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Abstract Single-cell RNA  sequencing  (scRNA-seq)
technology has become an effective tool for high-throughout
transcriptomic study, which circumvents the averaging artifacts
corresponding to bulk RNA-seq technology, yielding new
perspectives on the cellular diversity of potential superficially
homogeneous populations. Although various sequencing
techniques have decreased the amplification bias and improved
capture efficiency caused by the low amount of starting
material, the technical noise and biological variation are
inevitably introduced into experimental process, resulting in
high dropout events, which greatly hinder the downstream
analysis. Considering the bimodal expression pattern and the
right-skewed characteristic existed in normalized scRNA-seq
data, we propose a customized autoencoder based on a two-
part-generalized-gamma distribution (AE-TPGG) for scRNA-
seq data analysis, which takes mixed discrete-continuous
random variables of scRNA-seq data into account using a two-
part model and utilizes the generalized gamma (GG)
distribution, for fitting the positive and right-skewed continuous
data. The adopted autoencoder enables AE-TPGG to captures
the inherent relationship between genes. In addition to the
ability of achieving low-dimensional representation, the AE-
TPGG model also provides a denoised imputation according to
statistical characteristic of gene expression. Results on real
datasets demonstrate that our proposed model is competitive to
current imputation methods and ameliorates a diverse set of
typical scRNA-seq data analyses.

Keywords scRNA-seq, autoencoder, TPGG, data imputa-
tion, dimensionality reduction

1 Introduction

Single-cell RNA sequencing (scRNA-seq) has recently rung in
rapid innovation with the emergence of various technologies,
leading to high throughput and facilitating dissection of
heterogeneity in cell populations [1]. In terms of technical
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process, scRNA-seq involves reverse transcription and
preparation of a cDNA library followed by high-throughput
DNA sequencing, which is fundamentally similar to

traditional bulk RNA-seq methods. The most significant
difference is that it allows the dissection of gene expression at
single-cell resolution instead of one single library from the
RNA pool of many cells. One study that adopts scRNA-seq to
study gene expression in human colorectal tumours and
matched normal mucosa identifies TGFB1 to be the most
upregulated differentially expressed regulatory gene in cancer-
associated fibroblasts (CAFs) [2]. Under the COVID-19
pandemic sweeping the world, high-throughput single-cell
RNA and VDJ sequencing of antigen-enriched B cells from 60
convalescent patients are utilized to rapidly recognize the
SARS-CoV-2-neutralizing antibodies [3]. However, duo to the
low amount of starting mRNA content, scRNA-seq
technologies suffer from many sources of significant technical
noise, the most prominent of which is the dropout events
caused by inefficient mRNA capture [4—6]. Therefore, the
data imputation is conducive to reveal the expression pattern
of the original biological signal submerged by the noise.

The imputation methods of scRNA-seq data have advanced
accompanied by the emergence of issues [7—10]. However,
most of these methods are based on the correlation structure of
single-cell expression profile to impute missing values by
utilizing information on similarities between cells and/or
genes, which may fail to account for the complexity and
nonlinearity in the data. Deep-learning methods learn from
multiple levels of representation by composing simple but
non-linear modules that each transforms the representation at
one level into a representation at a higher abstract level [11].
Autoencoders, as a kind of artificial neural networks, are an
unsupervised learning paradigm, which can learn the effective
low dimensional representation of data, generally by
minimizing the reconstructed error between the original input
and decoded output [12]. The universal approximation
theorem guarantees that the forward neural network with at
least one hidden layer and enough neurons can approximate
any function with any accuracy [13], which means that the
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autoencoders can realize almost perfect reconstruction of the
input. In addition, autoencoders can extract meaningful
features of data by applying different regularities to remove
the random noise or redundant information inside the data. As
deep networks produce better compression than shallow or
linear networks [14], the autoencoders have been used in the
field of life sciences to enhance the biological information
mining [15,16]. Therefore, developing an autoencoder to
account for the characteristic of the scRNA-seq data is the
focus of this work.

As an important step of data preprocessing, normalization
can effectively alleviate a series of biological and technical
variations during data generation [17]. It is well known that
compared with the traditional transcriptome sequencing
technology, the preparation of single-cell transcriptome data
library requires a higher level of polymerase chain reaction
(PCR) amplification, and the bias is more serious with the
increase of amplification times. This bias will result in a series
of variations including those across cells, such as library size
[18], or those within-cell, for example, guanine-cytosine (GC)
content [19,20], gene sequence length, or unexpected variation
introduced by batch effect. Thus, normalization is a critical
step in the analysis pipeline to adjust for unexpected biological
and technical effects that can mask the signal of interest [21].
There are many methods of data normalization for scRNA-seq
data, such as Reads Per Million (RPM), which standardizes
the total number of reads between cells [21]. In addition,
Reads Per Kilobase Million (RPKM) [18] and Transcripts Per
Million (TPM) [22] are also the common normalization
strategies for gene expression analysis. After normalization,
the original count data changes from discrete data to semi-
continuous data. A large number of zero expression and
positive expression present a characteristic bimodal expression
pattern. In addition, we find through the data analysis in
Section 1 that the continuous data has a typical right-skewed
characteristic, which is still under insufficient exploration for
current imputation methods.

In this work, we propose AE-TPGG, a novel autoencoder-
based model combined with the Two-Part-Generalized-
Gamma (TPGG) distribution accounting for semi-continuity
of normalized scRNA-seq data. The motivation of the
selection of TPGG derives from the two statistical features
presented by the normalized data: the bimodal expression
pattern and the right-skewed characteristic of positive
expression. The bimodal expression pattern has two basic
statistical features of the observed x: 1) x; >0, and 2) x; =0 is
observed often enough that there are absorbing substantive
and statistical properties for special consideration [23]. Owing
to the mass point at zero, a single model for such data may be
undesirable. The two-part model considers the mass of zeros
by employing the Bernoulli distribution to fit for the
probability of observing a positive-versus-zero outcome. For
the right-skewed characteristic of positive expression, a
flexible distribution in statistical literature, i.c., the generalized
gamma (GG) distribution, can adaptively perform the model
selection for two alternative right-skewed distributions of
gamma and lognormal [24]. In the training of the autoencoder,
we adopt the negative log-likelihood of TPGG rather than the

most commonly used mean squared error (MSE) as the loss to
inference gene-specific distribution parameters. Furthermore,
the connectivity of the neural network naturally accounts for
the inter-dependent relationships between genes that are not
considered in the traditional maximum likelihood estimation.

Our contribution in this work is threefold: (1) We introduce
a TPGG distribution for modeling the gene expression that
accounts for the bimodal expression mode of the normalized
scRNA-seq data and achieves adaptive model selection of
gamma and lognormal distributions for the right-skewed
distribution of positive expression. (2) The individualized
autoencoder based on TPGG, namely AE-TPGG, utilizes loss
of gene-specific distribution to substitute for conventional
MSE loss. Not only is the low dimensional representation of
cells obtained, but the parameters of distribution can be
inferred, leading to data imputation according to first order
origin moment of TPGG distribution. (3) Empirical analyses
using real datasets demonstrate that AE-TPGG improves
various analyses of scRNA-seq data. Specially, compared with
popular methods of scRNA-seq data imputation, our method
obtains competitive advantages in many metrics.

2 Related work

Considering the distribution characteristic of scRNA-seq data
has always been the key to model gene expression. Different
from the traditional bulk RNA-seq data, the gene expression
level of single cell shows a bimodal expression pattern.
Therefore, the traditional over-dispersed negative-binomial
(NB) distribution that is commonly used in bulk-cell RNA-
sequencing is unsuitable for modeling scRNA-seq data.
Davide et. al. assumed that the count data follows zero-
inflated negative binomial model that takes zero inflation,
over-dispersion, and the discrete nature of the count data into
account [25]. For the semi-continuity of the normalized
scRNA-seq data, a two-part generalized regression model was
developed to fit scRNA-seq data by Finak et. al. [5], which
used logistic regression models for discrete variables and a
Gaussian linear model for continuous variables. In addition to
the bimodal expression mode of scRNA-seq data, we further
observe that the positive expression presents a typical right-
skewed characteristic (see detailed data analysis in Section 1),
which is still under-explored for modeling gene expression.

In addition, due to high dropout in scRNA-seq data, a series
of downstream analyses based on the gene expression will be
affected, which may lead to the concealment of internal
biological signals. Thus, the model-based imputation methods
can correct the false zero expression and recover the original
gene expression profile. MAGIC is a method based on
manifold assumption, which deemed that the original high
dimensional cell phenotype lies on a low dimensional
manifold embedded within the measurement space. It utilized
nearest neighbor graph representing manifold and then learned
the underlying manifold via diffusion maps, restoring cellular
phenotype back to the manifold and in the process realizing
data imputation [9]. SAVER is a Bayesian-based approach to
recover the true expression level of each gene in each cell,
which modeled the gene count data and estimated the true
expression as well as a posterior distribution quantifying the
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uncertainty [8]. Both MAGIC and SAVER would potentially
involve new biases into imputed data, since all gene
expression levels were modified including those unaffected by
dropouts. sclmpute held that some of missing values may
reflect true biological non-expression, which used a mixture
model to learn the probability of each gen’s dropout, and then
imputed those dropout values with high probability in a cell by
sharing information of other similar cells [7]. To our
knowledge, DCA is the first imputation method combining
deep learning with gene-specific distribution, which adopted
the count distribution, namely negative binomial distribution
with zero-inflation (ZINB), to capture gene-gene dependencies
[16]. Despite these methods have achieved improvements in
recovering potential biological information using imputation,
they neglect the statistics characteristic of normalized scRNA-
seq data for eliminating biological and technical biases.

3 Model selection

3.1 The analysis of scRNA-seq data

To elucidate the distribution characteristic of single cell
dataset, we conduct data analysis on a publicly available real
dataset from Klein et. al. For carrying out large-scale single-
cell sequencing, they developed the inDrop platform which
encapsulates cells into droplets with lysis buffer, reverse
transcription (RT) reagents, and barcoded ologonu cleotide
primers [26]. In addition, this platform can barcode the RNA
from thousands of individual cells. They used this platform to
study mouse embryonic stem cells, revealing in detail the
population structure and the heterogeneous onset of
differentiation after leukemia inhibitory factor (LIF)
withdrawal. We use logarithmic normalization to preprocess
the gene expression profile that consists of 2,717 cells and
24,175 genes, and filter genes that are unexpressed fewer than
10 cells form the original data, obtaining a total of 23,840
genes. As the typical feature of scRNA-seq data, the dropout
events can be intuitively displayed by the histogram of the
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gene dropout ratio across cells in Fig. 1, whereby the number
of genes with dropout ratio not less than 0.5 is 19,512, which
indicates that a large number of genes are only expressed in a
small number of cells.

Furthermore, we randomly select four genes to present the
distribution characteristic of individual genes as shown in
Fig. 2. It can be noted that the overall expression distribution
of each gene has bimodal expression pattern, and the positive
expression possesses a right-skewed characteristic. In order to
further quantify the statistical characteristic, we approximate
the skewness value of the population described below:

e

where x4 and o are the mean and standard deviation of the
corresponding distribution, respectively. According to the
moment estimator of the sample, the skewness values of the
positive expression of the four genes are 1.49, 1.69, 1.61, and
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Fig. 1 Histogram of dropout ratio of the 23,840 genes across the 2,717 cells
in Klein dataset
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1.96, respectively, which demonstrates the expression
distribution of these genes are right-skewed. We further
calculate the proportion of right deviation for the 23,840
genes, and the results show that the skewness values of the
99% genes are positive.

From the above analysis, we conclude that there are two
typical characteristics of gene expression existed in the
normalized scRNA-seq data. One is the bimodal expression
mode as a whole, and the another is the right-skewness of
positive expression. Both characteristics should be accounted
in the modeling of scRNA-seq data in order to improve the
accuracy of the downstream analysis.

3.2 The modeling of gene expression of normalized scRNA-
seq data

Based on the bimodal expression mode of normalized scCRNA-
seq data, the two-part model is a reasonable choice, which
generates zero data and positive data with two generating
processes. The probability density of the two-part model is as
follows:

Sfre(x|m,0) = mlj=01 + (1 = )01 fp(x | 0), )
where 7 € [0,1] is a parameter of Bernoulli distribution to fit
for the probability of observing a positive-versus-zero
expression and 7 is the indicator function. If the condition in
the subscript is satisfied, the value of the indicator function
is 1.

For the skewed characteristic of positive expression, we
adopt gamma and log-normal distributions as two alternatives
to fit such random variables and the corresponding PDFs are
as follows, respectively:

fox|a,p) = rﬁ( % =l x>0,0>08>0, (3)
1 _ (nx—p?
Jin(xlp, o) = Nor e 27 . x>0,0>0,ucR. (4
TXO

To facilitate model comparison, we take the following
assumptions for the two alternatives models, the two-part
gamma model (TPGM) and the two-part log-normal model
(TPLNM), respectively:

~ freem (m,a.,B),
X2 ~ freinm (mo,p1,0).
The distributions of the two models are as follows:

)
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(7

Assuming the total number of cells is n, the log-likelihood

functions of TPGM and TPLNM are respectively denoted as:

log (freom(xr | 71,0,8)) = log (T, freom (¥ | 71,e.8))
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= nglogmy + (n—ngp)log(1 —m2) + (n —ng) log( \/2_710')
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) 1
—Z log i + nx20-2ﬂ> ’

©
where ng represents the number of dropouts of a specific gene,
x] denotes the mean of positive expression values, and
log(x1) is the mean of logarithmic of positive expression
values. Then the solution of parameters in Eqgs. (8) and (9) can
be achieved by applying the maximum likelihood estimation
(MLE).
For TPGM, the closed-form solutions of m; and B are
respectively:

—~ gy =«

= ,3—)_6—1. (10)
The parameter @ in Eq. (8) is updated iteratively using
Newton’s non-quadratic variation method [27]. The update
equation of « is described as follows:

1 _ l " log (a;) — ¥ (a;) +1og x; —log x|

1
o} (L -y (@)
where /() is the first derivative of the digamma function y(-).
The above calculation is repeated until the convergence of «
or a maximum number of iterations is reached.

For TPLNM, the closed-form solutions of mp, u, and o are
respectively:

. ()
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In order to investigate the rationality of the two alternatives,
the two-sample Kolmogorov-Smirnov (KS) test is applied to
the total 23,840 genes, and the results show that about 95%
and 92% genes are well fitted by TPGM and TPLNM,
respectively (p-value > 5%), which indicates that both of the
models can fit the gene expression well. Specifically, the Cpe
and Hsd11bl genes are randomly selected for displaying the
goodness-of-fit of the two models and Table 1 describes the
empirical statistical information for the expression of both
genes. According to the MLE solutions of the two models, the
statistics including estimated parameters, mean, variance,
skewness, log-likelihood, Akaike Information Criterion (AIC)
and p-value of the KS tests, are summarized in Table 2. It is
observed that the first-order and second-order statistics
obtained by the two models are approximately consistent with
the corresponding empirical statistics of the two genes.
Though the KS test results show that both genes are well
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Table 1 Relevant expression statistics of the expression of Cpe and Hsd11b1 in Klein dataset

Gene Min Max Mean Variance Zero ratio Skewness
Cpe 0 3.51 0.62 0.56 0.53 0.57
Hsd11b1 0 2.56 0.17 0.15 0.81 1.53
Table 2 Results obtained from the MLE of TPGM and TPLNM for the expression level of Cpe and Hsd11b1 in Klein dataset
Two-part models Gene MLE estimation mean var Skewness KS-test Log-likelihood AIC
w1 =0.53
Cpe @ =640 0.62 0.56 0.79 0.97 —2787.02 5580.04
B=486
TPGM —
7 =0.81
Hsd11bl a=7.31 0.17 0.14 0.74 0.80 —1460.48 2936.96
B=8.29
7 =0.53
Cpe w=0.20 0.62 0.59 1.36 0.25 —2803.16 5612.31
TPLNM =041
m =0.81
Hsdl1bl uw=-020 0.17 0.14 1.19 1.00 —1442.60 2891.20
o =0.37
modeled by the two models, the values of AIC indicate that 4.1 TPGG distribution

Cpe tends to select TPGM and Hsd11bl favors TPLNM. To
intuitively display the goodness-of-fit of the two models, the
fitting curves of the two distributions corresponding to the two
genes are shown in Fig. 3.

In addition, we randomly select five batches of genes with
two hundred genes per batch from the 23,840 genes, and
calculate the percentage of different model selections
according to the AIC values. The results shown in Fig. 4
indicates that TPLNM fits more genes than TPGM.

The analysis confirms that the two-part model with the two
right-skewed distributions can capture the bimodal expression
mode of normalized scRNA-seq data. Therefore, gamma and
lognormal can be used as alternative models to fit positive
right-skewed expression.

4 Autoencoder based on a two-part-
generalized-gamma distribution

In this section, we first introduce Two-Part-Generalized-
Gamma (TPGQG) distribution preparing for building AE-TPGG
and then give a detailed description of the personalized
autoencoder, AE-TPGG, for scRNA-seq data analysis.

In Section 2, we have testified that TPGM and TPLNM can be
used as two alternatives for modeling gene expression of
scRNA-seq data. However, model selection is a necessary step
in order to obtain an appropriate model for each gene, which
brings the extra computational cost, especially for large-scale
datasets. To achieve adaptive model selection, we select
TPGG model for fitting gene expression, making use of the
advantages of its powerful fitting ability, which flexibly
selects appropriate distribution by adjusting parameters.
Therefore, we assume gene expression follows TPGG
distribution that consists of two components: a point mass at
zero that captures the high dropout events and a generalized-
gamma distribution modeling  positive  right-skewed
expression. The TPGG distribution is parameterized with
shape and scale parameters of the generalized gamma
distribution (@, B, and ) and n that is the parameter of
Bernoulli distribution fitting for the probability of a positive-
versus-zero outcome, denoted as:

frreo (X, ., B,y) =rlix=01 + (1 = )] x>01 /66 (x|, B,7),

Cpe Hsdl1bl

7\ —— Gamma pdf = Gamma pdf
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Fig. 3 The sample distributions and estimated gamma distributions of the positive expression values of Cpe and Hsd11b1 in Klein dataset
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y
@) oy
where 7€[0,1], >0, 8>0, and y>0. I'(/) is a gamma
function. As an appealing feature, TPGG is flexible in that it
encompasses several well-known subfamilies. For instance,
TPGG becomes TPGM in case of y =1 and TPLNM is also
obtained as a limiting case when B — oco. Therefore, the
proposed model can adaptively select two alternative models
by adjusting its own parameters to fit the scRNA-seq data
better.

@

(14)

Jec(xla,B,y) =

4.2 AE-TPGG architecture

In addition to the distribution characteristic modeled by
TPGG, AE-TPGG also accounts for the intrinsic relationship
between genes. Under the assumption that gene expression
follows the TPGG distribution, we use the autoencoder to
estimate the four parameters of the distribution conditioned on
each cell data for each gene. Thus, unlike traditional

Input x

/ﬂ

TPGG (x|, a, 8, 7)

autoencoder where one input corresponds to one output,
dropout(rr), shape(e,) and scale(y) parameters are set as the
decoder outputs. Each atomic unit consisting of the four
outputs corresponds to the parameters of the TPGG
distribution for a single gene, given as «, 8, y, and «.
According to this design, the input layer and four output layers
corresponding to these parameters of single cell are of the
same size. Furthermore, unlike regular autoencoders using
MSE as loss, we adopt the form of the likelihood function
associating the four outputs representing the four parameters
with the original input of each gene, to optimize the model
parameters. Meanwhile, low dimensional representation can
be obtained by the encoder in the process of maximizing
likelihood function and this embedded representation reflects
the inherent characteristic of expression data for each cell. The
architecture of AE-TPGG is depicted in Fig. 5 and the rules of
forward propagation are given below:

H=0cH_1W_), (=1,...,D-1),
II = sigmoid(Hp-1Wp,),
A =softplus(Hp-1Wp,),
B= softplus(HD_lWDﬁ),

R = softplus(Hp-1Wp,). (15)

The first line expression in Eq. (15) describes the forward
propagation process of the model before decoding the outputs,
where D—1 is the index of the penultimate layer of the
network. Hy represents an mxn input matrix X that is the
normalized expression profile, where m and n correspond to
the number of cells and genes, respectively. The outputs of the
model are four inferred parameter matrices, i.e., T, A, B, and
R, and each size of them is consistent with that of the input
expression profile X. o(-) denotes the activation function
acting on each element of the data matrix, such as

ReLU(x) = max(0,x) or sigmoid(x) = 1 The remaining

_x'
expressions are multiple decoded outputs, where IT,A, B, and
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Fig.5 The framework of the proposed AE-TPGG. First, the encoder module of AE-TPGG automatically extracts a high-level compressed
representation of the gene expression profile based on the multiple full connection layers. Subsequently, the decoder component of AE-TPGG
derives the parameters @, 8, y and 7 to acquire the imputation output achieved by the expectation calculation of each gene expression level. The
input is associated with the output by optimizing the negative log-likelihood of the TPGG shown at the top of the diagram
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R are the matrix representations corresponding to the
parameters of TPGG model for all genes. We apply distinct
types of activation functions to the decoding output layers
according to the feasible range of the parameters of TPGG
distribution. For shape and scale parameters, the values are
positive and thus the corresponding decoder outputs are
transformed into positive value using softplus function, which
is softplus(x) =log(1 +e*). The values of T are limited to the
range between zero and one, hence the sigmoid function is a
suitable choice to impose the conversion on this decoder layer.
The symbols W with different subscripts correspond to the
connection weight matrix between front and back layers.

4.3 AE-TPGG loss

Here, we treat the negative log-likelihood of the TPGG as
loss, effectively connecting the input and output. Meanwhile,
an adjustable regularization term is added to prevent the
influence of static noise on the optimization objective and the
irrelevant components of learnable parameters. The loss of
AE-TPGG is represented as:

J(Wis)) = —log(L1pcc(X[ILA,B,R)) + A Z W2
te{S'}
m n
= —log|[ [[ [TPGGxijimij. v iy vip |+ A 3" Wil
i=1 j=1 1€(S}
m n

== > > 10g(TPGG (xijlijijsBijryvig) + A ) | IWAIE,

1€(S)
(16)
where {S} denotes {0,...,D-2,D,,D,,Dg,D,}. Here, x;;
represents the expression level of gene i on cell j. The A is a
hyperparameter which balances the loss of negative
logarithmic likelihood of TPGG and weight penalty terms, and
[|/|r denotes the Frobenius norm.

i=1 j=1

4.4 Imputation of scRNA-seq data
The imputation value is generated with the expectation of the
estimated TPGG distribution, which is defined below:

E[x;j] = (1 =7;;)Elxijlxi; > 0]
B
I“(Eij)

where 7;;, @;j, Bi j» and ;; are the estimated parameters of
each gene from the AE-TPGG network.

(a7

=(1-7;j)

4.5 Implementation

We utilize Keras [28] and its TensorFlow [29] backend to
implement our model. RMSProp method is adopted for the
optimization with initial learning rate, and the learning rate is
reduced by multiplying 0.1 if the validation loss does not
change with a fixed number of epochs. We adopt the dropout
technology to prevent the model from over-fitting. For the size
of the hidden layers, the bottleneck layer has 32 neurons and
the number of neurons for other hidden layers are set to 64 for
default settings of three hidden layers. Meanwhile, for the sake
of flexibility, several different network structures are optional

AE-TPGG: a novel autoencoder for single-cell RNA-seq data analysis 7

according to the size and complexity of datasets. The
implementation of AE-TPGG details are summarized in
Algorithm 1. The source code is available at
Github.com/PUGEA/AE-TPGG website.

Algorithm 1 The training procedure for AE-TPGG.
Require: The normalized expression profile of scRNA-seq
data: X; the number of hidden layers and the neuron
nodes of each layer: (hy, hy, h3); initial learning rate: a;;
the parameter for regularization term: A; mini-batch size:
m; training iterations: 7; and the ratio of validation set: r;
Ensure: Low dimensional representation and imputation
outputs: H and X ;
1: Initialization Wy using uniform distribution or truncated
normal distribution sampling;
2: foreacht € [1,1;] do
@ for each 11 € [1, rnl'ample,size/nminibatch,size.l] do
4 Do forward propagation to obtain parameters of
TPGG distribution according to Eq. (15);

5 for each x;; do

6: if Xij = 0 then

7: log_likelihood_value = logmy;

8 else

9 log_likelihood_value = log(1 —;j)+
10: logyij + (Bijyij — Dlogxij —log(T(B;))
11: —,B;ﬁ,-,log@ij — (%)7’1;
12: end if
13: end for

14: Sum the log likelihood of minibatch cells
15: Jminibatch’
16: Calculate the loss of regularization term J,;
17: Update the network parameters with gradient by
18: (=T minivatch + J1);

19: end for

20: end for

21: Do forward propagation to obtain H;
22: Calculate X according to Eq. (17);
23: return H, Y;

5 Experiments results

We demonstrate the performance of the proposed method on
several biological problems involving real scRNA-seq
datasets.

5.1 Improvement in capturing cell population structure in
real data using imputation data

It is well known that cell heterogeneity is the basic feature of
organisms, so the recognition of cell subtypes is an important
task of single cell data analysis. In this section, we study the
influence of the imputation data obtained from our proposed
method on the recognition of phenotypic information of real
single cell data and compare with other mainstream methods.

5.1.1 Dataset description and experimental setup

We perform the validation of AE-TPGG on four publicly
available scRNA-seq datasets with different cell numbers. The
Klein dataset described in Section 3.1 is also used here, and
the other three are described below:

e Deng dataset This dataset is derived from the single
cell RNA sequencing of preimplantation cells of mouse
embryos in mixed background to study the expression
of alleles [30]. It is found that a large number of
autosomal genes have monoallelic expression, and the
expression of two alleles occurs independently. The
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expression of single allele is random because of the

great difference in the embryonic cells of close

relatives. The results indicate that abundant random
monoallelic expression is emerged from independent
and stochastic allelic transcription in mammalian cells.

They adopt vivo F1 embryos to isolate single cells, and

Smart-seq protocol to obtain transcriptome expression

profiles. Cell phenotypes are labeled by different

embryonic and developmental status.

Kolodziejczyk dataset The culture conditions of
embryonic stem cells play an important role in
maintaining long-term self-renewal and affect their
pluripotent state [31]. Kolodziejezyk et. al. used full-
transcript single-cell RNA sequencing of mESCs
cultured in three different conditions: serum, 2i, and the
alternative ground state a2i. They find that overall
levels of intercellular heterogeneity are comparable
across the three conditions, but different sets of genes
are variably expressed.

e pbmc1-10Xv2 dataset To systematically and comprehen-
sively evaluate the scale and capabilities of single-cell
RNA-sequencing methods, Ding et. al. developed a
flexible computational pipeline named scumi to
compare seven methods for single-cell and/or single-
nucleus profiling on three types of samples, cell lines,
peripheral blood mononuclear cells and brain tissue
[32]. The pbmcl-10Xv2 dataset is from human
peripheral blood mononuclear cells (PBMCs)
performed on the high-throughput method, the 10x
Chromium (v2) platform, which consists of nine cell
types that are B cell, CD14+ monocyte, CD16+
monocyte, CD4+ T cell, Cytotoxic T cell, Dendritic
cell, Megakaryocyte, Natural killer cell and
Plasmacytoid dendritic cell.

The statistical information of the four datasets is summarized
in Table 3, and the high dropout ratio is a common feature of
the four datasets.

For making a reasonable evaluation, we use the same
experimental setup for various imputation methods. In order to
alleviate the curse of dimensionality and reduce the
computation cost of learning tasks, the feature selection is
applied to all datasets for picking up the highly variable genes
(HVGs). Specifically, the gene counts for each cell are divided
by the total counts for that cell and multiplied by the scale
factor. Then, the natural-log transformation is used to prevent
a few large observations from being extremely influential.
Finally, the first 5,000 HVGs are retained according to the
variability of the genes. After that, we perform visualization
and clustering to evaluate various imputation methods on
recognition of cell types for the four datasets.

Table 3 Statistics of the four real datasets

The baseline imputation methods we compare are four
mainstream approaches, including MAGIC, DCA, SAVER,
and sclmpute, and an overview of these methods is described
in Section 2.

5.1.2  Evaluation measures

In order to evaluate the clustering results comprehensively, we
employ four metrics, Accuracy (ACC), Adjusted Rand Index
(ARI), Normalized Mutual Information (NMI) and F1-score
(F1), which are defined respectively as follows:

N
AcC= 5 3 1Gi=x
_ RI-E[RI]

" max(RI)— E[RI]’
MI(U,V)
"HU)+HVY
Fleo. precision - recall

NMI=2

(18)

where y; is the predicted label, y; is the ground-truth label, 1(-)
is an indicator function, R/ is the Rand index, U and V
represent divisions of true and predictive labels, MI(-) denotes
the mutual information, and H(:) is entropy. The larger values
of these metrics means higher concordance between the
predictions and the truth.

precision + recall’

5.1.3 Experimental results of the four datasets

In this section, we will compare the performance of different
imputation methods through discovering the structural
information of scRNA-seq data via visualization and
clustering. In addition, the scRNA-seq data forms include two
categories, count data and normalized data. Therefore, we
further investigate the influence of data form towards the
recognition of cell types. Besides, since the cell-cell distance
matrix in MAGIC is based on Euclidian distance, the added
imputation method named MAGIC-C is based on count data
to observe the influence of data form on imputation. To
facilitate comparison, the original MAGIC method based on
the normalized data is denoted as MAGIC-N to easily
distinguish. Thus, the objects we aim to study are expressed in
the following eight forms, the raw count data with dropout
denoted as With dropout-C, the raw normalized data with
dropout denoted as With dropout-N, and the six imputed
expression profiles using MAGIC-C, MAGIC-N, DCA,
SAVER, scImpute and AE-TPGG, which are applied to the
results display of Figs. 6 and 7.

In visualization experiment, we first project the original data
to the first 50 principal component directions by principal
component analysis (PCA), and then use t-distributed logistic
neighbor embedding (t-SNE) to visualize on a two-

Datesets Sequencing protocol Cell types # of cells # of genes Zero ratio
Deng Smart-seq 10 268 22,431 0.60
Kolodziejczyk SMARTer 3 704 38,616 0.71
Klein inDrop 4 2,717 24,175 0.66
pbmcl-10Xv2 10x Chromium (v2) 9 6,444 22,280 0.96
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dimensional plane. Owning to the similarity between cells for
the Deng dataset, the low dimensional representation obtained
by t-NSE is too crowded, so we directly project it to two-
dimensional plane by PCA. The cells are labeled according to
the cell types provided by the original datasets. The
visualization results of the four datasets are shown in Fig. 6. It
can be seen that With dropout-N can significantly improve the
discovery of structural information compared with With
dropout-C. From comparison of MAGIC-C and MAGIC-N,
the imputation of normalized data produces clearer the
structural information than that of count data. Notice that the
imputation based on normalized data using AE-TPGG has
certain advantages over the imputation data based on count
data using DCA in structure information discovery, although
the two methods adopt the same method of parameter
estimation. Thus, the visualization results indicate the
necessity of data normalization in the preprocessing of
scRNA-seq data, which can eliminate the biological and
technical deviations to a certain extent and contribute to the
discovery of structure information of scRNA-seq data.
Although there are differences in imputation strategies among
various methods, the imputation data produces more compact
and smooth local structure on the whole.

We further perform clustering on the imputation data
obtained from different methods, and measure the clustering
performance using the four metrics in Eq. (18). To speed up
the calculation, we reduce the original high-dimensional data
to 50 dimensions through PCA, and then obtain the clusters by
K-means. Considering clustering results that is sensitive to the
random initialization of cluster centers, the k-means++ is
utilized to initialize the centroids [33], and run the
initialization for 10 times. The optimal result is finally
selected in the sense of inertia. In order to obtain statistically
meaningful evaluation results, each metric is measured by the
mean value of the 10 runs. The clustering results of the four
datasets are shown in Fig. 7. Compared with the raw count
data denoted as With dropout-C, the adoption of With
dropout-N significantly improves the clustering performance
and enhance the recognition of phenotype information. This is
especially obvious in comparison between MAGIC-C and
MAGIC-N. All these imputation approaches account for data
normalization at different stages in the models. MAGIC-N,
sclmpete and our method perform normalization at the
preprocessing stage, while DCA and SAVER are statistical
models based on count data and consider the normalization of
gene expression in the process of parameter inference. In
particular, DCA normalizes the input data in the middle
hidden layer, and SAVER introduces the normalization factor
at the final prediction of expression level, which are lack of
distribution hypothesis of the normalization data. Although
sclmpute is based on the continuous normalized data, and
ignores the typical bimodal expression pattern of scCRNA-seq
data. The experimental results show that it does not perform as
well as other methods designed for normalized data. We
speculate that the reason may due to the fact that the
hyperparameter t that is used to determine whether the genes
need to be imputed and the pre-set subgroup division are set
manually, which are highly dependent on prior knowledge.

From the above comparison results, it can be noted that our
method is superior to other imputation methods in clustering
performance on the four real datasets. Particularly, the
comparison between the methods based on count data with
those based on normalized data indicates that the necessity of
data normalization for phenotypic information recognition.
Moreover, the adopted TPGG distribution, the deep
autoencoder embedded in the model structure, and the
parameter estimation approach make it possible to
automatically capture the dependence between genes while
inferring parameters, so as to achieve effective data imputation
and improve the discovery of cell phenotype information in
scRNA-seq data.

5.2 Improvement in capturing droplet-based purified cell
types via low-dimensional representation

Dimensionality reduction plays a crucial role in analyzing
high-dimensional scRNA-seq data, which is also the most
typical application scenario of autoencoder. In this section, we
conduct experiments on a real dataset to validate the
performance of our model in dimension-reduction. Here, we
choose expression profile of 68K PBMCs dataset based on
droplet microfluidic control system, which consists of 68,579
cells and 20,387 genes, and cells have been divided into 10
purified cell subtypes [34].

We utilize SCANPY to select 1,000 highly variable genes,
and the visualization results from the t-SNE method and the
two-dimensional output of the bottleneck layer of AE-TPGG
are displayed in Fig. 8. From Fig. 8, there is overwhelming
evidence that heterogeneity exists in PBMCs, even though
these cells stem from the same type. Meanwhile, due to the
functional similarity of some cells, phenotypes of these cells
are overlapped with low-dimensional representation. It is
apparent that our model achieves the higher intra-class
compactness than t-SNE. The results of the four clustering
metrics are depicted in Fig. 9. It can be observed that AE-
TPGG also obtains obviously higher clustering performance
than t-SNE indicating AE-TPGG is able to discover the
inherent low dimensional structure in the scRNA-seq data
resulting in more accurate clustering results.

5.3 Improvements in protein and RNA co-expression
analysis using imputation data

For large-scale simultaneous measurement of epitopes and
transcriptomes in single cells, Stoeckius et. al. developed
Cellular Indexing of Transcriptomes and Epitopes by
sequencing (CITE-seq), which combined highly multiplexed
antibody-based detection of protein markers together with
unbiased transcriptome profiling for thousands of single cells
in parallel [35]. The similar verification approach is adopted
as DCA [16] and adopt levels of cell surface marker protein as
‘benchmark’, which have high abundance and less influence
by dropout events. The original 8,617 cord blood mononuclear
cells (CBMCs) are filtered with less than 90% human Unique
Molecular Identifier (UMI) counts and 8,005 human cells are
retained. In order to speed up the calculation, we selected the
expression profile of the top 5,000 HVGs. To reveal the co-
expression of gene and protein, we investigate the relationship
between gene and protein levels according to their enrichment
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in cells. Cell subpopulations with graph-based clustering
method are subsequently identified [36,37]. For constructing
graph, the top 25 principal components by PCA are used to
calculate k-nearest neighbors and construct a shared nearest
neighbor (SNN) graph that captures the similarity between
two nodes in terms of their connectivity in the neighborhood.
In the next step, the dense subgraphs are found by recursively
merging quasi-cliques in SNN graphs where the
hyperparameter r, which is used to adjust the density of each
cluster, is set to 0.5. Finally, the 16 cell types are obtained and
the two-dimensional visualization is displayed in Fig. 10. The
cell types are tagged according to the differential genes among
these subgroups.

We visualize the six known marker proteins (CD3, CDS,
CD56, CD16, CDl1c, and CD14) and corresponding mRNAs
(CD3E, CD8A, NCAMI, FCGR3A, ITGAX, and CD14) on
RNA clusters where the first three genes and the rest are
displayed in Fig. 11 and Fig. A1 of Appendix A, respectively.
It is obvious that the original RNA and the co-expressed
proteins present consistent enrichment areas in different
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Fig. 10 The t-SNE visualization of the transcriptomic profiles of cord blood
mononuclear cells from Stoeckius. Cell types are labeled with maker genes

subpopulations. However, due to the high dropout ratio of
RNA data, RNA enrichment level in most subpopulations is
obviously lower, especially for CD8A, NCAMI1 and ITGAX
which are only enriched in a small number of cells. This
indicates the potential challenges exist in the analysis of cell
heterogeneity only using the original transcriptome data.
Therefore, data imputation is a feasible approach to alleviate
the influence of dropout events. For better display, the
imputed results of the first three genes from AE-TPGG and
the baseline methods are shown in Figs. 11 and 12, and the
imputed results of the other genes of all imputation methods
are shown in Fig. A1 of Appendix A. The third panel of Fig. 11
and Fig. Al in Appendix A shows the visualization results of
imputed data obtained from AE-TPGG. It can be seen that
both the enrichment regions and the enrichment level are
highly consistent with those of the protein data. The same way
is applied to visualize the imputed data of transcriptomic
profile obtained from other imputation methods shown in
Fig. 12 and Fig. Al of Appendix A. It can be apparently found
that the imputation data can significantly improve the co-
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expression analysis between genes and proteins.

Especially, our method and MAGIC present better
consistency with levels of the antibody-derived tags (ADT). In
addition, the analysis of Spearman correlation is used to
quantify the correlation between imputed data obtained from
different methods and the corresponding surface proteins. The
results depicted in Fig. 13 show that the correlation
coefficients between the original mRNAs and the
corresponding proteins are relatively low, while those between
the imputed data and the proteins are significantly high.
Therefore, AE-TPGG achieves competitive results compared
with other imputation alternatives showing the superiority on
improving protein and RNA co-expression analysis.

5.4 The recovery of time-course patterns using imputation
data

In this section, we perform the experimental analysis on a
semi-real single-cell dataset. Owing to dropout events in real
single-cell datasets, the truth of the data is usually unknown.
Therefore, we adopt a similar synthetic method for semi-real
dataset as in MAGIC method. The validation set is established
on bulk transcriptomic data measured using microarrays from
206 developmentally synchronized C. elegans young adults
[38]. These samples are taken at regular time intervals during
a 12-hour developmental time-course and consecutive
samples, which present relatively small changes in expression.
The dataset contains 206 samples and 15,855 informative
genes. The generation method of single-cell dataset first

exponentiates the original gene expression profile. Then the
specific noise is added for each gene by subtracting random
values sampled from an exponential distribution where the
mean is calculated as the gene expression median multiplied
by five and set all negative values to zero. Finally, the data is
logarithmized and the final synthesized data contains 80%
missing values. Figure 14 displays heatmaps of the top 200
highly variable genes that consists of 100 positive and 100
negative genes associated with time course within the dataset
using expression data without dropout, with dropout, and the
imputed data from various imputation methods. It can be seen
that the time-varying gene expression pattern of the
synthesized data is indistinct after introducing dropout values.
After imputation by the AE-TPGG model, the gene expression
pattern clearly restores compared with the validation set.
Meanwhile, the imputed outputs of the four baseline methods
described in Section 5.1.1 are visualized with the same
experimental settings. As shown in Fig. 14, the imputation is
able to recover part of expression pattern compared with the
validation data, but our method has higher consistency than
other methods and significantly alleviates the imputation
deviations, including over-imputation and under-imputation.
To further compare with different imputation methods, we
select the top 500 genes in validation set that are significantly
related to the development and measure Person’s correlation
coefficients between gene expression and the known
developmental pattern to qualitatively assess the pattern
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Fig. 12 The t-SNE visualizations of imputation data of RNA expression using MAGIC (1st row), DCA (2nd row), SAVER (3rd row), and
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the original and imputed data using DCA, SAVER, scImpute, MAGIC and
AE-TPGG

recovery ability of various methods, as shown in Fig. 15. It
can be found that the correlation coefficients of the
synthesized data with dropout present low values, indicating
that the expression pattern of genes is obscured by dropout
events. Although all imputation methods can ameliorate the
recovery of missing pattern masked by dropout events, our
model outperforms the other four methods and can restore the
most accurate expression pattern of genes related to the
development.

In addition, we especially select tbx-36 and his-8 genes with

antagonistic expression patterns during the development of
C.elegans [39] to examine the specific ability of AE-TPGG for
recovering the expression patterns of individual genes. Fig. 16
displays gene expression trajectory for exemplary anti-
correlated gene pair tbx-36 and his-8 over time for imputed
results from AE-TPGG and the four baseline methods. From
the figure it can be seen that synthesized data almost conceals
the negative correlation of the two genes, but the imputed
expression of the two genes obtained from AE-TPGG
significantly restores the potential pattern relationship. In
contrast, MAGIC and DCA also achieve some improvements
on recovery of the antagonistic expression compared with AE-
TPGG, while SAVER obtains an opposite relationship
indicating the disability in pattern recovery for this pair of
genes.

6 Discussion
scRNA-seq technologies have brought unprecedented
capabilities to high-throughout, high-resolution transcriptomic
analysis of cell states. Our method, AE-TPGG, is a joint
learning paradigm for scRNA-seq data imputation and
dimensionality reduction, which has the following highlights.
Firstly, the adopted TPGG distribution is based on the
normalized scRNA-seq data. It is well known that data
normalization is one of the most crucial steps of scRNA-seq
data processing. Various experimental results also fully
indicate that data normalization has a profound impact on the
analysis of results. For example, the comparative experiments
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Fig. 15 Boxplots of Pearson correlation coefficients between gene
expression and the known developmental pattern across the 500 most highly
correlated genes within the dataset using the imputed data from AE-TPGG,
DCA, MAGIC, SAVER, scImpute, and expression data with dropout, without
dropout, respectively. The box represents the interquartile range, the
horizontal line in the box is the median, and the whiskers represent 1.5 times
the interquartile range. Black dots represent outliers

between With dropout-C and With dropout-N in Section 5.1
indicate that data normalization conduces to improve the
discovery of cell heterogeneity on the four datasets from
visualization and clustering, even without imputation.
Similarly, it is also observed that the imputed result obtained
by MAGIC-N is obviously superior to MAGIC-C in clustering
performance. The adopted TPGG distribution of AE-TPGG is
based on the semi-continuous data, which also take into
account data normalization. Therefore, modeling on
normalized data is one of the reasons for our method to
achieve competitive advantage. On the other hand, the
difference between our method and DCA lies in the selection
of distribution. DCA adopts ZINB distribution that aims at

count data without normalization, while TPGG distribution is
modeled on normalized data. As a result, our method
outperforms DCA in various types of imputation experiments,
which further illustrates the importance of data normalization
for scRNA-seq data imputation.

Secondly, compared with other methods, our model takes
better account of the distribution characteristics of normalized
data, mainly including two points. One is a large number of
dropout events, and the positive expression presents a typical
right-skewed characteristic. In Section 3, the detailed
statistical analysis in real scRNA-seq data is given to confirm
the rationality of the two alternative models of TPGM and
TPLNM. Furthermore, the adopted TPGG can adaptively
adjust the parameters to select the appropriate right-skewed
distribution for modeling the positive expression of genes,
which is not explored by other imputation methods. This
advantage can be easily observed from the comparative
experiments of MAGIC and AE-TPGG. The imputation
approach of MAGIC shares information across similar cells by
means of graph diffusion, without considering the particular
statistical characteristics of sScRNA-seq data. In the experiment
of Section 5.1, although the input data forms of the two
methods were the same, clustering results indicate that AE-
TPGG has better performance than MAGIC-N in scRNA-seq
data imputation on four real datasets, especially in Deng
dataset and Klein dataset.

Thirdly, the internal connection of the network of AE-
TPGG automatically captures the correlation between genes,
which contributes to promoting the imputation performance.

Finally, over-imputation and under-imputation are common
issues in data imputation. The key to discuss these problems
lies in the existence of benchmark data. Since the truth of
scRNA-seq data is normally unknown, indirect assessment
methods are frequently used by numerous imputation methods
to validate the effect of scRNA-seq data imputation to a
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Fig. 16 Gene expression trajectory for exemplary anti-correlated gene pair tbx-36 and his-8 over time for the data without, with dropout, and

imputation data using AE-TPGG, MAGIC, DCA, SAVER and scImpute

certain extent. Specifically, in the experiments of Section 5.3,
the cell surface marker protein expressions were taken as
reference. Taking the enrichment of protein abundance at the
RNA level as the benchmark, all imputation methods have the
problems of over-imputation and under-imputation, and there
are also differences between methods from the observations of
Fig. 11, Fig. 12, and Fig. Al in Appendix A, which means that
no imputation method achieves the perfect match between the
imputation data and the benchmark. Despite the different
model assumptions among the imputation methods, the
Spearman correlation coefficients displayed in Fig. 13 indicate
that the imputation of scRNA-seq data of all methods
enhances the correlation level of protein-RNA pairs. And
especially, our method obtains better performance than other
imputation methods. In Section 5.4 the microarray data were
used as "ground truth" since the bulk transcriptomics contain
less noise than single-cell transcriptomics. It can be observed
that various imputation methods also have the issues of over-
imputation and under-imputation from Fig. 14, but DCA,
SAVER and our method have high consistency with the
microarray data on the whole. In addition, Fig. 15 and Fig. 16
indicate that our method achieves substantially improved
performance for recovering time-course patterns. Therefore,
imputation deviations are hard to avoid, but our method can
provide the most consistent results with the given benchmarks,
indicating that a good imputation method can assist the
analysis of scRNA-seq data.

7 Conclusion

In this work, we focus on the problem of frequent dropout
events in scRNA-seq data, which hinders the downstream
analyses. In response to this issue, we have proposed the AE-
TPGG model, a deep autoencoder based on a Two-Part-
Generalized-Gamma  distribution, for the analysis of
normalized scRNA-seq data. The proposed method considers
characteristics of the semi-continuous normalized scRNA-seq

data, and adopts the negative log-likelihood of TPGG as the
loss to estimate the model parameters revealing the hidden
low-dimensional ~ structures and the inherent gene
relationships. The proposed method achieves significant
improvement for downstream analysis of scRNA-seq data in
both dimensionality reduction and imputation. For the four
real datasets, the imputed data with our model accurately
captures the potential structures and the clustering results
confirm the effectiveness of our method compared with the
other four mainstream imputation methods. On the PMBC
68K dataset, we use the bottleneck layer to visualize the raw
data in two-dimensional space so that the hidden structures of
the data can present cell subtypes intuitively. Meanwhile,
clustering results prove effective low-dimensional
representation obtained from AE-TPGG compared with the
original t-SNE method. Besides, the imputation data from our
method on CBMCs improves protein and RNA co-expression
analysis. In addition, we perform comprehensive studies on a
semi-real dataset to compare AE-TPGG with other imputation
approaches in recovering gene expression patterns with time
course. Our work shows that AE-TPGG has the potential to
improve the discovery of potential biological patterns from
scRNA-seq data.
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Appendix A

Fig. A1 The t-SNE visualizations of the protein expression
(1st row), RNA expression derived from the original data (2nd
row), imputation data using AE-TPGG (3rd row), MAGIC
(4th row), DCA (5th row), SAVER (6th row) and scImpute
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Fig. A1 The t-SNE visualizations of the protein expression (1st row), RNA expression derived from the original data (2nd row), imputation
data using AE-TPGG (3rd row), MAGIC (4th row), DCA (5th row), SAVER (6th row) and scImpute (7th row). Columns correspond to CD16
(1st column), CD11c¢ (2nd column), CD14 (3rd column) proteins and corresponding RNAs FCGR3A, ITGAX and CD14

(7th row). Columns correspond to CD16 (1st column), CD11c
(2nd column), CD14 (3rd column) proteins and corresponding
RNAs FCGR3A, ITGAX and CD14.
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