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Abstract: Caffeine and theophylline are compounds with important applications in the pharmaceuti-
cal industry and other fields of the chemical industry. These purine derivatives have simple chemical
structures, therefore, the evaluation of their sublimation process contributes to the development of
mass transfer analysis methods that can later be applied to other compounds with more complex
structures. With the help of thermogravimetric analysis in isothermal conditions, the kinetic study
of the sublimation of caffeine and theophylline, along with the evaluation of kinetic parameters
(activation energy and the pre-exponential factor), was carried out. Global mass transfer coefficients
were determined, which vary for caffeine between 53 × 10−8 and 631 × 10−8 mol/s·m2·Pa, and for
theophylline between 68 × 10−8 and 441 × 10−8 mol/s·m2·Pa. The dimensionless equations of the
form: Sh = a + b·Rec·Scd have been proposed, which allow the determination of individual mass
transfer coefficients at temperatures between 130 and 160 ◦C for caffeine and between 170 and 200 ◦C
for theophylline.
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1. Introduction

Purine derivatives like caffeine and theophylline are biologically active substances
with important applications in the pharmaceutical industry [1]. There are also other
applications for these compounds that have been identified by researchers in various fields
of the chemical industry [1–3]. For example, caffeine has been shown to be a good inhibitor
of the corrosion process of certain metals and alloys and can be used as an indicator
in methods for detecting microbes in surface waters [1]. Wang et al. determined that
caffeine can be used to improve the performance of perovskite metal halide solar cells [2].
Theophylline was used by H. Mohammed to obtain azo dyes of theophylline and their
complexes with positive divalent cobalt and nickel ions [3].

Caffeine and theophylline have simple structures; therefore, the evaluation of their
sublimation process is useful for the development of mass transfer analysis methods, which
could later be applied to compounds with more complex structures.

The evaluation of mass transfer in the sublimation process requires accurate measure-
ment of mass and temperature variations. Thermogravimetric analysis equipment allows
the study of any physico-chemical process, provided that its development is accompanied
by the variation of the mass of the system. Thermogravimetric analysis is used to study the
sublimation process, due to the simplicity of the method and the accurate measurement
of mass variation with temperature. Most of the existing literature studies the determina-
tion of vapor pressure, the evaluation of the sublimation enthalpy and the sublimation
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rate [4–11]. A Perkin-Elmer thermogravimetric analyzer was used by Dichi et al. to deter-
mine the vapor pressure and enthalpy of caffeine sublimation [4]. The same equipment was
used by Soetaredjo et al. to analyze the sublimation process of (+)-catechin. The authors
determined the vapor pressure at the following temperatures: 423, 428, 433, 438, 443K
and calculated the sublimation enthalpy and entropy from the graphical representation
ln(P) = f(1/T). They used anhydrous caffeine to calibrate the equipment. They determined
that the sublimation rate of caffeine (dm/dt) was at the same temperature values shown
previously (for which the vapor pressure was reported in the literature) and established
the following equation: ln(P) = 1.135 × ln(dm/dt) + 0.225, which allowed the evaluation
of the vapor pressure of (+)-catechin [5]. The rate of sublimation of solid crystalline 2-(2-
nitrovinyl)furan was evaluated by Ruz et al. by isothermal thermogravimetric analysis in a
TA-Instruments (Q600) to determine sublimation enthalpy and vapor pressure [6]. These
authors used benzoic acid as a reference standard for vapor pressure estimation by thermo-
gravimetric analysis with the following equation: ln(P) = 0.9146 × ln(dm/dt) + 2.1658 [6].
Ramos et al. [7] determined the enthalpy of sublimation for a series of organic compounds
including of a group of cyclic ureas using a TA Instruments (New Castle, DE, USA) Q500
thermogravimetric analysis device. The authors determined that sublimation enthalpy
increases only by 0.9–2.5 kJ/mol if the diffusional factor is taken into account. The values
obtained for the sublimation enthalpies of the analyzed organic compounds are in full
agreement with those reported in the literature, but using other experimental methods.
Compared to other conventional techniques used to determine sublimation enthalpy, ther-
mogravimetric analysis has the advantage of shorter experiments and small samples [7].
Karakaya et al. used thermogravimetric analysis to determine sublimation enthalpy and
vapor pressure within the 570–640 K temperature range of the inorganic compound InCl3
using CuCl as a reference material [8]. Thermogravimetric analysis under isothermal con-
ditions was also applied by Shahbazi et al. to determine sublimation enthalpy for a series
of metal b-diketonate complexes [9]. Flores et al. [10] demonstrated that the application of
thermogravimetric analysis under isothermal conditions is a reliable method for evaluating
the enthalpy of sublimation. The additional enthalpy values for anthracene, pyrene and
benzoic acid are comparable to those evaluated by other methods, with the uncertainty be-
ing ±2.2 kJ·mol−1. Using these substances as reference standards, the authors determined
the enthalpy of sublimation for a family of flavones found in fruits, vegetables and various
beverages, namely 3-, 5-, 6-, 7-hydroxyflavone and 6-aminoflavone [10]. Good reproducibil-
ity of sublimation enthalpy determined by isothermal thermogravimetric analysis for a
series of metallocenes was also reported by Vieyra-Eusebio and Aaron Rojas [11].

In this study, for the first time, the use of thermogravimetric analysis techniques
was extended for the evaluation of the mass transfer process in sublimation. This means
the determination of the sublimation rate, the activation energy, the global mass transfer
coefficients and the design of a phenomenological model. The model allows for the
determination of individual mass transfer coefficients for caffeine and theophylline. Due to
the simple structure of caffeine and theophylline, the evaluation of the sublimation process
allows for the development of mass transfer analysis methods that may be used in the
future for compounds with more complex structures.

2. Materials and Methods

All experimental tests were performed with commercial samples of caffeine and
theophylline, as anhydrous powders (Purity 99%, Sigma-Aldrich, St. Louis, MO, USA).
Table 1 shows the optimized chemical structures and some properties of these compounds.
The geometry optimization of caffeine and theophylline molecules was performed with the
software HyperChem 7.5. (Hypercube Inc., Gainesville, FL, USA) using the MM+ method,
which is a common computational method in molecular mechanics that is particularly
useful for organic molecules. The optimization algorithm selected was Polak–Ribière
(conjugate gradient), with which the structures with minimum energy and minimum
atomic forces were established.
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Table 1. Optimized molecular structures representing ball shape and their properties.

Caffeine Theophylline
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Total energy = 92,675.6 J/mol
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Cyan is carbon, red is oxygen, nitrogen is blue and white is hydrogen.

The thermal behavior of caffeine and theophylline was analyzed in an ambient air
atmosphere with a flow rate of 20 mL/min using Discovery TGA 5500 equipment (TA
Instruments). This equipment provides a mass measurement accuracy of ±0.01% and a
resolution of <0.1 µg. The samples, with mass between 5 and 5.5 mg, were heated at a rate
of 10 ◦C/min in the temperature range 30–600 ◦C.

The sublimation process of caffeine and theophylline was also evaluated. The tests were
carried out for one hour under constant temperature conditions: 130, 140, 150 and 160 ◦C for
caffeine and 170, 180, 190 and 200 ◦C for theophylline. The mass loss was measured under
constant temperature conditions in an ambient air atmosphere with a flow rate of 20 mL/min.
Until a constant temperature was reached, the samples were heated from a temperature of
30 ◦C at a rate of 10 ◦C/min. Evaluation of the sublimation process by thermogravimetric
analysis under isothermal conditions involved the use of small sample amounts: 4.6–5.1 mg
of caffeine and 4.7–4.9 mg of theophylline.

The establishment of the phenomenological model for the sublimation of caffeine
and theophylline in the crucible of the TGA, which provides a flat surface in contact with
the entrainer (ambient air), was carried out with the help of programs made in Mathcad
(MathSoft Engineering and Education, Inc., Cambridge, MA, USA).

The rate of sublimation is constant, at constant temperature, Equation (1):

rsubl = −dm/dt = k (1)

The temperature dependence of the sublimation rate constant can be described by an
Arrhenius-type equation:

K = A e−Ea/RT (2)

where A is the pre-exponential factor, Ea is the activation energy, R is the universal gas
constant and T is the temperature expressed in K.

Sublimation kinetics of caffeine and theophylline were estimated using the logarithmic
form of the Arrhenius equation:

ln(dm/dt) = lnA − Ea/RT (3)

where dm/dt was the sublimation rate constant.



Materials 2022, 15, 7376 4 of 11

The thermogravimetric curves recorded in isothermal conditions allowed the study of
the mass transfer process in sublimation.

With Equation (4) the global mass transfer coefficients for various temperatures
were calculated.

NA = Kp·S·∆Pmed (4)

where NA was the amount of caffeine and theophylline sublimating in one second [mol/s],
KP was the global mass transfer coefficient [mol/s·m2·Pa], S was the surface of the cru-
cible, which was 0.0000739 m2, and ∆Pmed was the mass transfer potential in terms
of pressure [Pa].

The mass transfer potential ∆Pmed can be calculated as the difference between the
vapor pressure of purine derivatives on the surface of the sample layer in the crucible and
the vapor pressure of the caffeine or theophylline in the gaseous entrainer (ambient air).

The vapor pressure of caffeine at the surface of the layer, expressed in Pa, was calcu-
lated with the relation (5), and the vapor pressure of theophylline was calculated with the
relation (6) [12]:

log(pv)[Pa] = −5477
T[K]

+ 14.395 (5)

log(pv)[Pa] = −6896
T[K]

+ 16.027 (6)

The establishment of the phenomenological model for the sublimation of purine
derivatives from the crucible of the Discovery TGA 5500 (TA Instruments), which ensures a
flat surface in contact with the entrainer (air), was carried out with the help of programs
made in Mathcad. The dimensionless equation used to determine the individual mass
transfer coefficient kg has the form:

Sh = a + b·Rec·Scd (7)

The Sherwood number has the following mathematical expression:

Sh =
kg·hP

Dp
(8)

where:

kg is the individual mass transfer coefficient (m3/m2·s);
hp is the height of the purine derivatives layer (m);
Dp is the diffusion coefficient of purine derivative vapors in air for which values from the
literature were used (m2/s) [13].

The following mathematical expression was used for the global coefficient Kp, which
allowed the calculation of the individual mass transfer coefficient:

Kp = kg
p

R·T (9)

where:

P—working pressure in the equipment, which was assumed to be atmospheric pressure
(1.013 × 105 Pa);
R—universal gas constant (8.314 J/mol·K);
T—temperature of the driving gas expressed in K.

The Reynolds number was calculated with the following relation:

Re =
ρair·vm·hp

ηair
(10)
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where:

ρair—density of the entrainer calculated at the working temperature;
ηair—viscosity of the entrainer calculated at working temperature;
vm—the rate of the entrainer (0.003 m/s).

The Schmidt number was calculated with the following relation:

Sc =
ηair

ρair·Dp
(11)

for which the meaning of the sizes has been previously presented. The Schmidt number is a
property of the fluid (air) that depends on the working temperature, not on the sample size.
This is why it was considered at a power that did not change in the model, namely 0.33.
The same value was also obtained for the coefficient c, the power to which the Reynolds
number was raised. This number included the height of the layer of purine derivatives
h(m). However, it did not vary significantly at the temperatures at which the experimental
determinations were carried out.

3. Results and Discussion
3.1. Thermal Behavior

The evaluation of the thermal behavior was carried out in an ambient air atmosphere
with a rate of 10◦C/min. Thermogravimetric (TG) and derivative thermogravimetric
(DTG) curves are shown comparatively in Figure 1a,b. The mass loss was found to occur
completely in one step between 180–251 ◦C for caffeine and 234–305 ◦C for theophylline. It
was found that the mass loss of both samples occurs within a temperature range of 71 ◦C.
The temperature at which the rate of the mass loss reaches its maximum is 244 ◦C for
caffeine and 300 ◦C for theophylline. Most studies in the literature investigate the thermal
behavior for purine derivatives in an inert atmosphere (nitrogen, helium) and at various
heating rates: 3, 5 s, i 20 ◦C/min [4,14–16]. M. Wesolowski and P. Szynkaruk analyzed the
thermal behavior in ambient air atmosphere for samples of caffeine and theophylline with
a mass of 50, 100 and 200 mg at the following heating rates: 3, 5, 10 and 15 ◦C/min. They
established that the thermal behavior was influenced both by the mass of the samples in
the study and by the heating rate [17,18].
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Circioban D. et al. evaluated the thermal behavior in air for 5 mg of theophylline with
a heating rate of 10 ◦C/min and found, as in this study, a complete mass loss in a single
step between 217–322 ◦C, with the temperature at which the mass loss rate was maximum
being 319 ◦C [19]. With equipment similar to that used in this study, B. Rojek and M.
Wesolowski [20] evaluated theophylline thermal behavior in air with the following heating
rates: 2.5, 5, 10 and 20 ◦C/min and an approximately 10 mg sample. The results established
for the rate of 10 ◦C/min were very close to those obtained in this study, namely a complete
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mass loss for theophylline in a single step in the temperature range between 225–295 ◦C.
For caffeine, Wang et al. [2] reported the mass loss in air at a heating rate of 10 ◦C/min and
a single step in the temperature range 200–285 ◦C, but without specifying the amount of
sample used.

The lower thermal stability of caffeine compared to theophylline is also suggested by
molecular modeling with HyperChem software. If 12 caffeine and theophylline molecules
were considered and the Polak–Ribière optimization algorithm was used, stronger interac-
tions were found in the theophylline molecules than in the caffeine molecules. According
to the results obtained and represented in Figure 2, the organization of the 12 theophylline
molecules was more compact than in the caffeine molecules. The total energy obtained
for the theophylline molecules at a temperature of 430 K was 3,429,415.6 J/mol, and for
caffeine was 3,827,021.12 J/mol, suggesting that caffeine is less stable. The conformation
with the lowest energy is considered the most stable [21].
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3.2. Kinetic Study of the Sublimation of Purine Derivatives

In general, the sublimation process involves the following steps:

(1) The transfer of thermal energy in the solid;
(2) The breaking of intermolecular bonds in the crystal lattice, leading to the formation of

free molecules;
(3) Vapor transport to the surface and its entrainment.

The kinetics of sublimation can be controlled by the rate of any of these processes.
In the case of the sublimation process evaluated in this study, we consider that the de-
terminant rate is the second stage in which the breaking of the intermolecular bonds in
the crystalline network takes place [22]. Evaluation of the sublimation process by thermo-
gravimetric analysis under isothermal conditions involved the use of small amounts of
sample: 4.6–5.1 mg caffeine and 4.7–4.9 mg theophylline. Considering that small amounts
of sample were used, it can be assumed that heat transfer to the powder sample was fast
enough. The temperatures at which the thermogravimetric curves were recorded, under
constant temperature conditions, were selected by analyzing the thermal behavior of the
samples when the temperature increased at a 10 ◦C/min heating rate, as well as considering
the temperature ranges for which vapor pressure data for these compounds were available
in the literature.
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The time dependence of the change in the mass of sublimated caffeine and theophylline
(Figures 3 and 4) was linear at each temperature, which indicates that the sublimation
process follows a zero-order kinetics. The rate of sublimation, calculated on the basis of
thermogravimetric curves recorded in isothermal conditions, increased exponentially with
temperature, as seen in Figure 5.
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Graphically, representing ln(dm/dt) as a function of 1/T (Equation (3)), linear depen-
dencies were obtained, as can be seen in Figure 6. The activation energy was calculated
from the slope of the lines obtained, and the pre-exponential factor was obtained from the
intercept at the origin. The results obtained are presented in Table 2.
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Table 2. Kinetic parameters from the Arrhenius equation.

Substance Caffeine Theophylline

Ea, kJ/mol 108.439 123.820
lnA 24.956 25.686
r2 0.9681 0.9880

The kinetic study of the sublimation of caffeine and theophylline, carried out with
the help of thermogravimetric analysis in isothermal conditions, allowed the evaluation of
the kinetic parameters. The activation energy and the pre-exponential factor were higher
for theophylline compared to caffeine (Table 2). The rate of mass loss followed zero-order
kinetics. The sublimation rate of caffeine was several times higher compared to that of
theophylline. F.E. Soetaredjo et al. [5] carried out a kinetic study of (+)-catechin hydrate
sublimation using thermogravimetric analysis at a constant temperature. Through this
method, they determined the rate of sublimation (dm/dt) at various temperatures. From
the logarithmic form of the Arrhenius equation, they obtained for the activation energy
194.43 kJ/mol and the pre-exponential factor 54.238. No studies that provided information
on the sublimation kinetics of caffeine and theophylline were identified. Buzyurov et al.
recently used a fast-scanning calorimeter to determine the vapor pressure and sublimation
enthalpy for a series of compounds, including caffeine and theophylline. Experimental
determinations were made within the 131–211 ◦C temperature range for caffeine and
181–241 ◦C temperature range for theophylline. Sublimation enthalpy determined by this
experimental technique was 110 kJ/mol for caffeine and 130 kJ/mol for theophylline [23].

3.3. Evaluation of Global Mass Transfer Coefficients

In the gaseous entrainer, the vapor pressure for purine derivatives has a small value,
which at the limit can be considered zero. Table 3 shows the mass transfer potential values
as a function of temperature.

Knowing the sublimation rate expressed in kg/m2·s, calculated and shown in Figure 5,
the molecular mass of caffeine 194.19 g/mol, the molecular mass of theophylline 180.17 g/mol
and the mass transfer potential values shown in Table 3, the global mass transfer coefficients
KP expressed in mol/s·m2·Pa were calculated at various temperatures. The results obtained
are shown in Figure 7a,b. The overall mass transfer coefficients for caffeine were higher
than for theophylline. In the case of theophylline, a sharper increase in the global transfer
coefficients was observed at temperatures higher than 180 ◦C, while for caffeine the curve
showed an inflection point in the temperature range between 140–150 ◦C.
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Table 3. Mass transfer potential values at various temperatures.

Caffeine Theophylline

Temperatura, [◦C] ∆Pmed, [Pa] Temperatura, [◦C] ∆Pmed, [Pa]

130 6.374 170 2.887
140 13.599 180 6.368
150 27.990 190 13.578
160 55.724 200 28.036
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3.4. Establishing the Phenomenological Model

The values of the constants a, b, c and d for the phenomenological model (Equation (7)),
presented in Table 4, were established through successive tests until the sublimating mass
flow, expressed in kg/s, approached the value obtained experimentally (Figure 8).

Table 4. The values of coefficients a, b, c, d in the dimensionless Equation (7).

Sample Temperature (◦C)
Model Parameters

a b c d

Caffeine

130 49.5 1 0.66 0.33
140 119 1 0.66 0.33
150 240 1 0.66 0.33
160 482 1 0.66 0.33

Theophylline

170 29 1 0.66 0.33
180 53 1 0.66 0.33
190 114.6 1 0.66 0.33
200 222 1 0.66 0.33

The obtained dimensionless equations made possible the determination of the indi-
vidual mass transfer coefficients for the sublimation of caffeine at temperatures between
130 and 160 ◦C and between 170 and 200 ◦C for theophylline. According to the graphic
representation presented in Figure 8, there were greater deviations of the phenomenological
model compared to the experimental data at higher temperature values. For caffeine, the
deviation is 3.8% at 160 ◦C and is below 1.6% at lower temperatures. In the case of theo-
phylline, the deviation is 4.1% at 200 ◦C, and similarly, goes down at lower temperatures to
below 1.2 %. Mass transfer coefficients for caffeine and theophylline were determined by
Abdelaziz et al. [24] in their study of the sublimation process that used the fast-scanning
calorimetry (FSC) technique. The studies carried out by these researchers allowed the
experimental determination of the vapor pressure and the enthalpy of sublimation in a
temperature range between 442–538 K for theophylline and 395–410 K for caffeine. For
a temperature of 510K, the average sublimation rate reported by Abdelaziz et al. [24] for
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theophylline in the first 5 s after the start of the experiment was approximately 3 g/m2·s.
If we extrapolate the experimental results from our study for a temperature of 510 K, the
resulting sublimation rate is 3.67 g/m2·s. Also, the initial mass flow reported for theo-
phylline at 360 K by Abdelaziz et al. [24] was 1.7·10−11 kg/s, and in our study, at the lowest
temperature value at which experimental determinations were made, was 2·10−11 kg/s.
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4. Conclusions

The thermal stability of caffeine and theophylline was evaluated under dynamic
and isothermal conditions in air with a Discovery TGA 5500 (TA Instruments). Thermal
behavior in air at a heating rate of 10 ◦C/min occurred completely, in one step, within
the temperature range of 180–251 ◦C for caffeine and 234–305 ◦C for theophylline. The
time dependence of the mass change of sublimated caffeine and theophylline was linear
at constant temperature, indicating that the sublimation process follows zero-order ki-
netics. The rate of sublimation increased exponentially with temperature. This varied
between 0.06 × 10−5 and 6.83 × 10−5 kg/m2·s for caffeine and between 0.03 × 10−5 and
2.23 × 10−5 kg/m2·s for theophylline. The rate of sublimation was several times higher in
caffeine than in theophylline.

The kinetic study of the sublimation of caffeine and theophylline, carried out with the
help of thermogravimetric analysis in isothermal conditions, allowed the evaluation of the
kinetic parameters. The value of activation energy and pre-exponential factor were higher
for theophylline than for caffeine.

The global mass transfer coefficients varied between 53 × 10−10 and 631 × 10−10

(mol/s·m2·Pa) for caffeine and between 68 × 10−10 and 441 × 10−10 (mol/s·m2·Pa)
for theophylline.

The obtained dimensionless equations enabled the determination of individual mass
transfer coefficients for the sublimation of caffeine and theophylline. This research may
be extended in the future to evaluate mass transfer in the sublimation process of some
compounds with more complex structures. The chemical vapor deposition (CVD) technique
and its variants are extremely important from an economic point of view as they enable
the manufacture of nanomaterials, nanostructured films and composite coatings. Their
development is closely related to the study of the sublimation process and of the modeling
and optimization of the mass transfer process in sublimation.
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