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Abstract: In the wake of Chernobyl and Fukushima accidents, radiocesium has become a radionu-
clide of most environmental concern. The ease with which this radionuclide moves through the
environment and is taken up by plants and animals is governed by its chemical forms and site-specific
environmental characteristics. Distinctions in climate and geomorphology, as well as 137Cs speciation
in the fallout, result in differences in the migration rates of 137Cs in the environment and rates of its
natural attenuation. In Fukushima areas, 137Cs was strongly bound to soil and sediment particles,
with its bioavailability being reduced as a result. Up to 80% of the deposited 137Cs on the soil was
reported to be incorporated in hot glassy particles (CsMPs) insoluble in water. Disintegration of these
particles in the environment is much slower than that of Chernobyl-derived fuel particles. The higher
annual precipitation and steep slopes in Fukushima-contaminated areas are conducive to higher
erosion and higher total radiocesium wash-off. Among the common features in the 137Cs behavior in
Chernobyl and Fukushima are a slow decrease in the 137Cs activity concentration in small, closed,
and semi-closed lakes and its particular seasonal variations: increase in the summer and decrease in
the winter.

Keywords: Fukushima; Chernobyl; NPP; radiocesium; hot particles; leaching; sorption; fixation; soil;
water; environment

1. Introduction

The disasters at the Chernobyl nuclear power plant (ChNPP) (USSR, April 1986)
and Fukushima Daiichi nuclear power plant (FDNPP) (Japan, March 2011) are the only
two nuclear accidents rated as level 7 by the INES (International Nuclear Event Scale)
of the International Atomic Energy Agency (IAEA). Both accidents led to the large-scale
radioactive contamination of the environment [1,2], and in both cases, the radionuclide of
most significance for the environment, defining long-term consequences, is 137Cs with a
half-life of 30.2 years [3,4].

The behavior of accidentally released radionuclides in the terrestrial and aquatic
environment is contingent on the interrelationship of their chemical forms in the fallout
and the characteristics of the environment determining the rates of their transformation
and transport processes [5–9]. Of major importance are the geoclimatic characteristics of
the contamination zone such as precipitation, mean annual air temperature, terrain, and
land use [8,10]. The climate and geographical conditions for Fukushima Prefecture of Japan
and the Chernobyl-contaminated areas of Ukraine, Belarus, and Russia display substantial
differences. The catchments of the Chernobyl zone are flat and characterized by minor
slopes, whereas Fukushima’s catchments are mainly hilly and have relatively steep slopes.
Annual precipitation also markedly differs and is more than two times higher in the FDNPP
area (1420 mm) [11] than at Chernobyl (625 mm) [8,9]. Moreover, in the Fukushima region,
high flow events in rivers occur especially during the typhoon season, which is conducive
for radionuclide wash-off from contaminated catchments and its lateral migration [12–16].

A large difference exists between the soils of the Fukushima- and Chernobyl-contaminated
areas. The Chernobyl soils are made of outwash sands and alluvial deposits, mainly of
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loamy-sand composition containing a lower proportion of silty fraction as compared with
the Fukushima region. Parent rock materials in Fukushima are primarily granites and
volcanic ashes that are subject to physicochemical weathering in the humid monsoon
climate conditions. The proportion of clays in Fukushima is 20–30% [17], which is higher
than those in the sandy loam soils of the Chernobyl area, even though the sand fraction
makes up 40–50% in both Fukushima and Chernobyl, on the average [18].

In addition to geoclimatic differences, the speciation of initially deposited 137Cs at
Fukushima and Chernobyl differed [9,19]. Thus, the difference in the initial speciation of
137Cs in Chernobyl and Fukushima, as well as the distinctions in the composition of the
soils, along with the dissimilarity in geoclimatic conditions, could be responsible for the
differences in the radiocesium fate in the environment. The objective of this review was to
analyze available data on the long-term behavior of Chernobyl- and Fukushima-derived
radiocesium in a soil–water environment to identify qualitative and quantitative similarities
and differences. It also aims to compare major governing factors and characteristics of the
radiocesium fate and transport in the environment.

2. Speciation of Radiocesium and Its Transformation in Soil–Water Environment
2.1. Release of Hot Particles following Chernobyl and Fukushima Accidents
2.1.1. Chernobyl

Owing to the explosion shock wave, temperature gradient, and oxidation of nuclear
fuel, hot (highly radioactive) fuel particles were formed. The release of these fuel particles
into the environment was the main distinguishing feature of the radioactive contamination
following the Chernobyl accident [5,20–25]. The radionuclide composition of the fuel
particles was similar to the fuel make-up in the damaged unit with some depletion of
volatile nuclides (131I, 134,137Cs, 106Ru, etc.). Sizes of deposited fuel particles after the
Chernobyl accident ranged from hundreds of microns to a fraction of a micron [23]. Within
the 30 km zone of the Chernobyl NPP, up to 105 particles/m2 have been observed [22].
Surface loading of fuel particles decreased with an increasing distance from the reactor
site [23].

Due to the accident, considerable amounts of volatile fission products (I, Cs, and
others) were released into the air and partly condensed on inert particle carriers [21,25].
The hot particles formed in this way had contaminated surfaces and were characterized
by a lower specific activity compared with fuel particles [25,26]. Radiocesium compounds
condensed on the surfaces of dust particles are normally soluble in water since Cs is an
alkali element, and, therefore, they dissolve in raindrops in the atmosphere, soil solution,
or water bodies. On the other hand, radiocesium incorporated in fuel particles is not
available for direct exchange with water and dissolution. It is nonexchangeable, less mobile,
and bioavailable as compared with the radiocesium of condensation particles [25–28].
Condensation particles formed following the Chernobyl accident were similar to the global
fallout after nuclear weapon tests, and their behavior in the environment could be foreseen
with fairly good precision [21]. At the same time, before the Chernobyl accident, it was
not known how fuel particles could behave, and, therefore, this was a major scientific
challenge [5,21,23,27].

Due to the presence of water-insoluble fuel particles, the mobility and bioavailability
of deposited radiocesium were low in the nearby zone and depended on the distance from
the damaged unit [7,27]. For example, the fraction of nonexchangeable 137Cs in the fallout
near Chernobyl was about 75% [21,28]; in the Bryansk region, it was 40–60% [27]; and
in Cumbria (UK), it was about 10% [29]. Therefore, the Chernobyl radiocesium was less
mobile and bioavailable in the area close to the NPP than in remote areas, especially in
Western Europe [29–32].

Radionuclide leaching from fuel particles was the key process with respect to the trans-
formation of its speciation in a soil–water environment after the Chernobyl accident in the
midterm and for some specific conditions in the long term [5,21,27,33–36]. Radionuclides
are released from fuel particles by three mechanisms: (1) due to the diffusion from the



Toxics 2022, 10, 578 3 of 25

particle to the surface and passing into the solution; (2) by mechanical disintegration of the
particle and the correspondent increase in the surface of the solid–liquid interface; and (3)
with the dissolution of the fuel matrix [33]. Pure uranium dioxide (nuclear fuel) is known to
slowly dissolve even in concentrated acids [37]. In natural conditions, however, tetravalent
uranium U(IV) is easily oxidized by atmospheric oxygen to its hexavalent U(VI) state,
which more readily dissolves in aqueous media compared with U(IV) [35,37]. The crystals
of UO2, when in water, are quickly covered by an oxide film of UO2+x, where 0 < x < 1, and
the rate of further oxidation is determined by the diffusion of oxygen and the surface area of
the crystal. In addition to oxygen, UO2 can be oxidized by other oxidizers such as trivalent
iron Fe (III) or hydrogen peroxide, molecules of which can be formed in the vicinity of the
hot particle as a result of water radiolysis. The dissolution of oxidized uranium is facilitated
by the presence of inorganic carbonates and sulfates, as well as organic ligands [37].

Bogatov et al. (1990) stated that the main mechanism of radionuclide leaching from
fuel particles was the dissolution of the uranium matrix. In their study, the dissolution rate
was estimated to be (0.57–16) × 10−5 g/cm2day at the contact of particles of different size
with solutions modeling aqueous media [20]. The diffusion release rate for radionuclides
was determined by these researchers using the method of layer dissolution of particles.
Based on the depletion of surface layers, the diffusion coefficients were estimated to be
close and equal to (2–4) × 10−17 cm2/s for 137Cs, 90Sr, 238,239,240Pu, 241Am [20]. The ability
of fuel particles, being aggregates of fine crystals of uranium oxides, to easily break down
at physical impact was indicated by many authors. The breakdown of fuel particles is
facilitated by a large number of radiation–thermal defects in their structure. As a result of
disintegration, the mean size of hot particles is decreasing, and the part of particles with
high activity is declining. Consequently, the rate of the radionuclide release from the fuel
matrix by both mechanisms (diffusion and dissolution) should be growing [7,27].

2.1.2. Fukushima

Following the FDNPP accident, radiocesium was first assumed to have deposited in
water-soluble forms [38] and transported in the atmosphere by sulfate aerosol particles of
0.5–0.6 µm diameter. Yet, spherical glassy hot particles of a few micrometers in diameter
were discovered later as far as 170 km from the FDNPP, containing, apart from radiocesium,
uranium and other elements representative of reactor materials [39,40]. Similar particles
have been identified by Niimura et al. (2015) using autoradiography of soils, plants, and
mushrooms [41]. Near the FDNPP, even coarser particles (up to hundreds of micrometers)
were later identified with higher radiocesium activity (sometimes more than 1000 Bq per
particle) and irregular shape [42]. These radiocesium-bearing microparticles (CsMPs) are
primarily composed of SiO2 [43]. In terms of radiocesium fate and transport, it is important
that CsMPs are insoluble in water and persistent in the environment [42,44]. For adequate
modeling and prediction of Fukushima-derived radiocesium behavior in the environment,
it is necessary to know the fraction of CsMPs activity in the total radiocesium release and
deposition at different locations and the rate of radiocesium leaching from CsMPs due
to decomposition.

Quantitative characterization of CsMPs in surface soils at different directions from
the FDNPP was performed in [45,46]. The amount of CsMPs in surface soils at various
directions, distances, and deposition levels in the soils was 0.9–101 particles/g, and the
fraction of radiocesium embedded in CsMPs out of the total amount of deposited radioce-
sium was 15–80%. The presence of CsMPs in soils and sediments has a major impact on
the radiocesium solid–liquid distribution in the soil–water environment [47]. The fact that
the fraction of CsMPs in the deposition significantly varies in different locations makes
it difficult to model the radiocesium behavior. As a result, uncertainty in the prediction
of the mobility and bioavailability of radiocesium in the soil–water environment and its
dynamics is increasing [48].

CsMPs were also identified in the suspended sediments of the Kuchibuto River,
which is one of the most contaminated tributaries of the Abukuma River, where the
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fraction of radiocesium embedded in CsMPs out of the total amount of Fukushima-derived
radiocesium in sediments was up to 67% [49].

2.2. Transformation of Basic Radiocesium Chemical Forms in Soil–Water Environment

After the soil–water environment is contaminated, the initial chemical forms of ra-
dionuclides are subject to transformation [5,7,27,50,51]. With hot particles (fuel particles in
Chernobyl [5,7,27,33,34,36] and CsMPs in Fukushima [52–54]) disintegrated, radiocesium
incorporated in these particles transfers to the solution. In the solution, radiocesium is
sorbed by the soil and sediment particles by ion exchange [5,7,27,53,55–63]. Exchangeably
sorbed radiocesium is fixed by micaceous clay minerals due to the replacement of the inter-
layer K-cations by Cs-cations [5,7,55,57,58,64,65]. Fixation of radionuclides is understood
as the transformation of their exchangeable form to nonexchangeable. Some researchers be-
lieve that the mechanism of radiocesium fixation consists of the replacement of interlattice
K+ by Cs+ ions due to the collapse of the expanded edges of the mineral’s crystal interlayers
and/or the slow long-term solid-state diffusion of Cs+ ions through the interlayer inside
the particle [27,57,58].

Initially, radiocesium fixation was treated as an irreversible process [58]. However,
data about long-term transformation of radionuclide chemical forms in the soil after nuclear
weapon testing [66] and Kyshtym accident [21] and 36-year studies after the Chernobyl
accident are indicative of the existence of the remobilization process, which is the reverse
of fixation [5,67,68]. After the deposition of radiocesium onto the soil, the fraction of its
exchangeable form is not decreasing to zero, as expected for irreversible fixation, but only
decreasing to a certain steady-state level and then not significantly changing [7,21]. The
mechanism of radiocesium remobilization is similar to the mechanism of radiocesium
leaching from hot particles: disintegration or weathering of mineral particles with a newly
emerging solid–liquid interface.

The key transformation processes for radiocesium chemical forms (both Chernobyl
and Fukushima) in the soil–water environment are shown in Figure 1.
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2.2.1. Solid–Liquid Distribution of Radiocesium in Soil–Water Environment in Fukushima
and Chernobyl

The solid–liquid distribution of radiocesium is a governing factor for its fate and
transport in the soil–water environment. It is characterized by the apparent distribution
coefficient Kd (L/kg), which is the ratio of the particulate radionuclide activity concentration
[R]p (Bq/kg) to its dissolved activity concentration [R]d (Bq/L) [69]:

Kd=
[R]p
[R]d

(1)

[R]p includes the radiocesium embedded in hot particles (fuel particles in Chernobyl
and CsMPs in Fukushima), the exchangeably sorbed radiocesium, and radiocesium fixed by
clay minerals in sediments (Figure 1). The exchangeable radiocesium occurs at an instanta-
neous ion-exchange equilibrium with the liquid phase, whereas the nonexchangeable form
does not take part in the radiocesium exchange with the solution. Therefore, it is worth
using the exchangeable distribution coefficient Kex

d , which is the ratio of the exchangeable
radionuclide activity concentration in sediments [R]ex to its activity concentration in the
solution at equilibrium [R]d [5,7,70,71]:

Kex
d =

[R]ex
[R]d

= αexKd (2)

where αex is the exchangeable fraction of radiocesium in the sediments, and Kd is the
apparent (or total) distribution coefficient.

The exchangeable sorption of radiocesium onto the soil and sediment particles can
be selective or nonselective depending on the type of sorption sites [7,27,55,56,72]. The
diversity of sorption sites can be divided into two main types: regular exchange sites
(RESs) and selective sorption sites occurring on the frayed edges of the neighboring layers
of micaceous clay crystal lattice (FES). The selectivity coefficient of regular radiocesium
sorption on the RES non-selectively, i.e., of its sorption in relation to K+, NH4

+, and other
monovalent cations, is close to one. On the other hand, the selectivity coefficient for Cs
sorption on the FES is approximately 1000 for K+ and approximately 200 for NH4

+ [73].
The FES constitutes a relatively small portion of cation exchange capacity (1% to 5%) for
most soils and sediments [56]. Since FESs are characterized by high selectivity for cesium
and because radiocesium (and even stable cesium) occurs at trace concentrations in the
environment, the exchangeable radiocesium becomes concentrated on the FES in most
sediments and soils.

The exchangeable distribution coefficient can be estimated using the standard geo-
chemical characteristics of soils and sediments such as the capacity of sorption sites and
water cation composition [27,53,70,71,74–77]. Conversely, the value of the apparent Kd
cannot be predicted only on the basis of environmental characteristics.

The ability of the sediment to selectively sorb radiocesium can be described using the
capacity of selective sorption sites ([FES]) or radiocesium interception potential (RIP), with
the RIP being a product of the [FES] and cesium selectivity coefficient with respect to a
competitive ion.

A method is available for the quantitative determination of the FES capacity [FES] and
RIP [56,78], and this method was modified with the consideration of exchangeable distri-
bution coefficient Kex

d [74,75]. In this context, the exchangeable radiocesium interception
potential RIPex(K) is defined as follows:

RIPex(K) = Kc(Cs/K)[FES] = Kex
d
[
K+
]

(3)

where Kc(Cs/K) is the selectivity coefficient for the ion exchange of Cs+ on the FES with
respect to cation K+. RIPex(K) is the intrinsic property of a given sediment accounting
for its ability to selectively and reversibly sorb cesium. Given that both potassium and



Toxics 2022, 10, 578 6 of 25

ammonium are relevant for radiocesium desorption, the expression can be written as
follows [27,73,74]:

RIPex(K) = Kex
d

([
K+
]
+ KFES

c (NH4/K)
[
NH4

+
])

(4)

where KFES
c (NH4/K) is the selectivity coefficient of ammonium in relation to potassium

for the FESs. As shown by numerous post-Chernobyl studies, most soils and sediments
are characterized by KFES

c (NH4/K) = 5± 2; therefore, Equation (4) can be approximated
by [73,74]

Kex
d =

RIPex(K)
[K+] + 5

[
NH4

+
] (5)

The relationship of Kex
d (L/kg) and ([K+] + 5[NH4

+])−1 (L/mmol) was shown to be
linear for the ponds in the vicinity of the FDNPP, with the slopes corresponding to the
RIPex(K) values calculated to be about 2000 mmol/kg [53,79]; see Figure 2 for the pond
Funasawa, 3.5 km to SW from the FDNPP.
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Wauters et al. (1996) characterized a variety of European soils and sediments (over-
all, 120 samples) contaminated after the Chernobyl accident in terms of the cation ex-
change capacity and RIP [78]. They found that the RIP varied in a wide range from 100 to
10,000 mmol/kg depending on the soil type, cation exchange capacity, and clay content.

Contaminated soils in Fukushima, as compared with typical Chernobyl soils, show a
relatively high content of clay minerals (up to 30% or more), including a sufficient amount
of micaceous minerals [17,80,81]. Many studies following the FDNPP accident applied
the RIP theory and methodology [56,73,75,78,82] to characterize soils and sediments in
terms of their ability to adsorb and fix radiocesium [80,83–92]. However, in all of them,
the RIP determination protocol did not take into account the fixation of radiocesium
by clay minerals, and, therefore, the obtained values are overestimates and higher than
RIPex [53,74,75]. A total of 97 paddy soils from Fukushima Prefecture were characterized in
terms of the RIP in [86]. The RIP ranged from 340 to 5360 mmol/kg, with the mean being
1670 ± 870 mmol/kg. In another study, the RIP was determined for 925 agricultural soil
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samples collected from Fukushima Prefecture and neighboring regions. RIP values ranged
from 73 to 12,700 mmol/kg and were sometimes very different for the same soil types [92].
Overall, the RIP values for Fukushima soils are comparable with or a bit higher than those
for European soils and sediments obtained by the same protocol [78].

Soon after the FDNPP accident, it was discovered that Fukushima-origin radioce-
sium is strongly bound to the soil and sediment particles, and its apparent distribution
coefficient Kd in Fukushima rivers is at least an order-of-magnitude higher than in Cher-
nobyl rivers [8,47,93–95]. This fact was actually confirmed by longer-term studies [95–101].
Table 1 presents the summary of available data on the 137Cs distribution in the suspended
sediment–water system of rivers in Chernobyl- and Fukushima-contaminated areas. The
difference in Kd for Fukushima and Chernobyl soil–water environments, in our view, is
associated with two factors: (1) a relatively high fraction of micaceous clay minerals in
Fukushima soils and sediments capable to selectively sorb and fix radiocesium [81,83,88,89];
and (2) occurrence of high proportion of insoluble in water and persistent in the environ-
ment glassy hot particles CsMPs in FDNPP release [8,47,52–54,101].

Table 1. 137Cs apparent distribution coefficient Kd (L/kg) in suspended sediment–water system of
rivers in Chernobyl- and Fukushima-contaminated areas.

River-Site Observation Period Mean Value References

Chernobyl

Pripyat River-Chernobyl 1990–2016 (3.5 ± 0.6) × 104 [18,102]

Dneper River-Nedanchichi 1989–2012 (6.4 ± 2.0) × 104 [18,102]

Uzh River-Cherevach 1987–1990 (3.1 ± 2.0) × 104 [47]

Fukushima

Abukuma River-Kuroiwa 2012–2020 (6.5 ± 3.0) × 105 [99]

Ukedo River downstream 2015–2018 (2.2 ± 0.3) × 105 [97]

Ukedo River at Ogaki dam inflow 2014–2019 (6.3 ± 2.0) × 105 [98]

Kodeya River at Ogaki dam inflow 2014–2019 (8.6 ± 2.1) × 105 [98]

Ukedo River at Ogaki dam outflow 2014–2019 (4.5 ± 1.8) × 105 [98]

Ohta River downstream 2015–2018 (2.4 ± 0.6) × 105 [97]

Hiso River (Niida River system) 2011–2020 (4.6 ± 3.0) × 105 [100]

Wariki River (Niida River System) 2011–2020 (7.7 ± 6.3) × 105 [100]

2.2.2. Radiocesium Leaching from Chernobyl Fuel Particles and Fukushima Glassy Hot
Particle CsMPs

The processes occurring with hot particles are difficult to model due to the diver-
sity of their size, shapes, and chemical characteristics. Therefore, an integral parameter
is often used such as the first-order rate constant kl (yr−1) accounting for the rate of ra-
dionuclide leaching from hot particles, i.e., radionuclide transfer from a hot particle to the
solution [27,33,34]. Then, a decrease in the fraction of radionuclide embedded in particles
as a function of time follows the equation [5,27,33]

dFt

dt
= −kl Ft (6)

and hence
Ft = F0e−kl t (7)

where Ft and F0 are the fractions of radionuclide in hot particles and initial depositions,
respectively, at the time t since the accident.
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As demonstrated by many studies on the decomposition of Chernobyl-origin fuel parti-
cles, the rate of radionuclide leaching from them in soils varies in the range
0.05–0.5 yr−1 [5,7,27,33,34,36,103,104], depending on the location and soil type. Based
on a large amount of statistically reliable data, the dependence of kl on the soil pH was
derived for different parts of the contaminated zone [103,104]. Over several years after the
accident, fuel particles primarily occurred in the upper centimeters of the soil, both close to
the reactor and at distances of 250 km [105]. Most of the particles were concentrated in the
0–1 cm layer, and their proportion markedly decreased with depth. The vertical profile of
radioactive particles in the soil was practically independent of the distance from the NPP
and is mainly governed by the soil type. The lack of dependence of the vertical distribution
of particles on their size and chemical nature suggests that the primary mechanism of
radionuclide migration in the upper soil layer is its mixing by soil flora and fauna.

To date, fuel particles in the terrestrial soils of the Chernobyl exclusion zone (ChEZ)
have mostly disintegrated [7,27,33]. This is not the case, however, for the bottom sediments
of the cooling pond (CP) of the Chernobyl NPP and the heavily contaminated lakes of
ChEZ, where the dominant fraction of radionuclides was deposited within fuel particles.
Importantly, most of the radioactivity in these bottom sediments still occurs in the form
of fuel particles [35,106]. In the cooling pond sediments, the dissolution of fuel particles
is much slower than in soils due to low dissolved oxygen concentration and relatively
high pH.

The kinetic studies of fuel particle decomposition and radionuclide leaching in the soil–
water environment conducted in Chernobyl were mostly based on investigating radiostron-
tium speciation since this radionuclide is weakly fixed by soils and sediments [21,34,107].
Yet, the rate constants of 137Cs and 90Sr leaching from fuel particles appear to be similar [5,21,26],
as shown by the kinetic calculations based on the conceptual model (see Figure 1). For
most typical soil types in the Chernobyl 30 km zone, the rate constant of 137Cs leaching
from fuel particles was in the range 0.1–0.5 yr−1.

In the case of Fukushima, radiocesium leaching from CsMPs can be expected to be
comparable or even slower than that from Chernobyl-origin fuel particles, and when
released from CsMPs, radiocesium in the soil–water environment is fairly quickly fixed by
the clay minerals of soils or sediments. In laboratory experiments with individual CsMPs,
Okumura et al. (2019) showed that radiocesium can be leached by weathering in the
environment with a rate dependent on the temperature and water composition [54]. Based
on the data of this study, we attempted to determine the rate constants kl for radiocesium
leaching from CsMPs. At 30 ◦C, the average value of kl for three individual CsMPs was
obtained to be 0.14 ± 0.01 yr−1 in pure (deionized) water and 2.1 ± 0.4 yr−1 in seawater.
The temperature dependence of the CsMP dissolution in the temperature range 30–120 ◦C
was characterized by the activation energy of 65 kJ/mol for pure water and 88 kJ/mol
for seawater [54]. Extrapolating the derived temperature dependence to the mean annual
temperature in Fukushima of about 13 ◦C, we arrived at kl ≥ 0.043 year−1 in freshwater
and kl = 0.44 year−1 in seawater. It should be said that our estimate for freshwater is
the lower-bound value. From the standpoint of composition, freshwater is intermediate
between pure water and seawater, and, therefore, the rate constant for freshwater can be
expected to be higher than for pure water but lower than for seawater.

The rate constant can also be estimated from indirectly monitoring data. Time depen-
dence of particulate and dissolved 137 Cs concentrations derived from monitoring data and
137 Cs apparent distribution coefficient Kd can then be used to determine kl. The reasoning
behind this approach was as follows. Monitoring of 137Cs in three heavily contaminated
ponds in the vicinity of the FDNPP revealed a gradual decline of its apparent solid–liquid
distribution coefficient Kd from 2015 to 2019 [52,53], which is not typical of radiocesium
dynamics in water bodies in the mid- and long term [18,102]. The initial and intermedi-
ate phases after the Chernobyl accident, and after nuclear weapon tests (NWTs), were
characterized by a slight increase in radiocesium apparent Kd in soils and sediments as a
result of fixation or aging [5,7,60,62]. Since leaching of 137Cs from CsMPs is the slowest
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process (limiting stage), as shown by Figure 1, it seems reasonable to assume that the
Kd decline trend is associated with gradual remobilization of 137Cs due to leaching from
CsMPs. Against this background, calculations of kl were performed for three ponds, and the
obtained values were in the range 0.12–0.18 yr−1. A similar trend for radiocesium apparent
Kd in 2012–2020 with the rate constant kl = 0.05 yr−1 has been recently reported for the sus-
pended sediment–water system in the Abukuma River at Fukushima City (Kuroiwa) [99].
Thus, our estimates based on long-term monitoring data are consistent with those derived
from laboratory experiments with individual CsMPs. It is important to note that kl for
Fukushima-derived CsMPs corresponds to the lower bound of kl for Chernobyl-derived
fuel particles, and, by and large, leaching of radiocesium from CsMPs is slower than from
fuel particles.

2.2.3. Radiocesium Fixation by Soils and Sediments and Remobilization

Fixation of radionuclides is the transformation of their exchangeable form to nonex-
changeable. It is believed that the mechanism of radiocesium fixation is the replacement
of interlattice K+ by Cs+ ions due to the collapse of the expanded edges of the mineral’s
crystal interlayers and/or the slow long-term solid-state diffusion of Cs+ ions along the
interlayer inside the particle [27,58,59].

Initially, radiocesium fixation was treated as an irreversible process [58]. However,
data about the long-term transformation of radionuclide chemical forms in the soil after
nuclear weapon testing [66] and Kyshtym accident [21] and 36-year studies after the
Chernobyl accident are indicative of the existence of the remobilization process that is the
reverse of fixation [5,67,68]. After the deposition of radiocesium onto the soil, the fraction
of its exchangeable form is not decreasing to zero, as expected for irreversible fixation, but
only decreasing to a certain steady-state level and then not significantly changing [7,21].
The mechanism of radiocesium remobilization is similar to the mechanism of radiocesium
leaching from hot particles-disintegration or weathering of mineral particles with a newly
emerging particle–solution interface.

As it appears from laboratory experiments with a variety of soils and sediments [59,64,77]
and post-Chernobyl field studies [5,27], the timescale of radiocesium fixation equals to
weeks or months (kf = 4–20 yr−1), depending on environmental conditions, whereas the
timescale of remobilization can be up to a few years (kr = 0.4–2 yr−1). These processes can
be expected to show comparable rates in Fukushima soils and sediments.

The first-order kinetics, however, cannot be considered as an absolutely accurate
description of radiocesium fixation since this process is diffusional in character and slows
down with time [77]. According to the diffusional model, radiocesium fixation is at-
tributable to its diffusion into the surface layers of clay particles. Given that the thickness
of the diffusion layer is much smaller than the particle size, fixation can be considered as
the diffusion of radiocesium into a sheet. In this case, the time dependence of mobile or
exchangeable fraction M(t) can be approximated by the equation [108–111]

M(t) = M∞

(
1 +

δ√
t

)
(8)

where M∞ is the mobile fraction at equilibrium, and δ is the diffusional kinetic parameter
equal l√

πD
; l is the thickness of the diffusional layer, D is the diffusion coefficient of 137Cs

in the solid phase of clay mineral, and t is time.
Importantly, only two parameters M∞ and δ are needed to describe the long-term

kinetics of radiocesium fixation by soils and sediments. Unlike the first-order kinetics, the
diffusional model of fixation predicts the decline of the radiocesium mobile fraction not up
to zero but up to equilibrium state M∞. Various soil types have been characterized in terms
of parameters M∞ and δ [68,111], allowing long-term predictions (Table 2).
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Table 2. Typical values of mobile fraction at equilibrium M∞(137Cs) and diffusional fixation parameter
δ(137Cs) for basic groups of soil types [68].

Group of Soil Types M∞(137Cs), % δ(137Cs), Day1/2

Sandy 14 ± 5 3 ± 2

Mineral 12 ± 8 10 ± 4

Turf 6 ± 5 50 ± 30

3. Radiocesium Downward Migration in Soil

As time goes on, radionuclides deposited on the ground surface tend to migrate down
through the soil profile. The dynamic pattern of the vertical distribution of radionuclides
in the soil is critical from the standpoint of the external dose rate, availability of radionu-
clides for transfer to surface runoff and wind resuspension in the boundary atmospheric
layer, availability of radionuclides for root uptake by plants, and penetration to ground-
water [8,112–116]. Assessment of the radionuclide transfer from land to surface waters
requires knowing the radionuclide concentration in the topsoil layer [18,116]. Radionu-
clides vertically migrate in the solution with infiltration water flow or attached to fine
soil particles [5,112,113,117]. The transport of radiocesium in the solution by infiltration is
slower than the water flow because of sorption–desorption and fixation on soil particles
(Figure 1). Fine soil particles containing immobile radiocesium can move by penetrating
through pores, cracks, and cavities, and as a result of the vital activity of plants and biota
(bioturbation) [113,118]. Nevertheless, the vertical migration of radionuclides in undis-
turbed soils can be described by the advection–dispersion equation using the effective
values of the dispersion coefficient and advective velocity [5,112,116,117,119,120]. The
most accurate way of representing radiocesium migration by the advection–dispersion
model is the simultaneous solution of respective equations separately written for specific
radiocesium chemical forms in soil Ri with allowance for their transformation [5,121]:

∂Ri
∂t

=
∂

∂x

(
Di

∂Ri
∂x

)
− vi

∂Ri
∂x

+ ∑ k jiRj −∑ kijRi (9)

with the initial conditions:
Ri = R0

i δ(x− 0)

and boundary conditions:
Ri |x=∞= 0

where Di and vi are the effective dispersion coefficient and effective advective velocity for
each chemical form i, respectively, and kij is the rate constant of transformation of chemical
form i to j.

In radioecological studies, for one-time release, the model is often used in its simplified
version based on the approximation of the analytical solution of Equation (9) for the total
radionuclide concentration R = ∑Ri [112,116,119,120,122]:

R(x, t) =
σ0√

πDe f f t
e
−( (x−vt)2

4De f f t +λt)
(10)

where σ0 is the initial radionuclide deposition on the soil, and λ is the rate constant of
radionuclide decay. This approximation is valid for long term: t >> 2D/v2 [122]. The
studies of the vertical migration of radiocesium in undisturbed soils of grassland and
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forests showed that, as a rule, 137Cs transport due to dispersion prevails over advective
transport [18,102,112,113,115,116]. Therefore, Equation (10) can be further simplified:

R(x, t) =
σ0√

πDe f f t
e
−( x2

4De f f t +λt)
(11)

Radiocesium in the Fukushima soils was migrating faster than in the Chernobyl zone,
as was revealed soon after the FDNPP accident [8,114,123,124] for the top layer of the
contaminated soil. There can be several factors responsible for this fact. Firstly, the mean
annual precipitation in the Fukushima area is more than two times higher than that in the
Chernobyl area [8,79]. Hence, a more active infiltration flow can lead to higher migration
rates of both mobile and immobile forms of radiocesium, which are entrained by infiltration
flow when moving down the soil through pores and cracks [113,114].

Figure 3 presents a comparison of the 137Cs vertical distribution in the undisturbed
alluvial meadow sandy soil of ChEZ at Benevka in 2017 (31 years after the ChNPP
accident) [102] with that in the FDNPP exclusion zone at Okuma town (catchment of
Suzuuchi pond) in 2014 (3 years after the FDNPP accident) [114].
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Figure 3. 137Cs differential distribution in undisturbed alluvial meadow soils -measurements (points)
against diffusional model Equation (11) (line). (a) soil core collected in ChNPP exclusion zone
near village Benevka (9 km NW from ChNPP) in 2017; model fit with Deff = 0.7 cm2/yr [102]
Reprinted/adapted with permission from Ref. [118]. Copyright year 2016, copyright owner’s name
SPRINGER Nature. (b) soil core collected in FDNPP exclusion zone at Okuma town on the catchment
of Suzuuchi pond (3.75 km NW from FDNPP); model fit with Deff = 2.5 cm2/yr [114]. Levels of 137Cs
soil contamination are presented as volumetric activity concentration normalized by 137Cs deposition
(1 cm−1 = Bq·cm−3/Bq·cm−2). Reprinted/adapted with permission from Ref. [118]. Copyright year
2016, copyright owner’s name SPRINGER Nature.

The long-term dynamics of the 137Cs vertical distribution in the soil of the ChEZ is
illustrated in Figure 4. It should be noted that the maximum 137Cs activity concentration
is still located in the topsoil layer, and profiles can be approximated by Equation (11). It
is interesting to note that a recent study [27] showed an s profile at Benevka for 2017 in
comparison with the profile of 241Am. Activity concentrations of 137Cs and 241Am differ
by more than an order of magnitude, yet the shape of the profiles is similar. Since the
physicochemical properties of 137Cs and 241Am including their soil–water distribution
are different, similarities of their profiles indicate that they move downward in the soil
with particles in which both are incorporated, and their migration in the solution with
infiltration flow does not play a significant role [102]. It can be expected that this is even
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truer for Fukushima-derived radiocesium since it is strongly bound by soil particles than
Chernobyl-derived radiocesium.
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4. Time Changes of Radiocesium Concentrations in Freshwaters

In case of a nuclear accident, radioactive contamination of water reservoirs and rivers
running through the affected areas is a major challenge since these water bodies are a source
of drinking water for the public and used for fishing and irrigation. As a result of the Cher-
nobyl accident in 1986, extensive areas of the Dnieper River basin, including the watershed
of its right tributary, the Pripyat River, were contaminated with 137Cs [5,6,9,18,124–126].
Radionuclides then go beyond the initially contaminated areas and across boundaries due
to transport by the river systems [123]. After the FDNPP accident in 2011, the river basins
of the Abukuma, Mano, Niida, Ohta, Ukedo, Maeda, Kuma, and others [13,93–101,127,128]
flowing into the Pacific Ocean were also exposed to contamination, with 137Cs transported
both in a particulate and dissolved state.

Initial radioactive contamination of water bodies after the nuclear accidents at the
ChNPP [3,6,124,125] and FDNPP [93–101,127,128] was relatively high, owing to the direct
fallout onto the river and lake surfaces. The contamination of water bodies was then
sharply decreasing due to the fast processes of sorption and fixation of radionuclides to
sediments, as well as the sedimentation of particles to the bottom [6,124]. Yet, extensive
territories contaminated due to the accidents continue to serve as a long-term source
of radioactivity to natural waters and aquatic ecosystems. Wash-off driven by surface
runoff is the primary pathway for the contamination of water bodies in the mid- and long
term [5,6,9,11,96,99–102,129–138].

4.1. Long-Term Dynamics of Radiocesium in Rivers and Lakes and Its Prediction

Modeling and prediction of radionuclide long-term behavior in the environment are
keys for the management of contaminated areas. In post-Chernobyl studies, temporal
changes in dissolved 137Cs concentrations in rivers were often described by the empirical
fitting model using a series of exponential functions [6,102,133–135]:

c(t) = ∑i c0
i e−(λ+ki)t (12)

where c(t) is the current 137Cs activity concentration in the river (for particulate 137Cs in
Bq/kg, and for dissolved in Bq/m3); λ is the 137Cs decay rate constant equal 0.023 yr−1; ki
are the empirically fitted rate constants; c0

i are the fitting parameters representing the initial
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concentration of the ith individual exponential function (in the case of a three-exponential
model, i can take a value of 1, 2, and 3), and t is the time. The same approach was followed
by a number of researchers in post-Fukushima studies of radiocesium (both dissolved and
particulate) dynamics in rivers [92–95].

In the case of Chernobyl, the contamination analysis and prediction were focused
on dissolved 137Cs since it was predominant in the contaminated natural waters and
controlling radionuclide transport [18,126,136–138]. As to the particulate concentration
of 137Cs in surface waters, such data were scarce. There are only two cross-sections in
the Chernobyl-contaminated area—for the Pripyat River at Chernobyl and for the Dneper
River at Nedanchichi, for which long-term monitoring data are available [18,102]. Time
dependence of annual mean particulate 137Cs activity concentrations for these two cross-
sections was approximated by a two-exponential model (Equation (12)) using the fitting
parameters presented in Table 3.

Table 3. Parameters used to approximate time dependence of particulate 137Cs in Pripyat River at
Chernobyl and Dneper River at Nedanchichi by two-exponential model (Equation (12)).

River (Cross-Section)
Two-Exponential Model (Equation (12))

C0
s1, Bq·g−1 C0

s2, Bq·g−1 k1, Year−1 k2, Year−1

Pripyat (Chernobyl) 20 3.3 0.58 0.022

Dneper (Nedanchichi) 5.0 0.6 0.15 0.045

The above empirical model (Equation (12)) based on the multiexponential descrip-
tion of radionuclide dynamics, however, does not seem to adequately reflect the actual
mechanisms underlying the changes of radionuclide activity concentrations in water. Unfor-
tunately, this approach requires using a number of functions accounting for short-, middle-,
and long-term phases after the accident, as well as parameters that are not initially known.

An alternative way to model mid- and long-term dynamics of radiocesium in rivers is
a semiempirical diffusional approach [18,102]. The key assumption of the model is that the
main source of suspended particles for surface runoff is the top layer of catchment soil, and
radiocesium concentration in the topsoil layer is described by the simplified Equation (11).
In this case, the radiocesium concentration in the topsoil layer and thus in suspended
sediments can be approximated by the following equation:

Cp(t) =
σ0

ρ
√

πDe f f t
e−λt = C0

p
e−λt
√

t
(13)

where σ0 is the initial average deposition of radiocesium on the catchment; Deff is the
effective dispersion coefficient, averaged over the catchment area; λ is the radioactive
decay rate constant; ρ is the average bulk density of the topsoil over the catchment; and t is
the time.

The advantage of this approach is that the same equation can be used for middle-
and long-term phases after a nuclear accident with the same values of physically based
parameters, which can be estimated or determined by field or laboratory studies. More
simply, decay corrected particulate r-Cs activity concentrations in surface runoff and rivers
are described by the inverse square root of time function.

Figure 5 presents temporal changes in particulate 137Cs in river water over 30 years
for two large rivers of the Chernobyl area: Pripyat and Dneper [105]. The significant scatter
in the experimental data on 137Cs activity concentrations in river water, particularly in the
first years after the accident, can be attributed to the extremely non-uniform distribution
of radionuclides on the catchment and the occurrence of hot fuel particles, as well as
uncertainties associated with sampling, processing, and measurements.
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Both the semiempirical diffusional and empirical two-exponential models can be seen
to account equally well for the overall trend in the long-term dynamics of particulate
137Cs in the rivers of the Chernobyl-contaminated areas. With the diffusional model, such
long-term description becomes possible with only a single parameter C0

p = σ
ρ
√

πDe f f
, which

is determined based on using physically meaningful and understandable characteristics
such as average deposition on catchment and the effective coefficient of radionuclide
dispersion in catchment soils Deff. Values of Deff in different soils are readily available in
the literature [5,113,114,119,121,139,140]. Moreover, C0

p can be estimated from monitoring
data of radionuclide concentration on suspended matter in rivers, given that it is no longer
the initial phase. With this in mind, long-term prediction can be undertaken using the
diffusional model (see Equation (13)). Meanwhile, the two-exponential model requires
four fitting parameters, which are not possible to immediately determine after the accident,
necessitating long-term field observations for their estimation.

With allowance for Equations (1) and (13), the time dependence of the dissolved 137Cs
concentration in a river can be approximated by the equation [18,102]

cd(t) =
σ0

ρKd

√
πDe f f t

e−λt (14)

For the mid- and long-term phases after the Chernobyl accident, 137Cs concentra-
tions in rivers were successfully described based on the semiempirical diffusional model
(Equations (13) and (14)) using only two key physicochemical parameters: radiocesium
dispersion and distribution coefficients (Deff and Kd).

For the Fukushima-contaminated areas, the 137Cs activity concentrations in rivers
and lakes decline a bit faster than predicted by the semiempirical diffusional model. This
is illustrated in Figure 6 showing the dynamics of the particulate and dissolved 137Cs in
two Fukushima rivers Abukuma [99] and Hiso [100] in comparison with the predictions by
the diffusional model.
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Figure 6. Time changes of particulate and dissolved 137Cs in two rivers of Fukushima-contaminated
area: (a) annual mean particulate dissolved 137Cs activity concentrations in Abukuma River at
Kuroiwa (Fukushima city) in 2012–2019 based on the data of [99] against diffusional model prediction
(dotted line); (b) annual mean particulate and dissolved 137Cs activity concentrations in Hiso River
in 2012–2020 based on the data of [100] against diffusional model prediction (dotted line).

There are two major potential reasons for the observed discrepancy and difference
from the situation in Chernobyl. First, an extensive remediation program implemented by
the Japanese government on the contaminated catchments after the accident has effectively
reduced the average 137Cs deposition on the catchment soils and especially decreased the
137Cs content in the topsoil layer. Second, the basic processes of surface runoff development
in Fukushima markedly differ from those in Chernobyl area due to higher intensity of
precipitation, especially during typhoons, and higher energy of surface runoff flows. As a
result, deeper soil layers become involved in exchange with surface runoff, which causes a
faster decline of particulates and dissolved radionuclide concentration in the surface runoff.

4.2. Radiocesium Wash-Off from Contaminated Watersheds and Its Dynamics after the Accident

There are two parameters used to characterize the catchment-to-river transfer of
radionuclides by surface runoff: the particulate and dissolved wash-off ratios Np and Nd
defined as [5,18,101,131,132]

Np =
cp

σ
; Nd =

cd
σ

(15)

where cp and cd are the particulate and dissolved radionuclide annual mean activity
concentrations (Bq/m3), respectively; σ is the current average radionuclide inventory on
the catchment (Bq/m2).
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The particulate wash-off ratio accounts for the proportion of radionuclide inventory
washed off on suspended matter by surface runoff causing the topsoil erosion of 1 kg/m2.
The physical meaning of the dissolved wash-off ratio is that it is the proportion of ra-
dionuclide inventory washed off in the solution by a surface runoff of 1 m depth [5,18].
The wash-off ratios enable predicting the radionuclide wash-off from the contaminated
catchment and its concentration in rivers and other water bodies [141–144]. To estimate
the fraction of the radionuclide washed off in the solution, the dissolved wash-off ratio
is multiplied by the expected runoff depth for a given runoff event or period of interest.
The fraction of radionuclide washed off with sediments is estimated by multiplying the
particulate wash-off ratio by the predicted sediment yield during the runoff event or period
of interest [5,18,101,136]. This approach was used to predict the secondary contamination
of water bodies due to snowmelt or rainfall floods after the Chernobyl accident in the early
phase [5,137,138].

The values of Np are similar for Fukushima and Chernobyl areas when compared
at similar times post-accident [18,101]. The same is true for Np obtained in runoff plot
experiments in Fukushima [141,142] with data from Chernobyl [5,101,130,132,136,143]
for an early time after the accident. This is illustrated in Figure 7 [18] comparing the
magnitudes and time variations of the mean annual values of particulate 137Cs wash-off
ratios Np for the catchments of the Pripyat River at Chernobyl and the Dnieper River at
Nedanchichi in the Chernobyl area, and for the rivers Ukedo and Ohta in the Fukushima
area and comparing with the semiempirical diffusional modeling at Deff = 0.5 cm2/year
and Deff = 5 cm2/year.
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Figure 8 shows a comparison of the magnitudes and their time changes of the mean
annual dissolved 137Cs wash-off ratios Nd (m−1) for two river catchments (Ukedo and
Ohta) in the Fukushima area with two river catchments Pripyat (at Chernobyl) and Dnieper
(at Rechitsa) in the Chernobyl [18,79,144].
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As can be seen in Figure 8, the Nd(137Cs) values for two cross-sections, Chernobyl (Pripyat)
and Rechitsa (Dnieper), are similar, and their change over time is well-described by the semiem-
pirical diffusional model in Equation (9), provided Deff(137Cs) = 0.5 cm2/year [114,116,119] and
Kd(137Cs) = 3.4 × 104 L/kg [18,102]. For the catchments of the rivers Ukedo and Ohta in the
Fukushima area, the Nd(137Cs) values are an order-of-magnitude lower than those for Cher-
nobyl. This difference is mainly explained by the values of Kd(137Cs), which are at least an
order-of-magnitude higher for most of the rivers in the Fukushima area [47]. The changes in
Nd(137Cs) values over time for both catchments of the Ukedo and Ohta rivers are accounted
by the proposed diffusional model for dissolved 137Cs wash-off using a catchment area
average of Deff(137Cs) = 5 cm2/year [114] and mean Kd(137Cs) = 2.5 × 105 L/kg [47,97,99].
The semiempirical model describes reasonably well the mid- and long-term dynamics of
the particulate and dissolved 137Cs wash-off, both for Chernobyl and Fukushima rivers.

4.3. Seasonal Variation and Temperature Dependence of Radiocesium in Freshwaters

Based on long-term observations after the Chernobyl accident, regular seasonal varia-
tions in dissolved 137Cs activity concentrations were detected in the cooling pond at the
ChEZ (Figure 9) [106], showing a pronounced minimum in the winter and a maximum
in the summer. Similar seasonal variations were observed in the small oligotrophic lake
Vorsee in Germany [74,76].

In the irrigation ponds in the vicinity of the FDNPP [53], and in the rivers of the
Fukushima-contaminated areas, seasonal variations of dissolved 137Cs were of the same
kind [97,99,145,146]. Figure 10 shows seasonal variations of dissolved 137Cs in water of
the irrigation pond Suzuuchi located in Okuma town in 2016 and 2017. Conceivably, the
seasonal changes in the water temperature could have an impact on the ion-exchange
desorption of 137Cs, which proceeds according to the Gibbs–Helmholtz and/or Arrhenius
equations [147,148]. The obtained estimates were around 20 kJ/mol for the irrigation ponds
and rivers in the Fukushima-contaminated areas [53,101,146], which is consistent with the
results of laboratory experiments determining Ea for selective sorption sites of micaceous
clay minerals [148].
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Seasonal variations of dissolved 137Cs activity concentration in the Chernobyl cooling
pond [106] and lake Vorsee [74,75] were attributed to the variations in the ammonium
concentration in the pond’s bottom-sediment pore water. In the Fukushima irrigation
ponds, the decomposition of organic matter in the reducing conditions of bottom sediments
could also have led to ammonium generation in pore water, which could have contributed,
to some extent, to increased dissolved 137Cs in the pond’s water column in the summer [53].

5. Conclusions

The conducted studies showed that the processes and mechanisms underlying the
environmental behavior of radiocesium in Fukushima and Chernobyl are similar. At the
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same time, the differences in geoclimatic and geomorphological conditions and speciation
result in the differences in the quantitative parameters of radionuclide fate and transport.

Fukushima-derived radiocesium is strongly bound by the soil and sediment particles.
Radiocesium apparent distribution coefficient Kd in Fukushima rivers is considerably
(at least an order of magnitude) higher than that in the rivers of the Chernobyl area,
which is most likely due to two reasons: high binding ability of soils and sediments
in the Fukushima-contaminated areas and the presence of water-insoluble hot glassy
microparticles in the Fukushima accidental fallout.

Observations in the Fukushima-contaminated areas, similar to Chernobyl, have shown
that the concentrations of radiocesium are higher in small lakes and ponds than in rivers
and dam reservoirs. Studies of the 137Cs behavior in freshwater both in Chernobyl and
Fukushima demonstrated regular seasonal variations: higher levels of the dissolved 137Cs
were observed in the summer and lower levels in the winter. Additional dissolution of
137Cs in the summer can be attributed to the temperature dependence of 137Cs desorption
and its remobilization by ammonium in closed and semiclosed lakes, ponds, or reservoirs.

137Cs activity concentrations in freshwater decreased with time after both accidents.
In the case of Chernobyl, this decline in 137Cs concentrations is well-predicted by a semiem-
pirical “diffusional” model. The observed 137Cs concentrations in Fukushima, however,
declined faster than predicted by the “diffusional” model. Two potential explanations of
this difference in the behavior of Chernobyl- and Fukushima-derived radiocesium were sug-
gested: (1) extensive remediation activity during the first several years after the Fukushima
accident, which substantially reduced the 137Cs content in the topsoil layer of the contami-
nated catchments; and (2) difference in surface runoff formation processes in Fukushima
and Chernobyl due to higher intensity of precipitation and slopes in the Fukushima area.

Opposite to Chernobyl, the apparent distribution coefficient Kd(137Cs) in the sediment–water
system of Fukushima rivers and ponds was found to decrease with time after the accident.
Proceeding on the assumption that the decrease in Kd is associated with the decomposition
of glassy Cs-rich microparticles, the timescale of 137Cs leaching from them was estimated
to be in the range 6–20 years. The obtained estimates are consistent with the findings of
recent laboratory experiments.

Higher mean annual precipitation and air temperature promote faster vertical and
lateral radiocesium migration in Fukushima as compared with Chernobyl. Wash-off is the
principal long-term process responsible for the radiocesium secondary contamination of
surface waters on the contaminated areas for both accidents. Particulate and dissolved
wash-off ratios in Chernobyl and Fukushima were found to decrease in the mid- and long
term as a result of radiocesium depletion in the topsoil layer due to its vertical migration in
catchment soils.

Particulate 137Cs wash-off ratios from the catchments of the Fukushima area display
only minor differences compared with those in the Chernobyl area, being at the lower
limit of the Chernobyl values. Somewhat lower values of Np(137Cs) in the Fukushima area
are explained by higher values of the effective dispersion coefficient Deff(137Cs) in typical
Fukushima soils. Dissolved 137Cs wash-off ratios for Fukushima catchments are at least an
order-of-magnitude lower than those for Chernobyl mainly due to an order-of-magnitude
difference in the 137Cs distribution coefficients for the Fukushima and Chernobyl rivers.

In summary, data resulting from Chernobyl long-term studies can be further used to
refine predictions of temporal changes in the radionuclide behavior for Fukushima areas.
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