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Abstract
Gene therapies have greatly changed the outlook in spinal muscular atrophy (SMA), and this disorder provides a rare oppor-
tunity to study longitudinal biomarker changes correlated with reduced disease burden and improved clinical outcomes. 
Recent work suggests clinical response to correlate with declining cerebrospinal fluid (CSF) levels of the neurodegenerative 
marker neurofilament light chain (NfL) in children receiving serial anti-sense oligonucleotide therapy. However, change in 
CSF NfL levels is no longer a practical biomarker as more children undergo single-dose gene replacement therapy. Here we 
leverage serial CSF samples (median of 4 per child) collected in 13 children with SMA undergoing anti-sense oligonucleo-
tide therapy to characterize the longitudinal profiles of NfL as well as inflammatory and neuronal proteins. In contrast to 
neurodegeneration in adults, we found NfL levels to first decrease following initiation of treatment but then increase upon 
further treatment and improved motor functions. We then examined additional CSF inflammatory and neuronal markers for 
linear association with motor function during SMA treatment. We identified longitudinal IL-8 levels to inversely correlate 
with motor functions determined by clinical examination (F(1, 47) = 12.903, p = 0.001) or electromyography in the abductor 
pollicis brevis muscle (p = 0.064). In keeping with this, lower baseline IL-8 levels were associated with better longitudinal 
outcomes, even though this difference diminished over 2 years in the younger group. We thus propose CSF IL-8 as a bio-
marker for baseline function and short-term treatment response in SMA, and a candidate biomarker for future treatment 
trials in other neurodegenerative disorders.
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Introduction

Spinal muscular atrophy (SMA) is a congenital neurodegen-
erative disorder which results in progressive loss of motor 
function and death. SMA is caused by mutations in the sur-
vival motor neuron (SMN1) gene which result in reduced 
SMN protein levels [1], and has been heralded as a success 
in molecular medicine with the introduction of gene modu-
lating or replacement therapy. The anti-sense oligonucleo-
tide nusinersen targets the exon splicing of a related SMN2 
gene to elevate levels of functional SMN protein [2], and is 
serially administered through intrathecal injections. On the 
other hand, SMN1-expressing adeno-associated virus 9 vec-
tor onasemnogene abeparvovec-xioi directly enhances SMN 
protein levels and is administered as a one-time intravenous 
administration [3]. Children treated with either therapy 
showed a range of motor outcomes, and it remains incom-
pletely understood which children would respond favorably 
to either or both therapies. Fluid biomarkers associated with 
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longer-term response to treatment, especially if linked to 
neuropathologic burden, may improve our understanding of 
variability in response to treatment, and inform the choice of 
repeated or one-time therapy. Increased uptake of the one-
time intravenous therapy, however, means fewer opportuni-
ties to assess brain biomarker profiles in SMA children.

SMN levels would be the ideal biomarker for target 
engagement, but no soluble form of the protein is reliably 
detected in the cerebrospinal fluid (CSF) or blood [3]. There 
is also a normal development-related reduction of spinal 
cord SMN in utero and during the first 3 months of life [4]. 
These findings diminish the prospect of developing SMN 
as a viable biomarker. Because nusinersen therapy requires 
serial intrathecal injections, its clinical use provides a unique 
opportunity to analyze serial CSF samples in children with 
SMA for biomarker discovery. Previously, treatment- 
associated temporal decline in CSF neurofilament light chain 
(NfL) levels at the group level was associated with improved 
motor function assessed by the Children’s Hospital of Phil-
adelphia Infant Test of Neuromuscular Disorders (CHOP 
INTEND) score [5]. This led to the proposal of CSF NfL as 
a marker of treatment response [6, 7]. However, older chil-
dren in that series showed attenuated improvement despite 
similar reduction in NfL levels, suggesting that NfL reduc-
tion may only confer prognostic information in younger chil-
dren or represent an epiphenomenon of treatment.

Other CSF proteins — including those implicated in 
inflammation and neuronal activity — have also been pro-
posed as candidate disease markers in adult spinal neuro-
degenerative disorders such as amyotrophic lateral sclero-
sis (ALS). These have not been systemically examined in 
SMA, and we hypothesized that CSF proteins involved in 
inflammation and neuronal activity may better correlate with 
individual response to SMN1 enhancing therapies than NfL 
[8–10]. Here we collected and analyzed 49 CSF samples 
from nine younger (≤ 24 months of age; median 12 months) 
and four older (> 24 months of age; median 137 months) 
children receiving nusinersen to identify proteins temporally 
associated with clinical outcomes as well as proteins whose 
baseline levels complement other measures in predicting 
response to therapy.

Materials and Methods

The study was conducted in accordance to the ethical stand-
ards and policies of Emory University, Children’s Healthcare 
of Atlanta, and US 45 CFR Part 46, and with the Helsinki 
Declaration of 1975 (as revised in 2000). It was approved 
by the Children’s Healthcare of Atlanta Institutional Review 
Board (#13-151), and written informed consents were 
obtained from the parents or legal guardians of all children. 
Ten newly diagnosed (nine younger and one older) and three 

older previously diagnosed study participants due to start 
on nusinersen therapy were consecutively recruited between 
March 2017 and January 2020 (Table 1). One younger child 
died due to respiratory failure during the study period, and 
autopsy was declined by the parents. One older child had a 
precipitous decline before improving (CHOP INTEND score 
drop from 47 to 19 requiring prolonged hospitalization, 
eventually recovering to a score of 28), and excluding this 
child from subsequent analyses gave similar findings except 
the baseline CHOP INTEND was higher in the younger 
group (p < 0.001). Because all three other older children and 
two younger children also experienced significant decline 
in CHOP INTEND scores (≥ 30% from previous visit; three 
transiently and two permanently), we included all children 
in this study.

Clinical measures including age (in months), weight (in 
kg), and CHOP INTEND scores were serially collected. 
Compound muscle action potential (CMAP) from two right 
hand muscles (abductor digiti minimi or ADM, and abductor 
pollicis brevis or APB) was also obtained during electro-
myography performed by a board-certified pediatric neuro-
muscular specialist (SV; [11, 12]). Before each intrathecal 
nusinersen infusion, 5 mL of CSF was collected into sterile 
polypropylene tubes, labeled, frozen, and stored at −80 °C 
within 60 min. CSF samples were then batch-transferred 
for analysis.

Table 1  Baseline characteristics of the study participants, with 
median values and range shown for continuous variables and group-
based differences evaluated by Fisher’s exact test or Mann–Whitney 
U tests

Characteristics Younger cohort Older cohort p

N 9 4
Female 5 (56%) 2 (50%) 1.000
Age at onset (months) 2.8 (1.1, 6.4) 5.3 (1.6, 17.2) 0.414
Feeding tube 4 (44%) 4 (100%) 0.105
BiPAP use 4 (44%) 4 (100%) 0.105
Treatment baseline
   Age (months) 12.1 (6.3, 21.0) 137 (44, 213) 0.003
   Weight (kg) 6.70 (3.6, 8.0) 15.5 (11.1, 28.3) 0.003
   CHOP INTEND 

scores
25 (14, 40) 11.5 (8, 47) 0.199

    CMAPAPB (mV) 0.70 (0.30, 1.30) 0.95 (0.10, 1.80) 1.000
   CMAPADM (mV) 0.30 (0.20, 0.80) 0.45 (0.10, 1.12) 0.940
CSF biomarkers
   NfL (ng/mL) 7.16 (3.37, 18.20) 2.10 (2.04, 3.18) 0.024
   Fractalkine (pg/mL) 34.3 (11.2, 64.3) 38.0 (33.0, 55.0) 0.381
   IL-8 (pg/mL) 17.3 (10.4, 43.6) 18.6 (16.8, 23.9) 0.548
   IP-10 (pg/mL) 217 (145, 468) 203 (124, 292) 0.714
   MCP-1 (pg/mL) 751 (445, 1007) 666 (460, 705) 0.714
   sAPPα (pg/mL) 108 (92, 215) 149 (98, 166) 0.714
   sAPPβ (pg/mL) 178 (111, 307) 233 (1, 267) 0.905



247CSF IL-8 Associated with Response to Gene Therapy in a Case Series of Spinal Muscular Atrophy  

1 3

For biomarkers, CSF samples were analyzed using an 
enzyme-linked immunosorbent assay (ELISA, 10-7002, 
Uman Diagnostics, Umeå, Sweden) for NfL. Four inflam-
matory biomarkers were analyzed in a Luminex 200 plat-
form (Milliplex MAP HCYTOMAG-60 K, MilliporeSigma, 
Burlington, MA) based on prior associations with SMA 
or related motor neuron disease. These include monocyte 
chemoattractant protein 1 (MCP-1) linked to multiple cell 
types but specifically astrocyte in SMA [10]; fractalkine/
CXCL3 related to microglial toxicity including in motor 
neuron disease and spinal cord injury [13–15]; interferon 
gamma-induced protein 10 or IP-10/CXCL-10 associated 
with  TH1 inflammatory response [16, 17]; and interleukin-8 
(IL-8/CXCL-8) implicated in  TH17 inflammatory pathways 
[18–22]. Soluble forms of the amyloid precursor protein 
sAPPα and sAPPβ were also measured in the Luminex 200 
platform (Immuno-Biological Laboratories, Minneapolis, 
MN) due to their implication in ALS [23, 24]. All assays 
were performed using manufacturers’ protocols with the 
exception that 100 mL of CSF was used in the inflammatory 
protein assays, and these assays have been used extensively 
in the Hu Lab to characterize neurodegenerative, inflamma-
tory, and other biological processes in aging, Alzheimer’s 
disease (AD), multiple sclerosis (MS), HIV-associated neu-
rocognitive dysfunctions, and COVID-19-related neuro-
logical dysfunctions with high accuracy and precision [22, 
25–28].

Statistical analyses were conducted using SPSS Version 
26.0 (Armonk, NY). Descriptive statistics for each variable 
were reported. Fisher’s exact tests (for categorical variables) 
or Mann–Whitney U tests (for continuous variables) were 
used to identify differences between the two subgroups. 
CSF biomarker levels were first  log10 transformed due to 
non-normal distribution, and then Z-transformed using the 
whole group’s distribution for comparison between different 
biomarkers’ variances.

Analysis of long-term clinical outcome was performed 
using linear mixed modeling to account for intra-subject 
correlation between adjacent timepoints. The main clinical 
outcome (CHOP INTEND score) was entered as the depend-
ent variable; age category (≤ 24 months, > 24 months), 
sex, corresponding baseline motor measures, and age cat-
egory × time were entered as fixed variables; and time was 
also entered as a random variable, with p < 0.01 to adjust 
for multiple comparisons. To discover if serial CSF analyte 
levels temporally correlated with CHOP INTEND, time- 
varying CSF analyte levels and their interaction terms 
with time were also added as fixed variables. False discov-
ery rate of 5% was used to adjust for multiple hypothesis 
testing across the seven analytes using the Benjamini– 
Hochberg method. For each CSF analyte, the lesser p-value 
from the analyte or analyte × time term was compared 
against the FDR-related thresholds.

Finally, to test if baseline levels of four analytes longitudi-
nally correlated with motor outcomes associated with subse-
quent motor outcomes in the younger cohort, sex, sex × time, 
baseline analyte, and baseline analyte × time were entered 
as fixed variables, and time was entered as fixed as well as 
random variables. Akaike information criterion (AIC) was 
used to select between different models.

Results

Compared to the older group, younger children with SMA 
had lower baseline weight (p < 0.003), higher baseline NfL 
levels  (log10-transformed for non-normal distribution at 
baseline, p = 0.024), and better motor outcomes by CHOP 
INTEND or EMG (Fig. 1; Supplementary Table 1). All 
9 children starting treatment under the age of 24 months 
had significant improvement (but one sudden death), 
while all children starting treatment after age 11 had poor 
response. One child starting treatment at 44 months of age 
had improvement in EMG similar to the younger children, 
but this child’s CHOP INTEND scores never exceeded 30. 
Because of divergent treatment outcomes between younger 
and older children, age grouping was introduced as a vari-
able in all subsequent analyses.

With nusinersen treatment, CSF NfL levels declined in 
younger and older children, but the initial decline in NfL 
levels was followed by an increase in eight patients (five 
younger and three older; median 19 months after treatment 
initiation, range 5.8–24 months). The longitudinal trajectory 
of NfL was best modeled by the equation   log 10 (N fL) =  log10
(NfLT=0) − 0.116 × log10(NfLT=0) × Time + 0.010 ×  Time2, 
with the initial rate of decline proportional to baseline NfL 
levels (e.g., higher baseline NfL levels had greater rates of 
decline) but the subsequent increase independent of baseline 
NfL levels or age group.

Because higher baseline CSF NfL levels — hypothesized 
to reflect neurodegeneration — paradoxically associated 
with better baseline CHOP INTEND scores and its later lev-
els rose with age, we sought to identify other CSF biomark-
ers correlated with disease severity and treatment response. 
Levels of MCP-1 (0.035/mo, 95% CI 0.004–0.066, p = 0.30), 
sAPPα (0.055/mo, 95% CI 0.016–0.099, p = 0.012), and 
sAPPβ (0.054/mo, 95% CI 0.034–0.075, p < 0.001) all 
declined over time independent of age and thus treat-
ment response. In contrast, levels of IL-8 (0.089/mo, 95%  
CI 0.008–0.171, p = 0.031) and IP-10 (0.068/mo, 95% 
CI 0.010–0.125, p = 0.023) declined only in the younger 
group with better treatment response. Fractalkine was 
the only analyte which increased over time (0.046/mo, 
0.017–0.075, p = 0.004). Examining time-dependent rela-
tionships between CSF analyte levels and clinical outcome  
measures (Supplementary Table 2) showed IL-8 (p < 0.001, 



248 S. Verma et al.

1 3

*

*

0 12 24 36
0

10

20

30

40

Time (months)

Weight  (lbs)

0 12 24 36
0.0

0.5

1.0

1.5

2.0

2.5

Time (months)

Log10 CMAPADM

0 12 24 36
0

20

40

60

80

Time (months)

CHOP INTEND

0 12 24 36
0

1

2

3

4

Time (months)

Log10 CMAPAPB

0 10 20 30 40
2.0

2.5

3.0

3.5

Log10 MCP-1

Time (months)

0 10 20 30 40
1.6

1.8

2.0

2.2

2.4

Log10 APPa

Time (months)
0 10 20 30 40

0

1

2

3

Log10 APPbw

Time (months)

0 10 20 30 40
0.0

0.5

1.0

1.5

2.0

2.5

Log10 Fractalkine

Time (months)
0 12 24 36

2

3

4

5

Time (months)

Log10 NfL

0 12 24 36
0.0

0.5

1.0

1.5

2.0

2.5

Time (months)

Log10 IL-8

0 12 24 36
1.8

2.0

2.2

2.4

2.6

2.8

3.0

Time (months)

Log10 IP-10

** **

young children

older children

Fig. 1  Longitudinal trends of clinical and fluid biomarkers in SMA 
children treated with nusinersen. Compared to older children (n = 4, 
dark blue), younger children (n = 9, light blue) had greater CHOP 
INTEND and  CMAPAPB over time (*p < 0.005), but not  CMAPADM 

and weight. In the CSF, levels of NfL, MCP-1, sAPPα, and sAPPβ 
declined in levels regardless of age, but levels of IL-8 and IP-10 only 
decreased in younger children (**p < 0.05)
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Fig. 2), MCP-1 (p = 0.012), and sAPPα (p = 0.028) to longi-
tudinally associate with CHOP INTEND scores independent 
of age grouping. IP-10 (p = 0.008) and IL-8 (p = 0.064) also 
correlated with longitudinal CMAP in the ADM and APB. 
Thus, the longitudinal linkage between IL-8 and independ-
ent clinical measures (global function and regional CMAP) 
supports this CSF protein as a candidate biomarker for SMA 
disease severity.

Even though IL-8 levels correlated with clinical outcomes 
over time, the need for serial CSF collection reduces its prac-
tical value. We thus examined if baseline demographic vari-
ables and biomarker levels (IL-8 and NfL) were associated 
with longitudinal clinical outcomes. Younger age at treat-
ment initiation was associated with greater improvement in 
CHOP INTEND (p < 0.001),  CMAPAPB (p < 0.001), and age- 
and sex-adjusted weight Z-score (p < 0.001, Table 2). Lower 
baseline IL-8 levels were additionally associated with better 
CHOP INTEND scores and  CMAPAPB regardless of treat-
ment initiation age, but the difference diminished over time 
for younger children compared to older children (Fig. 3). 
On the other hand, lower baseline NfL was associated with 
worse weight at baseline for both age groups, but associated 
with greater weight gain in the younger group only.

Discussion

Gene modulating and replacement therapies have revolu-
tionized the treatment of SMA. If most newly diagnosed 
SMA patients’ parents opt for one-time gene replacement 
therapy, only clinical measures and blood NfL levels would 
be available to forecast variability in outcomes including 
poor improvement seen in older children. Here we lever-
aged serially collected CSF samples from children with a 

wide range of baseline functions and clinical outcomes to 
show that NfL levels were paradoxically higher in children 
with better baseline functions and did not closely mirror 
clinical outcomes over time. We further identified IL-8 as 
a marker which tracked clinical response to treatment over 
time, and even its baseline levels were associated with short-
term outcomes of younger and older patients. These findings 
suggest CSF IL-8 as a more meaningful biomarker related to 
or downstream of neurodegeneration than NfL in SMA and 
potentially other neurological disorders.

Consistent with a recent report in 68 children, we found 
younger age at treatment initiation to associate with better 
treatment responses [29]. In contrast to the prior biomarker 

Fig. 2  Relationship between CSF IL-8 levels and CHOP INTEND 
scores. Values from all times in younger (light blue) and older (dark 
blue) children were plotted, and a single regression line better fits all 
data than one line for each age group

Table 2  Effects of baseline factors on subsequent clinical outcomes. 
Interaction terms are listed in order of F values for main effect, with 
interaction terms having the greatest F value listed first

B (95% CI) p

Outcome: CHOP INTEND
   Time (months) 0.090 (−0.189, 0.368) 0.521
   Younger age 10.76 (−0.60, 22.11) 0.061
   Female −0.338 (−7.194, 6.518) 0.917
   Baseline CHOP INTEND 0.536 (−0.116, 1.188) 0.095
   Baseline  Zlog10(IL-8) −5.396 (−13.662, 2.870) 0.176
   Baseline  Zlog10(NfL) −3.726 (−8.265, 0.812) 0.097
   Younger 

age ×  Zlog10(IL-8) × Time
0.767 (0.407, 1.126) < 0.001

   Older 
age ×  Zlog10(IL-8) × Time

−0.421 (−0.939, 0.095) 0.107

   Female × Younger age × Time 1.088 (0.689, 1.488) < 0.001
   Male × Younger age × Time 0.281 (−0.133, 0.696) 0.178
   Female × Older age × Time −0.108 (−0.537, 0.320) 0.614
   Male × Older age × Time Reference
Outcome: CMAPAPB

   Time (months) 0.049 (0.016, 0.083) 0.005
   Younger age 0.235 (−0.081, 0.551) 0.140
   Baseline  CMAPAPB 0.887 (0.589, 1.186) < 0.001
   Baseline  Zlog10(IL-8) 0.005 (−0.242, 0.251) 0.969
   Baseline  Zlog10(IL-8) × Time −0.067 (−0.097, −0.036) < 0.001
   Baseline  CMAPAPB × Time −0.117 (−0.182, −0.052) < 0.001
   Female × Younger age × Time 0.078 (0.033, 0.124) 0.001
   Male × Younger age × Time 0.109 (0.064, 0.154) < 0.001
   Female × Older age × Time 0.134 (0.032, 0.235) 0.011
   Male × Older age × Time Reference
Outcome: weight Z-score
   Time (months) 0.111 (0.062, 0.159) < 0.001
   Younger age −1.275 (−2.454, −0.096) 0.035
   Baseline Weight Z-score 1.180 (1.030, 1.330) < 0.001
   Baseline  Zlog10(NfL) 0.558 (−0.343, 1.460) 0.220
   Younger age × Time 0.114 (0.048, 0.180) < 0.001
   Older age × Time Reference
    Zlog10(NfL) × Time −0.076 (−0.126, −0.027) 0.003
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study, however, we did not find NfL decline to confer out-
come-specific information as NfL levels declined in both 
younger and older children despite the latter’s poor treat-
ment response. CSF NfL has been proposed as a marker for 
general neurodegeneration in multiple sclerosis, Alzheimer’s 
disease, and other neurological disorders [30]. It was first 
modestly correlated with disease progression in MS [31], 
and its popularity in neurodegenerative diseases is fueled 
in part by a simple ELISA with readily detectable levels. 
Despite its promise as a marker for neuronal injury, CSF NfL 
levels only modestly differed between older adults with AD 
and normal cognition and serial sampling showed its levels 
to decrease — vs. increase like Tau or Aβ40 — over time 
in older adults [32, 33]. NfL’s time-dependent decrease in 
aging and Alzheimer’s disease is consistent with our obser-
vation of its development-associated increase and in support 
of NfL as a marker of neuronal integrity rather than neurode-
generation. We are aware of only one study from the North-
east ALS Consortium (NEALS) to have examined serial 
CSF NfL levels in ALS which found no appreciable annual 
change despite markedly elevated baseline levels [34]. 
This should not be surprising due to effects on CSF protein 
levels from cellular vulnerability to disease, proximity to 

perivascular space, and bulk flow dynamics beyond neurode-
generation. We thus add to prior caution that cross-sectional 
CSF NfL levels should be interpreted with care.

A number of CSF proteins analyzed here have each been 
previously suggested as biomarkers for ALS severity and 
progression [35–41]. In the same NEALS study which seri-
ally measured NfL levels in ALS [34], only two (MCP-1 and 
IL-18) out of sixty-five CSF cytokines evaluated were asso-
ciated with rates of disease progression. MCP-1 was found 
in univariate analyses to associate with clinical outcomes in 
our study, but its effect gave way to IL-8 and basic demo-
graphic variables in multivariate analyses. IL-8 did not dis-
tinguish between ALS and non-ALS controls in the NEALS 
study, but two studies have found lower IL-8 to associate 
with better function in ALS [35, 36]. Aside from technical 
challenges in reliably measuring CSF cytokines, this dis-
crepancy can be potentially explained by the fact that ALS 
and SMA are fundamentally different diseases. Whereas 
both are thought to represent motor neuron disorders, neu-
ronal suppression of mutant ALS-causing gene products led 
to better function and survival than astrocytic suppression in 
animal models [42]. In contrast, greater functional recovery 
was noted in animal models of SMA when SMN is restored 
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in astrocytes [43] than in motor neuron [44, 45]. It is thus 
possible that the differential impact of these two disorders 
on neurons and glia contribute to the distinct relationships 
between CSF IL-8 levels and clinical outcomes.

IL-8 is best known as a potent chemoattractant of neu-
trophils and is expressed at low levels by astrocytes, micro-
glia, and neurons in disease-free brains [46]. IL-8 acts via 
its receptors CXCR1 and CXCR2, with the former highly 
expressed by primary human microglia and astrocytes while 
the latter by neurons in the brain and spinal cord (includ-
ing elevated neuronal expression in ALS [47, 48]. CSF 
IL-8 levels are acutely increased in bacterial meningitis 
[20], traumatic brain/spinal cord injury [49, 50], and more 
recently neurological complications of COVID-19 [28, 51]. 
Among chronic disorders, CSF IL-8 levels are elevated in 
Alzheimer’s disease [25], multiple sclerosis [25, 52], and 
neuromyelitis optica [52], but reduced in HIV-associated 
neurocognitive dysfunction [22]. Even though astrocytes 
and microglia represent potential cellular sources underly-
ing these changes [20, 53], lower IL-8 levels may variably 
represent decreased production (e.g., astrocytes returning 
to a basal state), increased uptake via CXCR1/2, or another 
pathologic process. For example, SMN depletion in mice 
resulted in retained introns and skipped exons, including 
genes of the IL-8 pathway [54]. In familial ALS associated 
with C9orf72 hexanucleotide repeat expansion, stem cell-
derived neurons demonstrate dysregulated cell cycle re-entry 
accompanied by increased IL-8 mRNA and protein levels 
[55]. In trauma, CSF IL-8 levels are influenced by blood 
brain barrier permeability [56]. In keeping with a potentially 
complex origin of IL-8 alteration, astrocytes also secrete 
MCP-1 (when non-stimulated) and IP-10 (when stimulated) 
whose levels did not correlate well with prognosis. At the 
same time, because a measured CSF biomarker level is influ-
enced by multiple temporal and spatial processes, it is not 
straightforward to explain why one astrocytic protein better 
correlates with a clinical phenotype than another astrocytic 
protein. Nevertheless, the prognostic value of IL-8 reported 
here reinforces the need for further imaging- or single cell/
nuclei-based analysis of astrocytic and microglial function 
in SMA, especially for the older children who showed per-
sistently elevated IL-8 and poor clinical response to gene 
therapy.

Even though the number of children included here is 
comparable with previous longitudinal SMA biomarker 
studies [5], our sample size in this relatively rare disor-
der was still limited to permit broad generalization. CSF 
IL-8 level — at least at time of treatment initiation if not 
longitudinally — will therefore need to be measured in 
larger numbers of SMA children to validate it as a prog-
nostic biomarker. There was also no biopsy-based or post-
mortem neuropathologic analysis to determine the cellular 
(e.g., astrocytic vs. non-astrocytic) origin of CSF IL-8, 

making it difficult to speculate whether modulating IL-8 
levels alongside SMN gene therapy would be beneficial. 
With these caveats in mind, CSF IL-8 and functionally 
related proteins should be further interrogated in children 
on intrathecal nusinersen for their clinical and mechanistic 
roles, and baseline CSF levels should be considered in 
children undergoing one-time intravenous gene replace-
ment therapies.

Conclusions

In children with SMA undergoing gene modulating ther-
apy, CSF IL-8 levels longitudinally tracked response to 
therapy according to clinical assessment and electromyo-
graphic measures. In contrast, CSF NfL levels go through 
a decay followed by an increase independent of clinical 
response. Baseline CSF IL-8 levels should therefore be 
prospectively tested — among other fluid and physiologic 
markers — for stratifying children into better and worse 
responders when specialty services (e.g., pediatric EMG) 
are not available, as well as a pharmacodynamic biomarker 
in treatment trials of other neurodegenerative disorders 
including ALS.
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