Table 4.
Method | DCGAN | DeepFake | VQ-VAE2.0 | |
---|---|---|---|---|
Ours | Accuracy | 0.931 | 0.897 | 0.809 |
Precision | 0.935 | 0.906 | 0.839 | |
Recall | 0.994 | 0.994 | 0.994 | |
F1-Score | 0.964 | 0.948 | 0.910 | |
CNN+Self-attention (2020) | Accuracy | 0.412 | 0.532 | 0.461 |
Precision | 0.628 | 0.679 | 0.648 | |
Recall | 0.991 | 0.991 | 0.991 | |
F1-Score | 0.769 | 0.806 | 0.783 | |
Pupil regular recognition+ Boundary IoU score (2022) |
Accuracy | 0.921 | 0.874 | 0.722 |
Precision | 0.926 | 0.888 | 0.782 | |
Recall | 0.995 | 0.995 | 0.995 | |
F1-Score | 0.959 | 0.938 | 0.875 | |
Dual-color spaces+improved Xception model (2021) |
Accuracy | 0.834 | 0.787 | 0.614 |
Precision | 0.859 | 0.824 | 0.720 | |
Recall | 0.994 | 0.994 | 0.994 | |
F1-Score | 0.920 | 0.901 | 0.835 | |
MaskCNN+RAN (2022) | Accuracy | 0.745 | 0.671 | 0.719 |
Precision | 0.795 | 0.750 | 0.779 | |
Recall | 0.989 | 0.989 | 0.989 | |
F1-Score | 0.881 | 0.853 | 0.871 |