
Differential coding of goals and actions in ventral and dorsal 
corticostriatal circuits during goal-directed behavior

Hua Tang1, Vincent D. Costa1,2,3, Ramon Bartolo1, Bruno B. Averbeck1,4

1.Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, 
Bethesda, MD, USA.

2.Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 
USA

3.Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA

4.Lead contact

SUMMARY

Goal-directed behavior requires identifying objects in the environment that can satisfy internal 

needs and executing actions to obtain those objects. The current study examines ventral and dorsal 

corticostriatal circuits that support complementary aspects of goal-directed behavior. We analyze 

activity from the amygdala, ventral striatum, orbitofrontal cortex and lateral prefrontal cortex 

(LPFC) while monkeys perform a three-armed bandit task. Information about chosen stimuli 

and their value is primarily encoded in the amygdala, ventral striatum, and orbitofrontal cortex, 

while the spatial information is primarily encoded in the LPFC. Before the options are presented, 

information about the to-be-chosen stimulus is represented in the amygdala, ventral striatum, and 

orbitofrontal cortex; at the time of choice, the information is passed to the LPFC to direct a 

saccade. Thus, learned value information specifying behavioral goals is maintained throughout the 

ventral corticostriatal circuit, and it is routed through the dorsal circuit at the time actions are 

selected.

INTRODUCTION

Goal-directed behavior requires the interaction of neural systems that define goals, with 

systems that support the cognitive and motor behaviors that achieve those goals. We have 

recently suggested that corticostriatal systems can be broadly grouped into ventral and 

dorsal systems, where we distinguish the systems on the basis of whether they project 

through the dorsal or ventral striatum (Averbeck and Murray, 2020; Neftci and Averbeck, 

2019). The dorsal circuit is composed of the inferior parietal cortex, dorsal lateral prefrontal 
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cortex (dlPFC), dorsal striatum, and the associated pallidal and thalamic nuclei (Goldman-

Rakic, 1988). The ventral circuit is composed of the anterior temporal lobe, including 

the amygdala (AMY), hippocampus, rhinal cortical areas, ventral medial prefrontal cortex, 

caudal orbitofrontal cortex (OFC), ventral striatum (VS), and the pallidal and thalamic 

nuclei through which they project (Haber et al., 1993). This anatomical distinction relates 

to a functional distinction. Specifically, the dorsal circuit is critical for representing the 

spatial locations of relevant objects and for dynamically computing which actions are 

necessary to acquire those objects (Andersen et al., 1997). The ventral circuit, by virtue 

of strong anatomical interactions with the hypothalamus, is important for linking objects in 

the environment with specific internal states, for example, hunger and thirst (Andermann 

and Lowell, 2017). Therefore, the ventral circuit is critical for specifying behavioral goals, 

and the dorsal circuit is critical for obtaining those goals. We have, furthermore, suggested 

that dynamic interactions between the ventral and dorsal circuits motivate the execution of 

goal-directed actions (Averbeck and Murray, 2020; Neftci and Averbeck, 2019).

Within the context of value-guided decision making, ventral circuit areas, including the 

amygdala, VS, and OFC, have been shown to encode the values of objects, choices, 

and outcomes (Chau et al., 2015; Rich and Wallis, 2016; Rudebeck et al., 2013; Strait 

et al., 2015). Similar encoding has also been seen in reinforcement learning tasks when 

values develop over trials (Bartolo and Averbeck, 2020; Costa and Averbeck, 2020; Costa 

et al., 2019). Likewise, dorsal circuit nodes, including the dlPFC, have been shown to 

represent visuospatial information and have connections to other important spatial-motor 

areas, including the inferior and medial parietal cortex, frontal eye fields (FEF) and premotor 

areas (Caminiti et al., 1996; Chen and Wise, 1996; Cisek and Kalaska, 2002; Johnson et al., 

1993; Lu et al., 1994; Marconi et al., 2001; Selemon and Goldman-Rakic, 1988). The dlPFC 

has also been shown to encode both object and action values in the context of reinforcement 

learning (Lee and Seo, 2007). Therefore, most of the variables relevant to goal-directed 

behavior are present across the ventral and dorsal circuits. These observations, collected 

across disparate tasks, appear to be inconsistent with our suggested distinction between these 

circuits.

Studies of RL usually rely on n-armed bandit tasks (Averbeck and O’Doherty, 2021). In 

these tasks, participants are shown 2 or 3 objects for a series of trials. In each trial, they 

select an object and obtain an outcome. By integrating choices and outcomes over a series 

of trials, they learn which object is most valuable. Therefore, the behavioral goal is defined 

by the object which the participants have learned has the highest value. For example, if a 

monkey has learned that an image of a blue car is currently the best available option, then 

it may maintain a representation of the blue car throughout the inter-trial hold period before 

the options are presented. When the images are presented, the monkey must identify the 

location of the blue car and direct an eye movement towards the image. This suggests that 

the ventral system will maintain a representation of the image to be selected. Further, this 

information will be routed through the dorsal system to direct an action to the object to 

obtain the goal when the images are presented (Tang et al., 2021).

In the present study, we recorded neural activity from nodes in both the ventral and dorsal 

systems while monkeys carried out an RL task. We examined time-dependent encoding and 
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population decoding of behavioral variables relevant to goal-directed behavior and compared 

them across these nodes. We primarily focus on two questions that represent a physiological 

double-dissociation across the ventral and dorsal circuits. First, how is information about 

behavioral goals represented across the ventral and dorsal circuits before action is required 

to obtain the goal? Second, are the actions required to obtain those goals represented equally 

across the ventral and dorsal circuits? For comparison, we also examined the representation 

of choice outcomes (i.e., rewards). We find that while choice outcomes are represented 

approximately equally across the ventral and dorsal circuits, the stimulus that the monkeys 

chose in each trial was represented more strongly in the baseline hold period in the ventral 

circuit before the options were shown. At the time of choice, there was a phasic increase 

in the representation of the stimulus in the dorsal circuit, particularly in the caudal, ventral-

lateral prefrontal cortex, which receives a strong input from the amygdala (Ghashghaei et al., 

2007). The action required to obtain the goal, conversely, was represented only at the time 

of choice in lateral prefrontal areas. There was only a minimal and lagged representation of 

the action in ventral areas. These data confirm differential roles of ventral and dorsal circuit 

nodes in learning and representing behavioral goals and the actions required to obtain those 

goals.

RESULTS

Five rhesus monkeys were trained on a three-armed bandit RL task (Figures 1A–B). On 

each trial, three images were presented to the monkeys. Each image had an associated 

reward probability, which was unknown to the monkeys. To maximize reward, they had 

to learn the stimulus-outcome relationships by sampling one of the options on each trial. 

However, the number of opportunities they had to learn about each option’s value was 

limited. Every 10 to 30 trials, one of the three options was randomly replaced with a novel 

option. Whenever a novel option was introduced, the monkeys could not predict its assigned 

reward probability. To learn the value of the novel option, the monkeys had to explore it. 

In previous publications, we have focused on the explore-exploit problem in ventral circuit 

nodes (Costa and Averbeck, 2020; Costa et al., 2019). Here we focus on comparisons 

between goal-relevant representations in ventral and dorsal circuit nodes.

Choice Behavior

The monkeys often chose novel options when they were first introduced (Figure 1D; Option 

Type, F (2, 152) = 1136.73, p < 0.001). However, this preference reduced over trials as 

options were selected and became familiar (Option Type × Trial, F (38,152) = 5.92, p < 

0.001). With experience, the monkeys learned to select the most valuable option (Figure 1E). 

Specifically, we found that the monkeys learned to discriminate between high-, medium-, 

and low-value options (Reward Value, F (2, 152) = 415.69, p < 0.001; Reward Value × Trial, 

F (38, 152) = 2.43, p < 0.001).

Modeling of Learned Values

We used a model-based RL algorithm (Averbeck, 2015) to estimate values for novel and 

familiar options in the task, similar to our previous study (Costa et al., 2019). The model 

generates immediate expected values (IEV), future expected values (FEV) and a novelty 
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bonus (BONUS) estimate for each option in each trial, based on the number of times each 

option was chosen and rewarded in the past. The IEV is an estimate of the probability that 

the current choice will be rewarded based on past outcomes. It is given by the number of 

times the option has been rewarded, divided by the number of times it has been chosen. 

Initial IEVs, based on priors, are equal to 0.5 for novel options assigned high, medium, 

or low reward values. The IEVs then diverge as the options are chosen over trials (Figure 

1F). The FEV is the discounted sum of future rewards. It reflects the richness of the reward 

environment. For example, the FEV is higher in the current state if the best available option 

has a high IEV compared to when the best option has a medium or low IEV (Figure 1G). 

This occurs because there is a greater opportunity to earn rewards across future trials when 

the best option has a high IEV.

In a given state, the FEV of the options differs based on how many times the monkey has 

sampled it, and this can be used to define an exploration bonus. On each trial, the difference 

in the FEV of individual options relative to the average FEV of all three options quantifies 

the average gain or loss in future rewards associated with choosing each option. We refer to 

this quantity as the “exploration BONUS” (e.g., BONUSnovel = FEVnovel − (Σj=novel,best,worst 

FEVj)/3). It is higher for novel options when they are first introduced than options about 

which one has more experience. When an option is sampled, the monkey becomes more 

certain about its actual value, and the exploration BONUS decreases (Figure 1H). In parallel, 

the exploration BONUS for the best and worst alternative options was, on average, negative 

when a novel option was introduced because the monkeys had already sampled each option 

and were more certain about their values.

Neurophysiological Recordings

Recordings were carried out in two experiments. In one experiment, acute recordings 

were collected from three monkeys using multiple single microelectrodes (Figure 1C). We 

recorded 360 neurons in the amygdala, 314 neurons in the VS and 149 neurons in the 

OFC (Table S1). This dataset has been published previously (Costa and Averbeck, 2020; 

Costa et al., 2019). In the other experiment, two monkeys were implanted with eight Utah 

arrays over the LPFC, surrounding the principal sulcus (Figure 1C). Four 96-electrode arrays 

were implanted in each hemisphere (Mitz et al., 2017; Tang et al., 2021). These arrays 

were located in the rostral dorsal (rdlPFC), medial dorsal (mdlPFC), caudal dorsal (cdlPFC), 

and ventral LPFC (vlPFC). For each monkey in the second experiment, three sessions of 

neurophysiology data were analyzed, in which we recorded the activity of 1657 neurons 

from monkey V and 1998 neurons from monkey W (Table S1). Recordings from these 

two monkeys, using different tasks, have been published previously (Bartolo and Averbeck, 

2020; Bartolo et al., 2020a; b; Tang et al., 2021).

Stimulus, Outcome Responsiveness and Behavioral Correlates

We began by characterizing general features of the neuronal responses. The task-related 

neuronal activity was similar across areas, although the magnitude of firing rate changes 

tended to be higher in the cdlPFC and vlPFC (Figure 2). Neurons recorded in these areas 

showed response modulation when stimuli or outcomes (i.e., reward or no reward) were 

presented (Figure 2A). To assess their responses to stimuli and outcomes, we compared the 

Tang et al. Page 4

Cell Rep. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



z-scored firing rates in the first 100 to 400 ms following stimulus onset and within the first 

300 ms following outcome (Figure 2B). The neurons in different areas showed different 

modulations to cues (choice options), choices, and outcomes (Figures 2D–F, Area × Event, 

F (6, 8776) = 8.2, p < 0.001). Specifically, the mdlPFC (paired t-test, t (963) = 4.62, p < 

0.001), cdlPFC (paired t-test, t (1344) = 5.85, p < 0.001), and vlPFC (paired t-test, t (644) 

= 4.98, p < 0.001) showed more robust responses to choice options; the VS (paired t-test, t 

(313) = 3.05, p < 0.01) and OFC (paired t-test, t (148) = 2.09, p < 0.05) showed stronger 

responses to outcomes, and the amygdala and rdlPFC showed similar responses to both 

choice options and outcomes (Figure 2G).

The type of choice options also modulated neuronal activity. We compared responses to 

choices classified as the novel (i.e., the most recently introduced), best or worst alternative 

(i.e., the familiar option with the highest or lowest IEV). We found that neurons across areas 

differentiated these choices, especially in the amygdala, OFC, cdlPFC and vlPFC (Figure 

2C).

These overall evaluations of firing rates revealed that, in general, the neuronal responses 

to stimuli and outcomes were similar across these areas. However, they also showed 

diversity in response to different stimuli and between chosen options and outcomes. To 

investigate this in detail, we next examined the coding of each behavior factor included in 

this experiment.

Neuronal Encoding of Stimulus Identity, Direction and Outcome

To examine how the task factors were represented in each area, we fitted the responses 

of single neurons with a multi-way ANOVA model. The ANOVA included nine factors 

which were the chosen stimulus (Stimulus), saccade direction (Direction), the orientation of 

stimulus set (Orientation), linear trial number since the latest novel option was introduced 

(TSN), the outcome of the current (Outcome) and previous (Outcome (t-1)) trial, and 

choice value (split into IEV, FEV, and BONUS terms). Figure 3 shows an example neuron 

responded to all nine factors.

We characterized single-cell encoding of the chosen stimulus, direction and outcome (Figure 

4). These three factors are directly observable in each trial and therefore represent the 

stimulus and response components of the task. Approximately 40% of amygdala, VS and 

OFC neurons showed a sustained representation of the to-be-chosen Stimulus during the 

hold period (1000 ms to 0 ms before stimulus onset). The encoding strength of neurons 

in the LPFC regions during the hold period was weaker than it was in the ventral areas 

(Figure 4A inset, Table S2; Chi-square test, X2 >= 10.25, p <= 0.001), although it was 

above chance (Figure 4A; binomial test, p < 0.01). The representation in the ventral-stream 

areas before the stimuli were presented indicates learning (Tang et al., 2019) and reflects an 

internal representation of the to-be-chosen option. All areas exhibited an increase in chosen 

Stimulus encoding when the stimuli were presented, compared to the hold period (Figure 

4A; Chi-square test, p < 0.05), which was most strongly represented in the amygdala, VS, 

OFC and vlPFC.
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Results were similar when we considered the effect sizes of each task-responsive neuron. 

The mean effect sizes during the hold period were larger in the amygdala and VS than the 

LPFC regions (Figure 4D; Area, F (6, 2146) = 76.27, p < 0.001; Post hoc comparisons using 

the Tukey HSD test, amygdala, M = 0.0331, SD = 0.0372; VS, M = 0.0247, SD = 0.0265). 

These results indicate that more neurons in the amygdala, VS and OFC were involved in the 

encoding of chosen Stimulus, and the effect size of each neuron was larger.

Direction was primarily encoded in the LPFC regions (Figure 4B, Table S2; Chi-square 

test, p < 0.05), and the effect sizes were also larger in these areas (Figure 4E). The trial 

Outcome -- whether the choice was rewarded or not -- was encoded similarly across areas, 

with somewhat stronger encoding in the VS, amygdala, OFC and cdlPFC (Figure 4C, Table 

S2; Chi-square test, p < 0.05). However, the effect sizes of the responsive neurons in the VS 

were larger than in the other areas (Figure 4F; Post hoc comparisons using the Tukey HSD 

test, M = 0.0158, SD = 0.0189). A phasic response to Outcome first appeared in the OFC, 

and then the signal was consistently presented in the other areas (Figure 4C; asterisks).

These results show that task factors related to the sensory, motor and outcome variables 

were encoded widely across areas. One exception was spatial information, which was mostly 

encoded in the LPFC regions.

Neuronal Encoding of Value

A substantial proportion of neurons in these areas also showed responses to all three value 

variables. The values are latent variables that are not directly observable on each trial. Rather 

they are functions of previous trial choices and outcomes. Approximately 13% of neurons 

recorded in the amygdala showed a sustained representation of the IEV of the chosen 

stimulus during the hold period, larger than the LPFC regions (Figure 5A inset, Table S2; 

Chi-square test, X2 >= 4.98, p < 0.05). The OFC neurons showed a similar hold period 

response, but it was not significantly larger than the LPFC regions (Figure 5A inset, Table 

S2) due to the smaller sample size. This hold period representation of value reflects the 

learning across trials. To examine this learning directly, we compared the change in value 

representation across trials when a choice was or was not rewarded. We predicted that when 

a choice was rewarded and the same option was chosen again, the value representation 

should increase for neurons that preferred large values, and it should decrease for neurons 

that preferred small values. The opposite should hold when choices were not rewarded. We 

found that this was the case but only in the amygdala, VS and OFC (Figure S2). Phasic 

encoding of IEV was observed in all areas after the onset of stimulus (Figure 5A), but it was 

weaker in the rdlPFC and mdlPFC. However, the effect sizes were similar (Figure 5D).

Unlike the IEV, we found only a subtle phasic increase of FEV in the cdlPFC and vlPFC 

after the presentation of choice options, compared to hold period responses (Chi-square test, 

p < 0.05). Overall, the fraction of neurons encoding the FEV was constant across areas 

(Figure 5B inset, Table S2; Chi-square test, p > 0.05) but still above chance throughout the 

trial (Figure 5B; binomial test, p < 0.01). This result indicates that these areas represented 

the richness of the reward environment. There were no differences in effect size across areas 

(Figure 5E).
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We observed a phasic increase in the exploration BONUS that started post-cue and peaked 

around trial outcome time (Figure 5C). A larger percentage of neurons in the amygdala and 

OFC encoded the BONUS (Figure 5C inset, Table S2; Chi-square test, p < 0.05). The effect 

sizes also varied among the areas (Figure 5F, black asterisks). Post hoc comparisons using 

the Tukey HSD test indicated that the effect size of amygdala neurons (M = 5.22 × 10−3, 

SD = 4.90 × 10−3) was significantly larger than neurons in the rdlPFC, mdlPFC and cdlPFC. 

We did not observe encoding of the exploration BONUS during the hold period before the 

stimuli were shown. This is likely because the BONUS was large in the first few trials, 

which may have driven much of the neural result (Figure 1H), and the monkeys could not 

anticipate the appearance of a novel option until it was presented.

To compare all the factors and effect sizes of task-responsive neurons across the areas, we 

calculated the peak values of effect size within the window of interest along the time course 

of a trial (Figure 5G for responsive neurons, Figure S3 for all neurons). The effect sizes 

varied among areas and factors (Figure 5G; Factor × Area, F (48, 11869) = 11.18, p < 

0.001). Overall, factors related to sensory-motor processing (Stimulus, Direction), outcomes, 

and IEV had the largest effect sizes across all neural populations (Factor, F (9, 11869) = 

169.80, p < 0.001. Post hoc comparisons using the Tukey HSD test, Stimulus, M = 0.095, 

SD = 0.029; Direction, M = 0.045, SD = 0.028; Orientation, M = 0.011, SD = 4.46 × 10−3; 

Outcome, M = 0.046, SD = 0.014; Outcome (t-1), M = 0.024, SD = 4.52 × 10−3; IEV, M 

= 0.041, SD = 6.61 × 10−3; FEV, M = 0.012, SD = 2.33 × 10−3; BONUS, M = 0.013, SD 

= 1.58× 10−3; TSN, M = 0.010, SD = 8.97 × 10−4). The amygdala, VS, OFC and vlPFC 

neurons showed a larger effect size for chosen Stimulus encoding (unpaired t-test, t (2337) = 

11.13, p < 0.001) and the LPFC neurons showed a larger effect size for encoding Direction 

(unpaired t-test, t (2337) = 8.70, p < 0.001).

We also repeated the main single-cell analyses using only one session of PFC data per 

monkey to control for the possibility that the same cells were recorded on multiple days. 

This analysis showed similar results (Figure S4). Additional analyses examining the duration 

of response in each neuron confirmed that neurons across all areas showed the highest 

response to stimulus and outcome information and not choice values, both in the strength 

and duration of encoding (Figure S5).

Decoding of Choice and Outcome

To further understand how the neuronal populations code information about these variables, 

we used the activity of pseudo-populations to predict the choices the monkeys made and 

the related outcomes. We used pseudo-populations in the LPFC, even though we had 

simultaneous recordings, to facilitate comparisons with the other areas.

Although the individual visual stimuli were presented for a sufficient number of trials 

for univariate ANOVAs, they were often not presented for enough trials for decoding. 

Therefore, we carried out a decoding analysis on the a priori reward probability of the 

chosen options (i.e., low-, medium-, or high-value option). The performance was highest 

among the vlPFC and amygdala populations (Figure 6A). Decoding accuracy peaked at the 

trial outcome in some areas (Figure 6D), likely reflecting the outcome with which a priori 
reward is correlated and not the a priori reward itself, as these cannot be dissociated with 
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decoding. However, the activity preceding the outcome reflects the expected value of the 

chosen option. In addition, decoding accuracy exceeded chance levels during both the hold 

period and after the stimuli were presented, indicative of learning (Figure 6D). In the hold 

period, the strength of representation of a priori reward was not significantly different across 

the areas (Figure 6G; Area, bootstrap test, p > 0.05). However, the learning-related effect in 

the amygdala (M = 0.50, SD = 0.04) was significantly larger than the other areas (bootstrap 

test, p < 0.05).

Next, we carried out decoding on the saccade Direction. Decoding accuracy was higher in 

the LPFC regions and increased with ensemble size (Figure 6B; Area, bootstrap test, p < 

0.05). The cdlPFC had the highest decoding accuracy (Figure 6E), which confirmed our 

previous results on the flow of spatial information in the LPFC (Tang et al., 2021). There 

was less information about saccade Direction in the OFC and amygdala and almost no 

information in the VS (Figure 6H; Area, bootstrap test, p < 0.05), which was consistent with 

our encoding analysis (Figures 4B, S5B).

We also decoded the Outcome for comparison with the choice variables. Decoding accuracy 

also generally increased with ensemble size (Figure 6C). There was no significant difference 

across the areas (Figure 6I; Area, bootstrap test, p > 0.05).

To measure how much information each neuron carried in the population, we fitted decoding 

accuracy curves with a saturating function (Abbott and Dayan, 1999; Bartolo et al., 2020b; 

Zohary et al., 1994), which predicted accuracy as a function of ensemble size. Although 

this function was derived for information and not accuracy, we found that it provided a 

reasonable fit to our accuracy curves (Figure 6J). Therefore, it allowed us to summarize 

decoding accuracy using two variables. First, the rate at which accuracy increases with 

each additional neuron (Figure 6K, 1/a), and second, the decoding accuracy in an infinite 

population (Figure 6L, b; N = +∞). The variable 1/a, therefore, indicates the average relative 

contribution of single neurons, which changes as a function of how many neurons have 

already been included in the population to the accuracy. For a priori reward, similar to the 

effect size estimate analysis (Figure 4D), individual neurons in the amygdala, VS and OFC 

carried more information, although the vlPFC carried almost as much information as the 

amygdala and VS (Figure 6K). But when considering the extrapolated information in an 

infinite population, all areas encoded a similar amount of information about a priori reward 

(Figure 6L). Similar phenomena were also seen for the encoding of Outcome. For Direction, 

the results were consistent with what we reported above: less information was carried by 

the amygdala, VS and OFC, both in single neurons (Figure 6K) and a theoretical infinite 

population in each area (Figure 6L).

Neuronal Representation of Decision Switches

Our results indicate that the chosen stimulus was represented across the whole trial. It 

leaves open the question of when decisions were formed. To address this, we compared the 

neuronal representation of chosen stimuli across trials. First, we examined how often the 

monkeys switched their choices. The monkeys chose a different option from the previous 

trial on 57.65% (49110/85186) of all the trials. Considering the a priori reward probability 

of chosen options, the monkeys preferred to choose stimuli associated with a higher reward 
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probability (Table S4; Chi-square test, p < 0.001). Then, we reran the ANOVA model using 

only trials in which the current choice was the same as (Stay) or different than (Switch) the 

previous choice. More neurons were significant for stimulus when the current choice was the 

same as the previous choice (Figure 7A; Chi-square test, p < 0.05). In these trials, since no 

switch of decision happened, the information of the to-be-chosen Stimulus was maintained 

across the whole trial period. In the trials in which the choice switched, we found more 

neurons significant for the stimulus chosen in the current trial than the stimulus chosen in 

the previous trial (Figure 7B; Chi-square test, p < 0.05). The difference appeared in the 

amygdala, rdlPFC, cdlPFC and vlPFC after the onset of the cues. These results indicate 

that although the to-be-chosen option was represented across the whole trial, the switch of 

decision happened after, but not before, the stimuli were presented to the monkeys. A caveat 

to this explanation is that a large fraction of switch choices happened in trials in which novel 

stimuli were introduced. Since the introduction of a novel stimulus could not be predicted, 

the switch in representation may reflect the choice of the novel option. Unfortunately, we 

did not have enough trials to obtain a clear result when we removed the first few novel trials 

from the analyses.

Neuronal Responses of Available Options

The behavioral factors that were tested in this study are mostly choice-dependent. Recent 

studies revealed that alternative choice options also affect the decision process during 

learning. The alternative outcomes are used as hypothetical outcomes to update the action 

value functions for unchosen actions (Abe and Lee, 2011; Lee et al., 2012). To examine 

the influence of other offered options on neuronal activity, we reran the ANOVA models 

by including an additional factor -- the reward configuration of all presented options (e.g., 

[0.8 0.8 0.2] and [0.8 0.5 0.2]) -- named “all stimuli” (Figures 7C–D). Neurons in the 

recorded areas showed responses to the available options across trials. The chosen stimulus 

still explains more variance than all stimuli, and the phasic response was only observed for 

the chosen stimulus. This result indicates that neurons across the circuitry examined also 

carry information about the available options, but what they care more about is the chosen 

option.

Neuronal Responses to Novelty Detection

We examined how the novel stimuli were represented in the ventral and dorsal circuits. The 

activity of a substantial proportion of neurons encoded the number of trials that a novel 

option had been presented when it was chosen (TSN) in the amygdala, VS, OFC and vlPFC 

(Figure S6A). Although the percentage of responsive neurons was different among these 

regions, the effect sizes of the neurons recorded in these regions were similar (Figure S6B).

We also analyzed the prediction of whether the monkey had chosen the novel, best or worst 

alternative option. Decoding accuracy generally increased with ensemble size (Figure S6C). 

In these regions, decoding accuracy peaked earlier in the vlPFC than in the other regions 

(Figure S6D). In the amygdala, VS, and LPFC regions, accuracy was highest when a novel 

option was introduced and declined over subsequent trials (Figure S6E). For example, in 

the amygdala, the decoding accuracy decreased incrementally across trials (Figure S6F; 

TSN, F (14, 1485) = 85.2, p < 0.0001)). Previous studies suggested that the anterior PFC 
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is specialized for novelty detection (Dobbins and Wagner, 2005). However, our decoding 

analysis showed that the rdlPFC did not show strong coding for novelty (Figures S6C–D). 

Perhaps area 10 would show stronger novelty coding.

DISCUSSION

We examined the representation of visual stimulus, spatial-motor, choice value, and outcome 

information in the amygdala, VS, OFC, and multiple LPFC regions while monkeys carried 

out a three-armed bandit reinforcement learning task. We found that neurons recorded across 

these areas most strongly encoded visual stimulus, spatial-motor and outcome information. 

The values of choices were less robustly encoded across all areas. Information about the 

preferred stimuli, including the stimulus identity and value of the option, was maintained in 

the amygdala, VS and OFC between trials. When the stimuli were presented and the monkey 

made a choice, this information was represented in the LPFC regions along with spatial 

information necessary to acquire the chosen stimulus (Averbeck and Murray, 2020). These 

results indicate that, during learning, the learned value information is maintained throughout 

the ventral corticostriatal circuit. It then propagates through the dorsal circuit when a choice 

is made (Tang et al., 2021).

Ventral and Dorsal Streams in Reinforcement Learning

There is a topographic organization of the corticostriatal circuit that underlies goal-directed 

behavior (Alexander et al., 1986; Averbeck et al., 2014; Haber et al., 2006). We previously 

proposed that the circuit can be divided into ventral and dorsal circuits (Averbeck and 

Murray, 2020; Neftci and Averbeck, 2019). In the ventral circuit, temporal lobe structures, 

including the amygdala, hippocampus, and rhinal cortical areas, project to the ventromedial 

prefrontal cortex (vmPFC). Both the temporal lobe structures and vmPFC project to the VS, 

which projects to the ventral pallidum (VP), then to the medial portion of the mediodorsal 

(MD) thalamus, which projects back to the vmPFC (Friedman et al., 2002; Giguere and 

Goldman-Rakic, 1988). These areas also comprise most of the classically defined limbic 

system, which was originally defined as structures with connections to the hypothalamus 

(Maclean, 1952; Nauta, 1958; Papez, 1937). In the dorsal circuit, the inferior and medial 

parietal areas project to the dlPFC (Giarrocco and Averbeck, 2021). Both the inferior 

parietal cortex and dlPFC project to the dorsal striatum, which, considering only the direct 

pathway, projects to the globus pallidus internal segment (GPi), which then projects to 

the lateral portion of the MD thalamus, which projects back to the dlPFC. These two 

segregated frontal-striatal circuits approximately continue the organization of ventral and 

dorsal streams, which characterize the visual cortex (Ungerleider, 1982). Based on the 

anatomy and known properties of nodes in the cortical-subcortical circuits, we further 

suggested that the ventral circuit identifies goals, and the dorsal circuit orchestrates behavior 

to achieve those goals (Averbeck and Murray, 2020; Neftci and Averbeck, 2019). This 

suggestion that portions of the dorsal circuit are important for orchestrating actions has been 

put forward previously by several groups (Cisek and Kalaska, 2010; Goodale and Milner, 

1992; Yoo and Hayden, 2018).
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The results of this experiment support this hypothesis. During the hold period, before the 

stimuli were presented to the monkeys, neurons in the amygdala, VS and OFC encoded 

the identity of the to-be-chosen stimulus. They also encoded the stimulus with a larger 

effect size. This indicates that these areas, which are parts of the ventral circuit, maintain 

the identity of the stimulus that will be chosen in the subsequent trial. Although these 

mono-synaptically connected areas help identify the goals and hold information throughout 

the intertrial interval and fixation period, they also encode other information. The amygdala 

and OFC participated in holding the value of the to-be-chosen stimulus, reflected in the 

encoding of IEV. The amygdala and VS also participated, although weakly, in encoding the 

state value during learning, reflected in the encoding of FEV. The amygdala also strongly 

encoded the expected outcome, reflected in the decoding analysis of a priori reward.

When the choice options were presented, the monkey had to identify the location of the 

preferred stimulus and direct an eye movement towards it. At this point, the identity of 

the visual stimulus and the associated value information that had been represented in the 

ventral circuit were routed through the dorsal circuit, evidenced by robust phasic responses 

to these factors at the time of choice. The LPFC neurons also responded with a phasic burst 

of activity related to the location of the chosen option. Among the prefrontal areas, the 

vlPFC showed the strongest encoding of stimulus identity, consistent with previous research 

showing that vlPFC transforms goals into relevant actions (Cai and Padoa-Schioppa, 2014; 

Tang et al., 2021). In our previous work, we identified information flow from objects to 

actions, from the vlPFC to dlPFC (Tang et al., 2021). The amygdala has strong projections 

to the vlPFC (Ghashghaei et al., 2007), and therefore, this circuit may be one of the routes 

by which information represented in the ventral circuit is routed to the dlPFC to direct an 

eye movement to the relevant location.

Our data also suggests that choice processes, as they are normally represented in RL 

models (Frank, 2005), do not occur at the time of stimulus presentation, at least in multi-

armed bandit tasks in which all options are presented in each trial. We found an elevated 

representation of the stimulus which the monkey would choose throughout the inter-trial 

interval and baseline hold period. Therefore, the monkey had effectively made the choice 

before the options were presented. The elevated activity predicting the stimulus was seen 

even in the dorsal circuit, although it was not as robust as it was in the ventral circuit. 

Similar results have been seen previously in the dorsal system for spatial choice (Averbeck 

and Lee, 2007; Seo et al., 2012). The monkeys did often switch their choices from one trial 

to the next, and our analyses suggest that this switch was more likely to have occurred after 

the stimuli were presented rather than during the inter-trial interval. But these results are 

likely highly dependent on our task design. In experiments in which monkeys cannot predict 

which stimuli they will see from trial to trial, this process might be different (Rudebeck et 
al., 2013; Rudebeck et al., 2017; Taswell et al., 2018).

After the goal had been chosen, all areas responded robustly to the reward outcome (Vickery 

et al., 2011). Interestingly, the phasic response to the outcome first appeared in the OFC, 

after which the signal was consistently represented in the other areas. Thus, it suggests that 

the OFC leads other areas in the frontal-striatal circuit that signal expected outcomes during 

learning, as was indicated by previous studies (Gottfried et al., 2003; Stalnaker et al., 2021).
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These hypotheses are consistent with previous hypotheses that have been put forward for 

ventral and dorsal circuit nodes (Yoo and Hayden, 2018). For example, OFC and amygdala 

are thought to underlie choice value representations during decision making (Blanchard 

et al., 2015; Chau et al., 2015; Padoa-Schioppa and Assad, 2006; Rudebeck et al., 2017; 

Schoenbaum et al., 1998; Wallis and Miller, 2003). However, within the context of decision 

making, the goal is not apparent until the options are presented on the screen, leading to 

a dynamic decision process at the time of choice. Our study extends these hypotheses to 

situations in which the goals have been defined by learning, and therefore can be represented 

internally. Furthermore, extensive work has shown that the dorsal system is important for 

spatial attention and working memory processes (Akhlaghpour et al., 2016; Bichot et al., 

2019; Constantinidis et al., 2001). We here integrate these ideas within an RL framework 

and compare the dynamics of goal representation, including non-spatial aspects of goals 

(i.e., the specific visual stimulus), between ventral and dorsal system structures.

Functional Organization of the LPFC

In related work, we have recently shown a substantial caudo-rostral gradient for the 

representation of objects and spatial information in the LPFC (Tang et al., 2021). The 

neuronal populations in the caudal LPFC showed stronger encoding and a shorter response 

latency than the rostral LPFC populations for both object and spatial information. The 

analyses on the representation of chosen stimulus and direction information in the current 

study confirmed the finding in a second behavioral task collected from the same animals. 

Most studies supporting a caudo-rostral organization of the LPFC have suggested that the 

rostral part of the PFC processes more abstract rules (Badre and D’Esposito, 2009) or 

carries out domain-general feature integration operations (Courtney, 2004). In our previous 

study, we examined the caudo-rostral representation of an abstract rule that defined the 

relevant learning dimension. However, we did not find an enriched representation more 

rostrally (Tang et al., 2021). In the current study, value information is also a type of 

abstract information maintained by the monkeys. Similar to the representation of sensory 

and action information, phasic increases in value information encoding also occur along 

the caudo-rostral axis of the LPFC. Along the caudo-rostral axis, more neurons in more 

caudal areas participate in the encoding of learned value information, including the IEV, 

FEV, and exploration BONUS. This result further supports the hypothesis that the apex of 

the prefrontal hierarchy resides in the medial LPFC rather than the rostral LPFC (Goulas et 

al., 2014; Power et al., 2011).

Conclusion

In conclusion, we found that learned value information specifying behavioral goals was 

maintained throughout the ventral corticostriatal circuit, and it was routed through the dorsal 

corticostriatal circuit to direct an eye movement to achieve the goal when a choice was 

made. This supports the hypothesis that the ventral corticostriatal circuit defines behavioral 

goals, and the dorsal circuit generates actions to obtain those goals.

Limitations of the study

There are several limitations to our results. First, different recording technologies were 

used for the ventral and dorsal system areas. Although we have shown that the different 
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methods do not change our main conclusions, it is possible that the different methods have 

contributed to some of the differential signals between ventral and dorsal circuits. Second, 

we haven’t sampled evenly from the ventral and dorsal networks, and only the LPFC regions 

were recorded for the dorsal network. Although we have recorded neurons from the dorsal 

striatum in the past (Seo et al., 2012), we did not do so in the current study. In the previous 

study, we compared the dlPFC to caudate in a sequence learning task. We found that the 

caudate and dlPFC carry many of the same signals, which are consistent with the direction 

signals we see in the current study. We are currently carrying out additional experiments 

looking at the integration of signals within ventral and dorsal circuits, and therefore we will 

record from more of these structures in the future.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Bruno B. Averbeck 

(bruno.averbeck@nih.gov).

Materials availability—This study did not generate new unique reagents.

Data and code availability—The datasets supporting the current study have been 

deposited at Mendeley.com and are publicly available as of the date of publication. DOIs are 

listed in the key resources table.

All original code has been deposited at Mendeley.com and is publicly available as of the date 

of publication. DOIs are listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The experiments were performed on five (two for chronic recording, three for acute 

recording) adult male rhesus macaques (Macca mulatta), weighing 6.7 – 9.3 kg, and 5 – 

8 years old. The monkeys were pair-housed when possible, and they had access to food 

24 hours per day. On testing days, the monkeys were placed on water control and earned 

their juice through performing the task. On non-testing days the monkeys were given ad 
libitum access to water. Experimental procedures for all monkeys were performed following 

the Guide for the Care and Use of Laboratory Animals and were approved by the National 

Institute of Mental Health Animal Care and Use Committee.

METHOD DETAILS

Experimental Setup—Monkeys were trained to perform a saccade-based three-armed 

bandit task. Stimuli were presented on a 19-inch LCD monitor situated 40 cm from 

monkey eyes. During training and testing, the monkeys sat in a monkey chair with their 

heads restrained. Stimulus presentation and behavioral monitoring were controlled by 

Monkeylogic (Hwang et al., 2019). The movement of eyes was monitored at 400 fps using 
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Viewpoint eye tracker (Arrington Research, Scottsdale, AZ) and sampled at 1 kHz. A fixed 

amount of apple juice was delivered through a pressurized plastic tube gated by a solenoid 

valve on rewarded trials.

Behavioral Task—The three-armed bandit reinforcement learning task (Figures 1A–B) 

was previously used (Costa et al., 2019; Costa et al., 2014). It is based on a multi-armed 

bandit task used in human studies of explore-exploit behavior (Averbeck et al., 2013; 

Djamshidian et al., 2011; Wittmann et al., 2008). On each trial, the monkey had to first 

acquire and hold central fixation for 500–750 ms. Then, three images were presented at the 

vertices of a triangle. The main vertex of the triangle was either pointed up or down (Figure 

3B) and was randomized from trial to trial. The animals were required to saccade to one of 

the images and maintain the fixation for 500 ms. After that, a juice reward was delivered 

probabilistically.

Each session has multiple sets (108 sets for chronic recordings, 32 sets for acute recordings). 

In each set, a novel image was introduced. It randomly replaced one of the existing 

images. Each single choice option could be presented for no more than 160 consecutive 

trials. The trial interval between the introduction of two novel images followed a discrete 

uniform distribution, j ∈ [10, 30]. At the start of a session, the three initial images were 

randomly assigned a reward probability of 0.2, 0.5 or 0.8. Novel images were also randomly 

assigned one of these reward probabilities when they were introduced. The assigned reward 

probabilities were fixed for each image. No more than two of the three images in the same 

set could be assigned the same reward probability.

Neurophysiological Recordings—Three monkeys were implanted with 28 × 36 mm 

recording chambers to allow bilateral vertical grid access to the amygdala, VS and OFC 

(Figure 1C), which has been described in detail previously (Costa and Averbeck, 2020; 

Costa et al., 2019). Chamber placements were planned and verified through magnetic 

resonance imaging (MRI). We recorded from each structure simultaneously using single 

tungsten microelectrodes (FHC, Inc. or Alpha Omega, 0.8 – 1.5 MΩ at 1 kHz). Up to four 

electrodes were lowered into each structure simultaneously. The electrodes were advanced to 

their target location by an 8-channel micromanipulator (NAN Instruments, Nazareth, Israel) 

attached to the recording chamber. Multi-channel spike recordings were acquired with a 

16-channel data acquisition system (Tucker Davis Technologies, Alachua, FL). Extracellular 

signals were amplified, filtered (0.3 – 8 kHz), digitized at 24.4 kHz, and saved for offline 

sorting. Offline sorting was based on principal-components analysis, visually differentiated 

waveforms, and inter-spike interval histograms.

The other two monkeys were implanted with eight Utah arrays (BlackRock Microsystems, 

Salt Lake City, UT) over the LPFC, surrounding the principal sulcus (Figure 1C). Four 

96-electrode (10 × 10 layout) arrays were implanted in each hemisphere (Tang et al., 2021). 

Details of the surgery and implant design have been described previously (Mitz et al., 
2017). Neurophysiology recordings began after the monkeys had recovered from the surgery. 

Signals were collected using the Grapevine System (Ripple, Salt Lake City, UT). The 

recording system consisted of two Neural Interface Processors (NIPs). Each NIP included 

384 channels and was connected to four Utah arrays. The spike acquisition threshold was 
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set at a 4.5 × root mean square (RMS) of the baseline signal for each electrode. Behavioral 

event markers from MonkeyLogic and eye-tracking signals from Viewpoint were split and 

sent to each Ripple box. The raw extracellular signals were high-pass filtered (1 kHz cutoff) 

and digitized at 30 kHz to acquire the single-unit activity. Spikes were sorted offline via 

MKsort (https://github.com/ripple-neuro/Mksort).

It has been revealed that acute recordings are biased towards high firing, task-responsive, 

pyramidal neurons, and the electrodes in the Utah array are all the same length, causing 

neurons to be recorded from the same layer (Nurmikko, 2020). It could be possible that 

the different recording methods have contributed to the differential signals between ventral 

and dorsal circuits. Our results confirmed that the recording method affected the selection 

of neurons. Acute recordings biased higher firing neurons (Figure S7A). However, the 

z-scored activity for these neuron populations didn’t show much difference (Figure S7B). 

We used z-scored activity in most of our analysis, including neuronal activity presentation 

and ANOVA models. We found the different recording methods do not change our main 

conclusions for the following reasons. 1) Fewer acute-recorded neurons responded to task 

factors, which does not match the expectation of acute recording bias more task-relevant 

neurons. 2) We carried out decoding of choice outcomes as a control. Decoding accuracies 

among the areas were similar to each other.

QUANTIFICATION AND STATISTICAL ANALYSIS

Choice behavior—We quantified choice behavior during the task in two ways. We 

computed the possibility that the monkey chose either the novel choice option, best or 

worst alternative option, up to 20 trials after a novel option was introduced. The best 

alternative option was defined as the remaining option with the highest IEV. In cases the 

remaining alternative options had equivalent IEVs, the best alternative was defined as the 

option with the higher action value as estimated by the POMDP model. We also computed 

the fraction of times the monkeys chose the novel option based on their a priori assigned 

reward probabilities.

Partially Observable Markov Decision Process Model—We modeled the task using 

an infinite horizon, discrete-time, discounted, partially observable Markov decision process 

(POMDP), details of which were published previously (Averbeck, 2015; Costa et al., 2019). 

The utility, u, of a state, s, at time t is

ut st = maxa ∈ Ast r st, a + γ∑j ∈ S p(j |st, a)ut + 1 j

where Ast is the set of available actions in state s at time t, r(st, a) is the reward that will be 

obtained in state s at time t if action a is taken. The summation on j is taken over the set 

of possible subsequent states, s at time t + 1. It is the expected future utility, taken across 

the transition probability distribution p(j|st, a). The transition probability is the probability 

of transitioning into each state j from the current state, st if one takes action a. The γ term 

represents a discount factor, set to 0.99 for the current analyses. The terms inside the curly 
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brackets are the action value, Q(st, a) = r(st, a) + γ Σj∈S p(j|st, a)ut+1(j), for each available 

action.

Neural data—To present the general feature of neural activity across brain areas, all trials 

on which monkeys chose one of the three stimuli were analyzed. Trials with the monkey 

broke fixation, failed to make a choice, or attempted to saccade to more than one target 

were excluded. On valid trials, the firing rate of each neuron was computed in 200 ms bins, 

advanced in 50 ms increments, time-locked to the onset of stimulus or outcome.

To identify the neurons’ response to different task components, we fitted a sliding window 

ANOVA model to windowed spike counts, with 200 ms bins and 50 ms steps. Factors, 

including chosen stimulus (Stimulus), saccade direction (Direction), the orientation of the 

stimulus set (Orientation), linear trial number since the latest novel option was introduced 

(TSN), the outcome of the current (Outcome) and previous trial (Outcome (t-1)), and the 

choice values (IEV, FEV, BONUS) were used in the model. IEV was modeled as two 

factors, the a priori reward probability of the chosen option (i.e., 0.2, 0.5 or 0.8, modeled 

as a fixed effect) and the difference between the current estimate of reward and the chosen 

IEV value, which modeled the learning of value. A neuron was considered responsive to 

IEV when either of the two factors reached half of the normal significance level (i. e., α 
= 0.025). The chosen Stimulus was nested under a priori reward probability. The Direction 

was nested under Orientation. IEV, FEV, BONUS and TSN were continuous factors. All the 

other factors were modeled with factor levels. To facilitate comparison across brain areas 

(Figure S1), only the first 600 trials in each session were used in the ANOVA model.

Task-responsive neurons—Significant encoding for each factor at each time bin was 

evaluated at p < 0.05. A neuron that showed a significant response to a factor in no less 

than three continual bins in the ANOVA model was confided to be a responsive neuron to 

that specific factor. The time window of interest was -1000 to 0 ms to the onset of stimulus 

for factor Outcome (t-1), 0 to 1000 ms to the onset of outcome for factor Outcome, and 0 

to 1000 ms to the onset of stimulus for the rest factors. The binomial test was applied to 

test whether the fraction of responsive neurons is significantly above chance level (5%). The 

Chi-square test was used to compare the proportions of responsive neurons between different 

pairs of brain areas.

Effect size—We also computed the effect size, omega-squared, for each factor from the 

ANOVA model output. Omega-squared is an unbiased estimator of the amount of variance 

in neural activity explained by each task factor, ranges between -1 and 1 (Olejnik and 

Algina, 2000), given by:

ω2 =
dfeffect × MSeffect − MSerror

SStotal + MSerror

Here, dfeffect represents the degrees of freedom associated with the factor, MSeffect 

represents the mean squares, MSerror is the mean squared error, SStotal is the sum of squares 

of all factors.
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Decoding analyses—The decoding analyses were carried out on pseudo-populations of 

neurons that were, mostly, not recorded simultaneously. We assembled pseudo-populations 

of neurons recorded across recording sessions and decoded either the a priori reward 

probability of the chosen stimulus (i.e., 0.2, 0.5, or 0.8), saccade Direction (i.e., six 

locations), or Outcome (i.e., rewarded or not rewarded) on the current trial. For each cell, 

we used the first 300 trials across all the conditions. Analyses were carried out using leave-

one-trial-out cross-validation. The model was fitted with the remaining trials and tested on 

the trial that held out of the analysis. The neurons used in the decoding analyses were 

assembled by sampling, without replacement, from the larger population pseudo-randomly. 

The decoding accuracy was computed in 200 ms bins, advanced in 50 ms increments, and 

time-locked to either the onset of stimulus or outcome.

For the decoding analyses, Z-test was applied to test significant differences between the 

actual results and the shuffled results. The shuffled results were calculated with the same 

neurons and trials used in the actual data, but with the trial order shuffled across different 

conditions. The actual data with a mean outside the 95% confidence interval of the shuffled 

data was confided showed a significant response. The variability of each decoding accuracy 

across different areas was estimated using a bootstrap procedure. According to the null 

hypothesis, we generated data with no differences among the areas by sampling with 

replacement from the combined set of all areas. All the null bootstrap sets contained 

combinations of trials from all seven areas. We then calculated the F-value, between-group 

variability divided by within-group variability, for each bootstrap trial set. We did this 

1000 times. It gave us 1000 different sampled F-values from the null distribution. We then 

compared the F-value of the actual data to the F-values in the null distribution. If the actual 

F-value is in the 95% confidence interval of the null distribution, it means the decoding 

accuracy is significantly different among the areas (i.e., p < 0.05).

Influence of ensemble size—Decoding analyses of different ensemble sizes were 

performed using the average activity of pseudo-population neurons, with 100 times 

repetition. The activity of each neuron was the mean firing rate during 250 to 750 ms 

(i.e., 500 ms bin) after stimulus onset (for a priori reward and Direction) or outcome onset 

(for Outcome).

Projection of information to neuron populations—We estimated the amount of 

information in an ensemble of different sizes by using the decoding accuracy as a function of 

ensemble size to fit the saturating function (Abbott and Dayan, 1999; Zohary et al., 1994) as 

follows:

Y = bN
a + N

Where Y  is the predicted decoding accuracy (minus chance level), N is the ensemble size, b 
is the asymptotic information, and a is the saturation rate.

Tang et al. Page 17

Cell Rep. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Task, behavior, and recording locations.
(A) Structure of an individual trial. Successive frames illustrate the sequence of events.

(B) Each session included i sets, i = 32 for acute recordings, i = 108 for chronic recordings; 

each set had j trials, j ∈ [10, 30]. Each session began with presenting three novel images, 

which were randomly assigned a reward probability of 0.2, 0.5 or 0.8. At the beginning of 

each new set, one of the existing options was randomly replaced with a novel image. The 

novel option was randomly assigned its reward probability as well. Images with naturalistic 

scenes were used as stimuli in the task and were never repeated across sessions. For 

simplicity, they are represented by simple visual stimuli here.
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(C) Schematic recording locations. Four Utah arrays (yellow) were implanted in the LPFC 

of each hemisphere. Insets show the recording cites in the amygdala (red), ventral striatum 

(green) and OFC (blue).

(D) Fraction of times the monkeys chose the novel, best or worst alternative options in terms 

of the number of trials since a novel option was introduced.

(E) Fraction of times the monkeys chose novel options based on their a priori assigned 

reward values. High, medium and low means 0.8, 0.5 and 0.2.

(F) Mean trial-by-trial changes in the IEV of novel options with different a priori assigned 

reward values.

(G) Mean trial-by-trial changes in the FEV, averaged across all three options, as a function 

of the maximum available IEV.

(H) Mean trial-by-trial changes in the exploration BONUS for choosing each option type.

(D-H) Shaded zones represent mean ± SEM. Results were averaged from five monkeys, n = 

5.
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Figure 2. Neural activity in the amygdala, ventral striatum, OFC, and LPFC.
(A) Heatmaps of activity of all the neurons recorded from the amygdala (n = 360), VS (n = 

314), OFC (n = 149), rdlPFC (n = 635), mdlPFC (n = 980), cdlPFC (n = 1375) and vlPFC 

(n = 665). Firing rates were z-scored based on activity during the hold period. Warmer colors 

indicate higher firing rates. Neurons were aligned to the onset of outcome, and rank-ordered 

by the difference between the amplitude of their responses to stimuli and outcomes.

(B) Responses to stimuli and outcomes for each neuron. Each circle represents one neuron. 

The colorful circles represent neurons that showed significantly different (paired t-test, 

p < 0.01) responses between stimuli and outcomes. The gray circles represent the non-

significant neurons.

(C) Average responses of all the neurons when the animals chose the novel, best alternative, 

or worst alternative options. Only the first three trials since the novel options were assigned 

were used. The black asterisks indicate a significant difference (one-way ANOVA, p < 0.05) 

among different trial groups.

(D-F) Average responses of all the neurons in each area, data aligned to the onset of 

stimulus, choice, or outcome.
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(G) Mean z-scored neuronal responses recorded in each area to stimuli and outcomes. 

Summary of Figure 2B. Paired t-test, *p < 0.05, **p < 0.01, ***p < 0.001.

(C-G) Shaded zones and error bars represent mean ± SEM.
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Figure 3. Neuronal responses of an example neuron.
An example cdlPFC neuron responded to all nine factors used in the ANOVA model. For 

each factor, the raster plot is located in the medial. Each row in the raster plot represents 

the spikes during a trial. Blue, green, yellow and red dots represent fixations, cues, choices 

and outcomes. The color bars by the raster plot side show the trial groups with different 

conditions. The curves below the raster plot indicate this neuron’s average activity, split by 

the trial groups defined by the color bars. The grey-scale bar above the raster plot shows the 

significant level of this neuron for the specific factor along the time course of a trial, and 

white means not significant (p > 0.05).
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2514 trials were performed in this session. For Direction (B), the inset shows the screen 

location of saccade directions and the relationship between Direction and Orientation. For 

TSN (F), only the trials appeared within the first 15 trials since novel options were included, 

which resulted in 1689 trials.
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Figure 4. Population encoding of chosen stimulus, direction and outcome.
(A-C) Percentage of responsive neurons in each area encoding the Stimulus (A), Direction 

(B) of the chosen option, and the Outcome on the current trial (C). Data were aligned 

to either the onset of stimulus or outcome. Insets: mean fraction of responsive neurons 

during the hold period for Stimulus (A), during the following cue period (250 to 750 ms 

after stimulus onset) for Direction (B), during the following reward period (250 to 750 ms 

after outcome onset) for Outcome (C). Dashed horizontal lines represent chance levels. The 

colored asterisks indicate a significant difference between the corresponding area and chance 

level (binomial test, p < 0.01). Statistics for the between areas analyses (insets) are indicated 

in Table S2. Only the neuronal activity collected from the first 600 trials was used in these 

analyses. Results of using different numbers of trials can be found in Figure S1.

(D-F) Mean effect size (ω2) for the task-responsive neurons encoding the Stimulus (D), 

Direction (E) of the chosen option, and the Outcome on the current trial (F). The black 

asterisks at the top of each panel indicate a significant difference among the seven areas 

(one-way ANOVA, p < 0.01). The colored asterisks indicate a significant difference between 

the corresponding area and its hold period (paired t-test, p < 0.01). Shaded zones represent 

mean ± SEM. The number of neurons used in the effect size analyses is indicated in Table 

S3.
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Figure 5. Population encoding of POMDP derived value signals.
(A-C) Percentage of responsive neurons in each area encoding the IEV (A), FEV (B) and 

BONUS (C) of the chosen options. Insets: mean fraction of responsive neurons during the 

hold period for IEV (A), throughout the whole trial (-1000 to 2000 ms to stimulus onset) 

for FEV (B), during the following reward period for BONUS (C). Statistics for the between 

areas analyses (insets) are indicated in Table S2.

(D-F) Mean effect size (ω2) for the responsive neurons encoding the IEV (D), FEV (E) and 

BONUS (F) of the chosen options. Conventions are the same as Figure 4.

(G) Mean peak value of the effect size of the responsive neurons. Error bars represent mean 

± SEM. The number of neurons used in the effect size analyses is indicated in Table S3.
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Figure 6. Decoding of choices and outcomes.
(A-C) Decoding accuracy in predicting the a priori assigned reward value of choices 

(A), saccade Direction (B), and Outcome on the current trial (C) as a function of pseudo-

population size. The black asterisks at the top of the panel indicate a significant difference 

among the seven areas (bootstrap test, p < 0.05).

(D-F) Time course of mean decoding accuracy of a priori assigned reward value of choices 

(D), saccade Direction (E), and Outcome on the current trial (F) using a pseudo-population 

of 100 neurons. The colored asterisks indicate a significant difference (two sides Z-test, p < 

0.05) between the decoding results and the shuffled data. Dashed lines represent the mean 
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decoding accuracy of shuffled data. For simplicity, shaded zones in the line plots represent 

mean ± SEM, and standard deviations are indicated by the error bars in the bar plots (G-I). 

Results were averaged from 100 repetitions, n = 100.

(G-I) Decoding accuracy of a priori assigned reward value (G), saccade Direction (H), and 

current trial Outcome (I), averaged from the hold period (G), 250 to 750 ms since stimulus 

onset (G) or outcome onset (I). Bootstrap test; *p < 0.05, n. s. - not significant. Results were 

averaged from 100 repetitions, n = 100.

(J) Mean decoding accuracy of saccade Direction and the fitting curves based on the 

saturating function.

(K-L) Estimated parameters 1/a (K) and b + chance level (L), based on the saturating 

function. Dashed gray lines represent chance levels.
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Figure 7. Neuronal representation of decision switches and available options.
(A) Percentage of responsive neurons in each area encoding the chosen Stimulus when 

the current chosen Stimulus was the same as the chosen Stimulus on the previous trial 

(Stay). The dashed horizontal line represents chance level. The colored asterisks indicate 

a significant difference between the Stay and Switch (solid curves in Figure 7B) trials 

(Chi-square test, p < 0.01).

(B) Percentage of responsive neurons in each area encoding the chosen Stimulus when 

the current chosen Stimulus was different from the chosen Stimulus on the previous trial 

(Switch). Solid curves indicate the percentage of neurons encoding the current chosen 

Stimulus; the dashed curves indicate the percentage of neurons encoding the previous 

chosen Stimulus. The colored asterisks indicate a significant difference between the 

percentage of neurons that responded to the current and previous chosen Stimulus (Chi-

square test, p < 0.01). Only the neuronal activity collected from the first 200 trials in each 

condition was used in these analyses.

(C-D) Percentage of responsive neurons in each area encoding the chosen Stimulus (C) and 

all stimuli presented to the monkeys (D) in the current trial. The colored asterisks indicate 

a significant difference between the corresponding area and chance level (binomial test, p < 

0.01).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw dataset and analysis code This paper doi: 10.17632/zwt3kwv4xk.1

Experimental models: Organisms/strains

Rhesus macaques (Macaca mulatta) NIMH/NIH N/A

Software and algorithms

MATLAB R2020b MathWorks Inc. https://www.mathworks.com/products/matlab.html

Monkeylogic NIMH/NIH https://monkeylogic.nimh.nih.gov/about.html

Adobe Illustrator 2021 Adobe https://www.adobe.com/products/illustrator.html

Other

Utah array BlackRock Microsystems https://blackrockneurotech.com/research/products/#electrodes

Microelectrode FHC https://www.fh-co.com/product/metal-microelectrodes/

Microelectrode Alpha Omega https://www.alphaomega-eng.com/Acute-Electrode-2-2
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