elucidating a T cell response for specific
flaviviruses of the same antigenic complex. Recent studies highlighted the important role
of CD8+ cells in eliciting antibody-mediated protection in response to JEV vaccination
in mice and in protecting JEV-infected mice via granule-mediated cytotoxic effects with
a contribution of γ/δ TCR expressing T cells [163,164]. The T cell immune response in
MVEV and USUV infections is less thoroughly defined. Some insights into the host T cell
response to USUV infection comes from retrospective analyses of asymptomatic blood
donors in WNV- or USUV-infected individuals, and a USUV-specific T cell response could
be distinguished with high accuracy [165].

A significant protective defense is mounted by the host humoral immunity that
generates neutralizing antibodies targeted against non-structural and structural proteins,
including NS1, NS3, NS5, prM and the structural protein E on the virus surface. A number
of epitopes of flavivirus E proteins have been mapped and some of the most potent
neutralizing antibodies in flaviviruses like DENV and ZIKV are known to be directed
against DIII and its lateral ridge comprising strand A, BC-, DE- and FG-loops [65]. Both
B and T cell epitopes have been determined for JE viruses but fewer have been for JEV
and MVEV than WNV, and a much lower number of epitopes has been identified for JE
serocomplex viruses compared to DENV2 [166,167]. On the E protein, B cell epitopes in
WNV map to the DIII lateral ridge, DI lateral ridge, DI linker region, DII hinge interface, DII
dimer interface, DII central interface, DII lateral ridge and DII [113,168,169]. Unlike DENV,
WNV neutralization is not dominated by DIII-lateral-ridge-directed antibodies, as studied in
horses and humans and for the WNV strains associated with recent outbreaks [168,170,171], and
includes a large repertoire directed at the fusion loop (discussed below). While epitopes are
identified using many methods not limited to yeast display, structural biology techniques
of cryogenic electron microscopy, nuclear magnetic resonance and X-ray crystallography,
binding and neutralization assays, identification and investigations of escape mutants, the
methods inform different aspects of antigen–antibody interactions and structural biology
techniques can provide unique insights into quaternary epitopes. Secondly, current data
show that, especially for B cell epitopes, sequence conservation of an epitope may not be
sufficient to predict binding and/or neutralization, emphasizing a need for independent
resolution of the underlying mechanisms of neutralization for different viruses [170]. For
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instance, E16 is a potent WNV antibody. Based on yeast display, critical residues and regions
for antibody interaction were initially identified [172], the interactions were subsequently
confirmed using structural studies [173]. However, substitution of a few residues within
these regions renders E16 ineffective for USUV SAAR-1776 neutralization and shows an
altered pattern for USUV CAR-1969 [75,174]. Polyclonal antibodies generated against WNV
in humans have been reported to show narrow-specificity targeting regions in DI and DII
rather than DIII, with the majority displaying broad cross-reactivity [168,170]; whether this
is a feature of all members the JE serogroup including MVEV and USUV is unclear.

Flavivirus neutralization is affected by many factors, not all of which are well defined
for a virus/strain. For instance, neutralization by mouse monoclonal antibodies (MAbs)
against DENV4 was shown to be strain- and genotype-dependent; this neutralization varied
at different temperatures (37 ◦C or 40 ◦C), whereas after incubation at 37 ◦C, cross-reactive
antibodies against FL of DENV1–3 weakly neutralized multiple strains of DENV4 [127].
Known factors that affect binding and neutralization include accessibility of the epitope,
affinity of the antibody, maturation and conformational state of the virus and the specific
stoichiometry of the antibody to achieve neutralization [175,176]. Sub-neutralizing anti-
bodies may lead to neutralization at higher concentrations [177]. The cryo-EM structure
of WNV virus in complex with the therapeutic antibody E16 showed that the antibody
targets sixteen residues on loops of DIII and forms a network of hydrogen bond interac-
tions [173,178]; E16 was shown to neutralize by blocking acid-induced membrane fusion. In
a separate study, two potent antibodies against JEV, 2F2 and 2H4, were also shown to bind
quaternary epitopes; the binding interface spans three adjacent E monomers in the asym-
metric subunit, with four such interfaces locking the E monomers of a raft [179]. On the E
protein, the interfacing residues map to DIII and DI-DII hinge regions, which tend to differ
between flaviviruses but are conserved among the genotypes of JEV. The two antibodies
blocked receptor attachment and JEV entry as well as endosomal membrane fusion.

4.3. Flavivirus Cross-Reactivity

The impact of flavivirus cross-reactivity is pertinent for the development of thera-
peutics because of the presence of multiple flaviviruses circulating in any given region
and hence the possibility of simultaneous or sequential (homotypic and especially sec-
ondary heterotypic) human infections. The changing geographic distribution of flavivirus
strains/genotypes is in part due to changing global climate, as well as new introduc-
tions [180]. Complexity in the adaptive immune control of sequential, secondary homo-
or heterotypic flavivirus infections results from: (1) Amino acid sequence conservation
within the antigen affecting antigenic diversity. The highly cross-reactive FL of flavivirus
E protein is also one of the most conserved regions across flaviviruses and mutations in
this region result in lower cross-reactivity in in vitro studies [4,181–183]; (2) the original
antigenic sin, which means that the secondary exposure to a variant, non-identical antigen
is not recognized as such by the B cells (or the cytotoxic T lymphocytes) and the immune
system relies on its ‘memory’ of the original, primary antigen to mount a response to
the variant, which is inadequate and ineffective. This altered memory recall results in
production of sub-neutralizing antibodies that fail to control the secondary infection or
additionally leads to a worse clinical outcome [184]; (3) antibody-dependent enhancement
(ADE), resulting from the original antigenic sin. When less effective, non-neutralizing
antibodies are generated in response to an often heterotypic secondary flavivirus infection.
These antibodies can be internalized and sequestered into monocytes, macrophages and
mast cells containing fragment γ receptors (Fcγ) and complement receptors. This amplifies
viral replication and leads to the worsening of disease. ADE is a hallmark of DENV and
various flavivirus infections, including those involving vaccination-induced immunity in
human infections and mouse models [185,186]. Antibody-facilitated infection enhancement
via routes not involving cellular receptors has been shown in experiments and can also
occur when antibody-bound infected cells are lysed by cytotoxic natural killer cells, referred
to as antibody-dependent cellular cytotoxicity [185,187–191].
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Cross-reactive immune responses to flavivirus infections are, therefore, a double-
edged sword both for flavivirus diagnostics as well as therapeutics. While epitopes on
non-structural proteins elicit adaptive immune responses, the neutralizing humoral re-
sponse against the structural E protein constitutes a dominant avenue of protection against
flavivirus infections; these antibodies are primarily directed toward epitopes localized on
DIII and the lateral ridge and tend to be type-specific [169]. In vitro assays showed greater
cross-reactivity and neutralizing titers when E protein was used as a marker rather than
NS1, although titers of the neutralizing antibodies may not directly correlate with protec-
tion in natural infections [192]. In mouse experiments with WNV, DIII-epitope-generated
antibodies were shown to comprise a fraction of the total initial antibody response and
were overshadowed by cross-reactive, sub-neutralizing antibodies [193]. The latter can
confer protection at higher concentrations or via the antibody effector functions involving
complement fixation and antibody-mediated cytotoxicity, emphasizing the importance
of B cell memory recall; therefore, lack of or partial neutralization in vivo may not be an
ideal indicator of protection for outcomes for natural secondary infections [177,194,195].
Cross-reactive B cell epitopes are often characterized by distinct structural attributes such
as cryptic presence on E and localization on the DII domain, near the FL, and these epitopes
include distinct, highly conserved amino acid residues; peptide fragments in DII; and
distinct as well as overlapping regions in the E protein, not limited to amino acid residues
of the fusion loop [171,192,196,197]. Cross-reactive T cell epitopes associated with CD8 and
CD4 T cells have been localized to the non-structural proteins as well as the E protein and
induce either cross-protection or immunopathology in homotypic as well as heterotypic in-
fections involving JE serocomplex viruses [4,198]. Because these epitopes elicit heterotypic
cross-protection, there’s a need to define the molecular and immunological determinants
of cross-reactive T cell-based immunity in animal models that can be used to inform the
development of a pan-flavivirus or pan-JE-serocomplex-virus vaccine [199–201].

Pre-existing immunity to a flavivirus can result from asymptomatic viral exposure,
natural viral infection or immunization. Four licensed vaccines for human use exist for
JEV infection (Table 3) and vaccines for human use are unlikely to be developed for other
JE serocomplex viruses that cause infrequent outbreaks. These licensed vaccines and
those under development were utilized to explore cross-reactive immune responses in
animal experiments. JEV vaccination using JE-ADVAX or a DNA vaccine derived from
the expression of prM/E proteins induced protection against a lethal JEV challenge in
animal experiments, resulting primarily from humoral and cellular immunity while the
CD8 T cell immunity was dispensable for survival [161,202,203]. Similar experiments in
mice using recombinant vaccinia virus that carried the genes for the E and NS1 proteins of
MVEV showed complete protection with a subsequent challenge with MVEV by eliciting
generation of neutralizing antibodies, rather than a CD8+ immune response when E protein
was used; passive transfer of MVEV-infected human sera also conferred protection with
a subsequent MVEV challenge [204]. Cross-protection due to neutralizing antibodies
resulting from CD4 T cell expansion following infection after JEV immunization, but not
with YF immunization, has also been reported against ZIKV and DENV [205–207]. Li et al.
reported cross-protection against all four serotypes of DENV following JEV immunization,
using more than one JEV vaccine [208]. Chimeric vaccines using components of the JEV live
vaccine strain SA-14-14-2 have been reported to protect against YF and TBEV infections,
with dual protection against YFV and JEV in case of the former [209]. Determinants of
cross-protection via CD4 T cell immunity map to two helices in the capsid protein and
regions of E [210,211]. Koblischke et al. [210] reported peptide regions that form the
immune-dominant WNV E epitopes, and one such region (E149) is unique and absent in
DENV and ZIKV and lies on a structurally divergent region in WNV. Multiple research
findings from mouse experiments and human studies revealed the essential role of cellular
immunity and neutralizing antibodies in cross-protection between primary JEV or WNV
exposure and secondary DENV and ZIKV infections [212]. The sequence of infection is
known to influence disease outcomes; additionally, immune-dominant mechanisms of



Viruses 2022, 14, 2213 16 of 27

protection for each dyad of viral infections can be distinct and essential to elucidate if these
outcomes are to inform therapeutics. For instance, in the sequential JEV-ZIKV infection,
unlike the JEV-JEV infection, JEV vaccination-induced CD8 T cell immunity was found to
be essential for conferring cross-protection in mouse models compared to passive transfer
of serum [213,214]. Alternatively, cross-protective outcomes in JEV-DENV1 infection in
mouse models required the cooperative effects of humoral and T cell responses, whereas in
human infections, secondary DENV following anti-JEV immunity resulted in manifestation
of increased viral symptoms [206,212,215].

Table 3. Cross-reactivity among the four JE serocomplex viruses, JEV, MVEV, WNV and USUV, and
the outcomes for disease are depicted. Viruses listed across represent preexisting immunity, primary
challenge or vaccination and viruses down the column represent secondary infection. Flaviviruses
circulating in distinct areas with no currently reported co-existence are denoted by ‘Distinct geography’.

Virus (Infection
or Vaccination) Outcome JEV MVEV WNV USUV

JEV Protection

Pathology

[203]
[195]

-

[216]
[186]
[217]
[218]

[186]

[203]
[217]
[219]

[220]

Distinct geography

MVEV Protection

Pathology

[221]
[217]
[195]

[186]

[216]
[204]

-

TBD/Unknown

TBD/Unknown

Distinct geography

WNV Protection

Pathology/no
protection

[222]
[223]
[195]
[224]
[217]

[219]
[225]
[226]

TBD/Unknown

-

[227]
[228]

-

[229]
[230]
[231]

-

USUV Protection

Pathology

Distinct
geography

TBD/Unknown

Distinct
geography

TBD/Unknown

[227]
[232]

TBD/Unknown

[233]
[234]

-

Multiple studies explored the outcomes of sequential homotypic infections with JE
serocomplex viruses (Tables 3 and 4). Vaccination of different mouse models with JEV (JE-
ADVAX, live-chimeric JEV vaccine) or sera from adult mice that were infected sub-lethally
with JEV revealed the generation of cross-protective humoral and cellular immunity and the
protection of homotypic secondary MVEV and WNV infections [195,216,219,221,222]. In some
studies, protection was observed in the absence of detectable neutralizing antibodies and
dispensable CD8 T cell immunity, emphasizing the role of memory B cells in conferring
long-term protection against the secondary MVEV or WNV infections virus [195]. Animal
studies in macaques revealed that, while immunization with JEV vaccine completely pro-
tected against a secondary WNV infection, immunizing with the latter protected partially
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against disease severity [217]. These studies emphasize the potential of using JEV vaccines
against a range of JE serocomplex viruses. In the human population in Europe, USUV
antibodies have been found in patients with severe WNV neuro-invasive disease [235].
Blazquez et al. [229] reported differential susceptibilities of adult and suckling mice to
USUV infection, neutralization of secondary USUV following WNV infection and protection
against neuro-invasive WNV disease in mice pre-infected with USUV. WNV recombinant
subviral particles were able to induce cross-reactive humoral response in USUV, albeit at
low levels, and a USUV-based recombinant DNA vaccine could also elicit neutralizing
antibodies in adult mice deficient in interferon alpha/beta receptor [227,233].

Table 4. Vaccines for JE serocomplex viruses that are licensed for use in humans.

Virus Strain Vaccine Platform References

JEV Genotype III JE-VAX Inactivated, derived from mouse brain [236–238]

JEV Genotype III SA-14-14-2 Live attenuated strain SA-14-14-2,
derived from cell culture [239]

JEV Genotype III IXIARO, JEBIK V Inactivated, derived from cell culture [240–242]

JEV Genotype III IMOJEV Attenuated, chimeric, derived from
cell culture [241]

Understanding the factors that drive disease enhancement in sequential JE serocom-
plex viruses is essential to design therapeutic interventions for multiple viruses and because
human outbreaks of some JE serocomplex viruses are too infrequent to support develop-
ment of virus-specific vaccines. Experimental studies [220] caution the possibility of ADE
when the effect of sub-optimal concentrations of neutralizing antibodies against JEV were
used to explore the effect on a secondary infection with MVEV. Similarly, immunization
with MVEV, using killed virus or vector-delivered structural-protein-based subunit vaccine,
followed by challenge with JEV in BALB/c mice showed enhanced disease and protec-
tion, respectively [186,220]. A low dose of inactivated JEV vaccine or sera from mice that
were sub-lethally infected with MVEV caused ADE when subsequently challenged with
MVE. However, in a different study, utilizing inactivated JEV vaccine in animals elicited
partial protection against WNV infection, emphasizing the importance of consideration
of dosage of the priming virus [216,221]. Sub-lethal immunization with KUNV instead
of WNV and passive transfer of sera of mice infected with MVEV resulted in enhanced
secondary MVEV disease [216]. However, disease enhancement in the human population
in response to a JE vaccine eliciting humoral response with or without augmenting T cell
immunity is seemingly unlikely [194,220,243] and the robust immune responses generated
to cross-protect JE viruses suggest a strong consideration for harnessing cross-protective
immunity for vaccine development.

5. Summary

The end goal of flavivirus research centers on developing vaccines and effective
therapeutics. With the climate crisis and changing distribution of vectors and epidemiology
of pathogens, this need is urgent. To this end, convergence of research on drivers of
epidemiological changes, flavivirus structural biology, studies in animal models and natural
exposure in humans, and immunology can advance our understanding. Connecting the
dots between immunological correlates of cross-protection with molecular mechanisms
and interactions is challenging, and is limited, in part, by the resolution and availability of
structures of complexes of virus and host components. Recent high-resolution structures of
JE serocomplex flaviviruses, advances in methods in cryo-electron microscopy and deep
learning approaches may enable greater understanding to design effective strategies in the
near future.
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