Skip to main content
. 2022 Oct 16;22(20):7852. doi: 10.3390/s22207852
Algorithm 1 Entry and Departure Model Training Algorithm
  • Input: video V = <f1,f2,…,fn>, image classification algorithm set SUM_M, video interval time η, minimum tolerable noise rate ε.

  • Output: Entry and departure recognition model Mt.

  • 1: 

    Ri={i}×OD(fi),i=1,,n, where OD(fi) indicates a lightweight object detection module

  • 2: 

    Define S to store video image frame numbers and information after video image detection, S=i=1nRi

  • 3: 

    The video image frame number set A=S.colomn(1), where colomn(1) represents the extraction of the first component of the set

  • 4: 

    jA,αj=1kA(jk<η),

  • 5: 

    φj=k=1j1αj

  • 6: 

    1mn, paragraph m entry and departure training video Sm={sj|φj=m}

  • 7: 

    All generated tag collections SUM_TAG =1mnAuto-SD(sm), where Auto-SD indicates the generated tag method; see Section 3.2 for details

  • 8: 

    All generated tag noise rates δ = Ad-EDB(SUM_TAG), where Ad-EDB denotes the tag conditioning evaluation method; see Section 3.3 for details

  • 9: 

    Image classification algorithm M = arcminsize{MiSUM_M|δ<ε}

  • 10:  

    Entry and departure recognition model Mt = Train(M,S,SUM_TAG)