Skip to main content
. 2022 Oct 27;53(11):14493–14514. doi: 10.1007/s10489-022-04254-0

Table 12.

MAPE, MAE, and RMSE of each model

Model Paris Amsterdam Lisbon
MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE
BPNN 8.63 244,662 324,617 10.12 170,141 252,206 11.04 84,110 101,228
ARIMAX 11.35 290,161 313,770 15.02 220,252 260,200 11.87 86,332 110,578
SARIMAX 9.60 257,740 321,591 15.58 251,838 367,665 12.26 94,907 108,025
SVM 10.84 301,825 459,945 6.47 106,071 139,231 6.99 56,588 84,579
LSTM 7.43 200,888 242,408 9.52 154,130 193,138 8.46 64,195 82,839
GA-TFT 6.61 174,910 224,792 5.24 87,321 102,849 4.39 35,918 43,197
DE-TFT 3.32 86,347 94,911 5.99 98,611 129,738 3.59 30,844 47,916
ADE-TFT 3.10 76,826 89,724 4.76 83,398 135,584 3.02 24,442 32,532

The bold values denote the best prediction performance of all models