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Abstract: The emerging field of eXplainable AI (XAI) in the medical domain is considered to be of
utmost importance. Meanwhile, incorporating explanations in the medical domain with respect
to legal and ethical AI is necessary to understand detailed decisions, results, and current status of
the patient’s conditions. Successively, we will be presenting a detailed survey for the medical XAI
with the model enhancements, evaluation methods, significant overview of case studies with open
box architecture, medical open datasets, and future improvements. Potential differences in AI and
XAI methods are provided with the recent XAI methods stated as (i) local and global methods for
preprocessing, (ii) knowledge base and distillation algorithms, and (iii) interpretable machine learning.
XAI characteristics details with future healthcare explainability is included prominently, whereas
the pre-requisite provides insights for the brainstorming sessions before beginning a medical XAI
project. Practical case study determines the recent XAI progress leading to the advance developments
within the medical field. Ultimately, this survey proposes critical ideas surrounding a user-in-the-
loop approach, with an emphasis on human–machine collaboration, to better produce explainable
solutions. The surrounding details of the XAI feedback system for human rating-based evaluation
provides intelligible insights into a constructive method to produce human enforced explanation
feedback. For a long time, XAI limitations of the ratings, scores and grading are present. Therefore, a
novel XAI recommendation system and XAI scoring system are designed and approached from this
work. Additionally, this paper encourages the importance of implementing explainable solutions
into the high impact medical field.

Keywords: eXplainable Artificial Intelligence (XAI); XAI recommendation system; XAI scoring
system; medical XAI; survey; approach

1. Introduction

XAI is recently dominating the research field for improving the transparency of the
working model with the user. The brief history of AI development relates to statistical
analysis, machine learning, natural language processing, computer vision, and data science.
Even though such developments were present, it was not able to exceed human intelligence
which was later progressed by neural networks, reinforcement learning, and deep learning.
Such AI applications advancements were not only beneficial for weather forecasting analy-
sis, self-driving cars, and the AlphaGo game capable of competing with the best humans’
skills, but also were found to be of critical importance within the medical domain and its
progress [1,2]. Human–Computer Interaction (HCI) research is also progressing to auto-
mate many applications and provide solutions [3]. Nevertheless, the improvements within
the life expectancy have been recently improved with the use of advanced technologies and
still will be beneficial to tackle the problems faced within different categories of the medical
domains. Therefore, developments within the medical domain are discussed which focuses
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mainly on pneumonia status, bloodstream infections (BSI), acute kidney injury (AKI) and
hospital mortality (HM) prediction [4]. XAI is necessary to be evaluated with the medical
domain progression as it provides complete details of each algorithmic step thought to
be trusted within the medical domain, practitioners, and experts. The three stages in XAI
can be given as (i) explainable building process for facilitating acceptance, (ii) explainable
decisions for enabling trust with users and administrators, and (iii) explainable decision
process for the interoperability with business logic [5]. The goal of XAI is to provide
machine and deep learning algorithms for better performance with explainability, which
further allows ease of user trust, understanding, acceptance, and management.

Even though the drawbacks of the previous AI system including black box models,
catastrophic consequences in medical diagnosis were discussed by some reference [6]
but later by the progression with the model development, enhancement and tuning high
accuracy, quality of work, and speed was achieved. XAI was also found to be the European
Union’s General Data Protection Regulation (GDPR) standard complaint, as no data is
revealed to the outside system/participants by disclosing private medical datasets and
providing explanations in the decision process.

1.1. Motivation

The motivation for this work is thought from realizing “Why explainability is necessary
in the medical domain?”, or it can also be given as the actual motivation is the laws and
ethics aspects in the applications of XAI need to be considered before they can be applicable
in the medical domain. In various parts of the world, the right to explanation is already
enshrined by law, for example by the well-known GDPR, which has huge implications
for medicine and makes the field of XAI necessary in the first place [7]. The medical AI
is termed as a high-risk AI application in the proposal by European legislation, which is
regulated for the fundamental rights of human dignity and privacy protection. In this
case, the decision is based solely on real-time AI processing after the decision to assess,
which is overcome by the “right to explanation”. As the GDPR prohibits decisions solely
based on automated processing, the final decision is drawn from the human in the loop
approach and informed consent of the data subject. The legal responsibility of medical
AI malfunctioning leads to civil liability instead of criminality. Additionally, compulsory
insurance is required in the future against the risks of AI applications by the liability law.
The ethics in medical AI gives a sustainable development goal for the “good health and
well-being” by the United Nations [8]. The bias or flaw in training data due to the societal
inclination impact may lead to the limitations in AI performance. Therefore, the factors
given by the ethics committee discussions about the contribution of medical AI needs
to be given so as to know the specific part decision/action, communication by AI agent,
the responsibility taken by the competent person, transparency/explainability, method
reference, avoiding manipulation for high accuracy, avoiding discrimination, and the
algorithm must not control AI decision and actions. The purpose is to make AI a friend,
and combining all of the above responsibilities, it would be termed as XAI. Therefore, the
XAI approach provided within this paper constitutes one of the major portions for the
directions of future approach and perspective.

1.2. Interpretability

A recent survey on medical XAI focuses completely on interpretability [9]. As the
medical field possessess a high level of accountability and transparency, a greater inter-
pretability is needed to be explained by the algorithm. Even though the interpretability is
treated equally across all the hospitals, it should be handled with caution; medical practices
should be the prime focus for interpretability development, and data based on mathemat-
ical knowledge for technical applications are encouraged. The different interpretability
categories referenced here are perceptive and mathematical structures. The perceptive
interpretability is mostly a visual evidence that can be analyzed using saliency maps,
i.e., LIME, Class Activation Map (CAM), Layer-wise Relevance Propagation (LRP), etc.
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In signal methods, the stimulation/collection of neurons are detected, i.e., feature maps,
activation maximization, etc. The verbal interpretability is the human understandable
logical statements based on the predicates, connectives, i.e., disjunctive normal form (DNF)
and NLP. The mathematical structure based interpretability is the popular mechanism
used through machine learning and neural network algorithms, whereas the predefined
models are the relation between variable to output variable that includes logistic regression,
Generative Discriminative Machine (GDM), reinforcement learning, etc. Ultimately, the
feature extraction from the input source is performed by graphs presentation, clustering,
frame singular value decomposition (F-SVD), etc.

1.3. Feedback Loop

A feedback loop designed for the XAI continuous development includes multiple
phases, which can be given as follows [10]. The model debugging and visualization is
performed first, then model compilation is performed by testing, after which the model is
then released based on versioning. During the output phase, the predictions are performed
by explainable decisions in which different models are compared for analysis and perfor-
mance monitoring is performed successively followed by debugging and feedback loop.
The model’s explainability increases based on how much it supports open box architecture.
The deep learning models, i.e., convolutional neural networks (CNN), recurrent neural
networks (RNN) are the least explainable and are the predecessor of ensemble model, i.e.,
random forest, XGB. The statistical models and graphical models are easy to understand
and are more straight forward, i.e., SVM, Bayesian brief net, Markov models, etc. The deci-
sion trees, linear models, and rule-based models are the most explainable and completely
open box architecture models. The different XAI categories explained within this refer-
ence include dimension reduction which are presented as most important input features
by selecting optimal dimensions, e.g., optimal feature selection, cluster analysis, LASSO,
sparse deep learning, and sparse balanced SVM. The feature importance is used to capture
characteristics and correlation amongst features for XAI models, e.g., feature weighting,
DeepLIFT, SHAP, whereas the attestation mechanism captures the important areas where
attention is required by the model, e.g., MLCAM, CAM, GRAD-CAM, Respond-CAM. The
XAI well-known knowledge distillation is drawing the knowledge from a complicated
model to a more rationalized model, e.g., rule-based system, mimic learning, fuzzy rules,
and decision rules. Ultimately, the surrogate models are the locally faithful models and
approximate reference models to surrogate model, e.g., LIME, LRP, etc.

1.4. General XAI Process

As the XAI necessity is thought to be effective for improvements within the future
system. Therefore, the initial steps required for the XAI process are as follows:

(a) Pre-processing: The data cleaning, recovery/imputation and top feature analysis
are described in this phase. The data cleaning refers to the handling of the incorrect,
duplicate, corrupted, or incomplete dataset, whereas the data imputation refers to the
substitute values for replacing missing data. In case of SHapley Additive exPlanations
(SHAP), which is a part of game theoretic approach for identifying the top dominating
features to help achieve better prediction results [8].

(b) Methodology: The model specifically designed for the effective implementation of
the machine or deep learning construction and tuning. There are many machine learning
algorithms, i.e., naïve bayes, linear regression, decision trees, support vector machine
(SVM), etc., whereas neural networks are used to mimic human brains by providing a series
of algorithms for recognizing relationships within the dataset [9,10]. The interpretable
deep learning refers to the similar concepts except inspecting data processing at each layer
and thus helping the designer to control the data movement and mathematical operations
within it. Furthermore, the layers can also be configured by setting the feature learning by
convolution, max pooling, and classification by fully connected, activation functions, etc.
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(c) Explanation: This phase provides the explanation for each decision transparently to
know the importance and action taken by the algorithm. The explanation provides detailed
reasoning for all the decisions taken within the model from preprocessing, algorithm for
prediction, classification, evaluation, and conclusion. As the explanations form the crucial
content of XAI, it improves the acceptance of the deployed system to the end user, domain
experts, or clients.

(d) Re-evaluation: Feedback system designed to understand limitations as the differ-
ence in choices made by the users and the algorithms. At the end of the algorithm, the end
user can interact with the system by providing the necessary feedback for each decision
and parameters used, which later can be evaluated effectively by re-configuration in the
successive version. Therefore, it not only promotes ease of usage but also makes the end
user as the part of the system, which can improve the next version of the training data and
weights enhancement.

1.5. Objectives

The objectives for this survey can be given as follows:

• Determine the current progress within the different infection/diseases based on AI
algorithms and their respective configurations.

• Describe the characteristics, explainability, and XAI methods for tackling design issues
in the medical domain.

• Discuss the future of medical XAI, supported by explanation measures by human-in-
the-loop process in the XAI based systems with case studies.

• Demonstrate a novel XAI Recommendation System and XAI Scoring System applicable
to multiple fields.

A paper plan for this survey is given as follows: related works describe the various
infections/diseases-based references, methods, and evaluations in Section 2; the difference
between AI and XAI methods is given in Section 3; and recent XAI methods usage with
its importance in Section 4. Afterwards, the characteristics of XAI0-based explanation
in Section 5; future of XAI explainability in Section 6; and prerequisite for AI and XAI
explainability in Section 7. Lastly, details about the case study for application usage in
Section 8; XAI limitations in Section 9; XAI Recommendation System in Section 10; and
XAI Scoring System in Section 11, followed by the conclusion and references.

2. Related Works

In this section, we are going to present the background for the medical domain with
respect to the various infection or diseases related works, which are recently presented as a
solution using AI or XAI. The research work presented in medical fields is mostly evaluated
using mathematical statistics and machine learning algorithms as given in Tables 1–4.
Therefore, it presents several opportunities to provide XAI-based implementation and
improve the current understanding with better evaluation using classification.

The highly affecting acute respiratory disease syndrome (ARDS) or pneumonia-based
evaluation supports various features such as vital signs and chest X-rays (CXR) [11]. The
classification in this case can be mostly performed within the combination or indepen-
dent data sources of vital signs and/or CXR. Usually the patients within this case are
required to be first identified with specific symptoms of cough, fever, etc., and then the
vital signs and/or CXR are used by the medical examiners to diagnose and know the
healing progress of the pneumonia status. Later, the discharge is predicted using this work,
and also more detailed configuration can help to understand the algorithm behavior. The
mechanism for local determines a single decision system, whereas for global it determines
multiple decisions.

Figure 1 presents the mindmap diagram for the literature survey analysis. The expla-
nation type ante-hoc is for open/human understandable models and post hoc for black
boxes and Deep Neural Networks (DNN). One of the commonly occurring infections within
patients is bloodstream infection (BSI), which can be identified by the presence of bacterial
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or fungal microorganisms within the blood samples [21]. It is also popularly known as
sepsis/septic shock and has severe symptoms. The most common symptoms include
fever, increase in heart rate, high blood pressure, chills, and gastrointestinal issues. In the
previous studies, the BSI was studied in detail with vital signs and laboratory variables
with ICU admission data. The preprocessing is mostly done to recover the missing data in
the BSI and Non-BSI cases, which is later evaluated using the machine learning model. The
BSI once detected then later can be cured using medicine treatment.
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Table 1. General analysis for the explanation-based preprocessing.

Ref. # Reference Reference
Paper/Mechansim

Data Preprocessing Evaluation
Methods/Algorithms

Outcome/Explanation
Type

[11] Selvaraju, R.R.
et al. (2017)

GRAD-CAM/Global GRAD-CAM VGG, Structured CNN,
Reinforcement Learning
comparisons.

Textual explanations and
AUROC/post-hoc

[12] Tang, Z. et al. (2019) Guided
GRAD-CAM/Global

GRAD-CAM and
feature occlusion
analysis.

Segmentation on
heatmaps and CNN
scoring.

AUROC, PR curve, t-test
and p-value/post-hoc

[13] Zhao, G. et al. (2018) Respond CAM/Global GRAD-CAM, weighted
feature maps and
contours.

Sum to score property on
3D images by CNN.

Natural images captioning
by prediction/post-hoc

[14] Bahdanau
et al. (2014)

Multi-Layer
CAM/Global

Conditional probability Encoder–decoder, neural
machine translation and
bidirectional RNN.

BLEU score, language
translator and confusion
matrix/post-hoc

[15] Lapuschkin, S.
et al. (2019)

LRP 1/Local
(Layer-wise relevance
propagation).

Relevance heatmaps. Class predictions by
classifier, Eigen-based
clustering, LRP, spectral
relevance analysis.

Detects source tag,
elements and orientations.
Atari breakout/ante-hoc

[16] Samek, W.
et al. (2016)

LRP 2/Local Sensitivity LRP, LRP connection to
the Deep Taylor
Decomposition (DTD).

Qualitative and
quantitative sensitivity
analysis. importance of
context measured/post-hoc

[17] Thomas, A.
et al. (2019)

LRP DeepLight/
Local

Axial brain slices and
brain relevance maps.

Bi-directional long
short-term
memory (LSTM) based
DL models for fMRI.

Fine-grained
temporo-spatial variability
of brain activity, decoding
accuracy and confusion
matrix/post-hoc
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Table 1. Cont.

Ref. # Reference Reference
Paper/Mechansim

Data Preprocessing Evaluation
Methods/Algorithms

Outcome/Explanation
Type

[18] Arras, L. et al. (2016) LRP CNN/Local Heatmap
visualizations/PCA
projections.

Vector-based document
representations
algorithm.

Classification performance
and explanatory power
index/ante-hoc

[19] Hiley, L. et al. (2020) LRP DNN/Local Sobel filter and DTD
selective
relevance (tempo-
ral/spatial)
maps

A selective relevance
method for adapting the
2D explanation technique

Precision is the percentage
overlap of pixels, std. and
Avg. precision
comparison/ante-hoc

[20] Eberle, O. et al. (2020) LRP BiLRP/Global DTD to derive BiLRP
propagation rules.

Systematically
decompose similarity
scores on pairs of input
features (nonlinear)

Average cosine similarity to
the ground truth, similarity
matrix/ante-hoc

Table 2. Analysis for the BSI-affected patients treatment research.

Ref. # Reference Paper Dataset Data Preprocess-
ing/Mechanism

Evaluation
Methods/Algorithms

Outcome/Explanation
Type

[21] Burnham, J.P.
et al. (2018)

430 patients Chi-squared/Fisher
exact test, Student t test
/Mann–Whitney
U/Global

Multivariate Cox
proportional hazards
models

Kaplan–Meier curves and
p-values/ante-hoc

[22] Beganovic, M.
et al. (2019)

428 patients Chi-square/ Fisher
exact test for
categorical variables,
and t test/ Wilcoxon
rank for continuous
variables./Global

Propensity scores (PS)
using logistic regression
with backward stepwise
elimination and Cox
proportional hazards
regression model.

p-values./ante-hoc

[23] Fiala, J. et al. (2019) 757 patients Generalized estimating
equations (GEE) and
Poisson regression
models/Global

Logistic regression
models, Cox proportional
hazards (PH) regression
models

p-value before and after
adjustment/ante-hoc

[24] Fabre, V. et al. (2019) 249 patients χ2 test and Wilcoxon
rank sum test/Local

multivariable logistic
regression for propensity
scores

Weighted by the inverse of
the propensity score and
2-sided p-value/ante-hoc

[25] Harris, P.N.A.
et al. (2018)

391 patients Charlson Comorbidity
Index (CCI) score,
multi-variate
imputation/Global

Miettinen–Nurminen
method (MNM) or
logistic regression.

A logistic regression model,
using a 2-sided significance
level

[26] Delahanty, R.J.
et al. (2018)

2,759,529 patients 5-fold cross
validation/Local

XGboost in R. Risk of Sepsis (RoS) score,
Sensitivity, Specficity and
AUROC/post-hoc

[27] Kam, H.J. et al. (2017) 5789 patients Data imputation and
categorization./Local

Multilayer
perceptron’s (MLPs),
RNN and LSTM model.

Accuracy and
AUROC/post-hoc

[28] Taneja, I. et al. (2017) 444 patients Heatmaps, Riemann
sum, categories and
batch
normalization/Global

Logistic regression,
support vector
machines (SVM), random
forests, adaboost, and
naïve Bayes.

Sensitivity, Specificity, and
AUROC/ante-hoc

[29] Oonsivilai, M.
et al. (2018)

243 patients Z-score, the Lambda,
mu, and sigma (LMS)
method. 5-fold
cross-validated and
Kappa based on a grid
search/Global

Decision trees, Random
forests, Boosted decision
trees using adaptive
boosting, Linear support
vector machines (SVM),
Polynomial SVMs, Radial
SVM and k-nearest
neighbours (kNN)

Comparison of
perfor-mance rankings,
Calibration, Sensitiv-ity,
Specificity, p-value and
AUROC/ante-hoc

[30] García-Gallo, J.E.
et al. (2019)

5650 patients Least Absolute
Shrinkage and
Selection Opera-
tor (LASSO)/Local

Stochastic Gradient
Boosting (SGB)

Accuracy, p-values and
AUROC/post-hoc
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Table 3. Analysis for the AKI-affected patients treatment research.

Ref. # Reference Dataset Criteria Data Preprocess-
ing/Mechanism

Evaluation
Methods/Algorithms

Outcome/Explanation
Type

[31] Lee, H-C.
et al. (2018)

1211 Acute kidney injury
network (AKIN)

Imputation and
hot-deck
imputation/Global

Decision tree, random
forest, gradient boosting
machine, support vector
machine, naïve Bayes,
multilayer perceptron,
and deep belief networks.

AUROC, accuracy,
p-value, sensitivity and
specificity/ante-hoc

[32] Hsu, C.N.
et al. (2020)

234,867 KDIGO Least absolute
shrinkage and
selection
operator (LASSO),
5-fold cross
validation/Local

Extreme gradient
boost (XGBoost) and
DeLong statistical test.

AUROC, Sensitivity,
and
Specificity/ante-hoc

[33] Qu, C.
et al. (2020)

334 KDIGO Kolmogorov–
Smirnov test and
Mann–Whitney U
tests/Local

Logistic regression,
support vector
machine (SVM), random
forest (RF), classification
and regression
tree (CART), and extreme
gradient
boosting (XGBoost).

Feature importance
rank, p-value and
AUROC/ante-hoc

[34] He, L.
et al. (2021)

174 KDIGO Least absolute
shrinkage and
selection
operator (LASSO)
regression, Bootstrap
resampling and
Harrell’s C
statistic/Local

Multivariate Cox
regression model and
Kaplan-Meier curves.

p-value, Accuracy,
Sensitivity, Specificity,
and
AUROC/ante-hoc

[35] Kim, K.
et al. (2021)

482,467 KDIGO SHAP, partial
dependence plots,
individual conditional
expectation, and
accumulated local
effects plots/Global

XGBoost model and RNN
algorithm

p-value,
AUROC/post-hoc

[36] Penny-Dimri,
J.C.
et al. (2021)

108,441 Cardiac surgery-
associated (CSA-
AKI)

Five-fold
cross-validation
repeated 20 times and
SHAP/Global

LR, KNN, GBM, and NN
algorithm.

AUC, sensitivity,
specificity, and risk
stratification/post-hoc

[37] He, Z.L.
et al. (2021)

493 KDIGO Wilcoxon’s rank-sum
test, Chi-square test
and Kaplan–Meier
method/Local

LR, RF, SVM, classical
decision tree, and
conditional inference tree.

Accuracy and
AUC/ante-hoc

[38] Alfieri, F.
et al. (2021)

35,573 AKIN Mann–Whitney U
test/Local

LR analysis, stacked and
parallel layers of
convolutional neural
networks (CNNs)

AUC, sensitivity,
specificity, LR+ and
LR-/post-hoc

[39] Kang, Y.
et al. (2021)

1 million. N.A. conjunctive normal
form (CNF) and
Disjunctive normal
form (DNF)
rules/Global

CART, XGBoost, Neural
Network, and Deep Rule
Forest (DRF).

AUC, log odd ratio and
rules based
models/post-hoc

[40] S. Le
et al. (2021)

2347 KDIGO Imputation and stan-
dardization/Global

XGBoost and CNN. AUROC and
PPV/post-hoc
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Table 4. Analysis for the hospital mortality prediction research.

Ref. # Reference Dataset Ventilator Data Preprocess-
ing/Mechanism

Evaluation
Methods/Algorithms

Outcome/Explanation
Type

[41] Mamandipoor,
B. et al. (2021)

Ventila
dataset
with 12,596

Yes Mathews correlation
coefficient (MCC)/Global

LR, RF, LSTM, and RNN. AUROC, AP, PPV, and
NPV/post-hoc

[42] HU, C.A.
et al. (2021)

336 Yes Kolmogorov–Smirnov
test, Student’s t-test,
Fisher’s exact test,
Mann–Whitney U test,
and SHAP/Global

XGBoost, RF, and LR. p-value,
AUROC/ante-hoc

[43] Rueckel, J.
et al. (2021)

86,876 Restricted
ventilation
(atelectasis)

Fleischner criteria,
Youden’s
J Statistics, Nonpaired
Student t-test/Global

Deep Neural Network. Sensitivity, Specificity,
NPV, PPV, accuracy, and
AUROC/post-hoc

[44] Greco, M.
et al. (2021)

1503 Yes 10-fold cross validation,
Kaplan–Meier curves,
imputation and
SVM-SMOTE/Global.

LR and Supervised
machine learning models

AUC, Precision, Recall,
F1 score/ante-hoc

[45] Ye, J.
et al. (2020)

9954 No Sequential Organ Failure
Assessment (SOFA) score,
Simplified Acute
Physiology Score II (SAP
II), and Acute Physiology
Score III (APS III)./Global

Majority voting, XGBoost,
Gradient boosting,
Knowledge- guided CNN
to combine CUI features
and word features.

AUC, PPV, TPR, and F1
score/ante-hoc

[46] Kong, G.
et al. (2020)

16,688 Yes SOFA and SAPS II
scores./Local

Least absolute shrinkage
and selection
operator (LASSO), RF,
GBM, and LR.

AUROC, Brier score,
sensitivity, specificity,
and calibration
plot/ante-hoc

[47] Nie, X.
et al. (2021)

760 No Glasgow Coma
Scale (GCS) score, and
APACHE II/Global

Nearest neighbors,
decision tree, neural net,
AdaBoost, random forest,
and gcForest.

Sensitivity, specificity,
accuracy, and
AUC/ante-hoc

[48] Theis, J.
et al. (2021)

2436 N.A. SHAP, SOFA, Oxford
Acute Severity of Illness
Score
(OASIS), APS-III, SAPS-II
score, and decay replay
mining/Global

LSTM encoder–decoder,
Dense Neural Network.

AUROC, Mean AUROC
and 10-FOLD CV
AUROC/post-hoc

[49] Jentzer, J.C.
et al. (2021)

5680 Yes The Charlson
Comorbidity Index,
individual comorbidities,
and severity of illness
scores, including the
SOFA and APACHE-III
and IV scores/Global

AI-ECG algorithm AUC/post-hoc

[50] Popadic, V.
et al. (2021)

160 Yes N.A./Local Univariate and
multivariate logistic
regression models

p-values, ROC
curves/ante-hoc

A severe type of infection or condition, which can be caused by multiple factors
affecting blood flow to the kidney or medications side effects is known as acute kidney
injury [31]. The symptoms can be basically seen in the lab tests, which include urine output
and serum creatinine levels. In case of ventilation support, additional parameters are
considered for the features. The preprocessing could help to improve data quality and
provide promising results. Machine learning has shown to identify the stage and level of
AKI, which has helped to apply proper medication treatment, recovery for the mild and
control the severe conditions. In case of comorbidities or critical conditions, the hospital
mortality is thought to be an important prediction [41]. There are more features available
for such cases, as it involves distinct ICU parameters. Additionally, the medication courses
and its related effects are available. The criteria for considering critical cases is the first
filter for preprocessing and later data imputation can be added, if necessary. Previously,
many works have provided such predictions using time windows before 48, 72 h, etc. by
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using either statistical, machine learning, and/or CNN methods. Such work is important
in case of shifts in the medical treatment department or medication course.

3. Potential Difference between the AI and XAI Methods

Figure 2 presents various factors responsible for the difference in AI and XAI methods.
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Researchers are required to select XAI methods for the benefits as discussed below:

3.1. Transparency in the System Process

The use of conventional black-box-based AI models have limited its use and trans-
parency of the system. Therefore, XAI methods are known for their transparent systems
that provide the details of the data preprocessing, model design, detail implementation,
evaluation, and conclusion. Transparency provides the user with complete system design
that can be later configured, improved, versioned, and audited effectively.

3.2. Explainability of the System

The AI model lacks explainability for the system process. Therefore, the user’s trust
can be gained by a highly explained XAI-based decision process. The decision taken on
every step of the system process and its supporting explanation makes it more effective. In
case of model design issues, the explainability can also help to identify at which process
step the erroneous decision was made and thus later can be resolved. The explainability is
crucial for the initial data analysis, decision, and action for the whole XAI model.

3.3. Limitations on the Model Design

The AI models are usually black box and are not accessible to the end users. In
comparison, the XAI provides models more interpretability at each structural layer, which
is used to know the data quality, feature distribution, categorization, severity analysis,
comparison, and classification. Thus, the acceptance of the XAI models is more due to
interpretability. The user is more confident and has trust in the system. Nevertheless,
false positive values can also be caught and analyzed in detail to avoid system failure and
better treatment.
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3.4. Adaptability to the Emerging Situations

The XAI models are known for high adaptability by using the feedback technique. The
domain experts/medical examiners may be interested in applying/modifying a new feature.
In severe cases, ICU parameters can also be adopted for better discharge and mortality
classification. Due to recent infections, the cases of comorbidities are on the rise and such
complex cases need high adaptability and explainability for the treatment. Ultimately, the
model quality can be kept consistent and will be applicable to long-term usage.

4. Recent XAI Methods and Its Applicability

The recent reference papers show the approach of providing interpretability and
transparency of using the models as shown in Figure 3. Even though the models, dataset,
criteria, and outcome are specified in detail in many medical domain papers, still the
explainability and justifiability needs to be provided for every case. In the future, interactive
AI systems will be in more demand for providing such explainability and interaction with
the domain experts to continuously improve the outcome, which is adapted to various
situations such as changes in human, weather, and medical conditions. The tables from
1 to 4 are probable approaches for the respective infection/disease and are deemed to be
appropriate for the hospital-based recovery prediction. For this section, we are going to
discuss the preprocessing methods used for the recent paper, algorithms used within their
respective models, and outcome.
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4.1. Local and Global Methods for the Preprocessing
4.1.1. Gradient Weighted Class Activation Mapping (Grad-CAM)

Grad-CAM [11] is used for prediction of the respective concept by referring to the
gradients of the target, which is passed to the final convolutional layer. The important
regions are highlighted using the coarse localization mapping. It is also known to be a
variant of heat map, which can be used by image registration to identify the different image
sizes and scales for the prediction. Grad-CAM is a propagation method, easy to visualize
and provides user-friendly explanations. It is one of the popular methods in object detection
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and is recently used frequently within the medical domain to identify different diseases
and affected areas of the patient. The chest X-ray (CXR), CT-scan, brain tumors, fractures in
the different human/animal parts can be easily highlighted by such application. As the
accuracy with sensitive domain is not recommended, there are several other versions for the
CAM supported analysis include Guided Grad-CAM [12], Respond-CAM [13], Multi-layer
CAM [14], etc. The Guided Grad-CAM is used to check models prediction by identifying
salient visual features. Thus, the interest class relevant features are highlighted by the
saliency maps. The Grad-CAM and guided backpropagation pointwise multiplication is
known as saliency maps. The Guided Grad-CAM is known to generate class specific maps,
which are the last convolutional layers feature map dot product and neurons combining
to a predicted class score by partial derivatives. The Respond CAM is used to operate
on the 3D images having complex structures of macromolecular size from the cellular
electron cryo-tomography (CECT). The Respond-CAM has a sum to score property for
better results than Grad-CAM and is used to highlight 3D images’ class discriminative
parts using weighted feature maps.

The Respond-CAM’s sum-to-score property can be given as y(c) as the class score, b(c)

is the last layer CNN parameter, ∑
i,j,k

(L(c)
A ) is the class c sum for Grad-CAM/Respond-CAM

and C as the number of classes given in Equation (1).

y(c) = b(c) + ∑
i,j,k

(L(c)
A )i,j,k (1)

The Multi-layer Grad-CAM is used to compute conditional probability of the selected
feature with a single maxout hidden layer. It is based on maxout units, a single hidden
layer with a softmax function to normalize output probability.

4.1.2. Layer-Wise Relevance Propagation (LRP)

It is also one of the popularly used propagation methods, which operates by using the
propagation rules for propagating the prediction backward in the neural network. The LRP
can flexibly operate on input such as images, videos, and texts. The relevance scores can be
recorded in each layer by applying different rules. The LRP is based and justified using
a deep taylor decomposition (DTD). It can be set on a single or set of layers in the neural
network and can be scaled in the complex DNN by providing high explanation quality. It
is also popularly used in the medical domain consisting of CXR, axial brain slices, brain
relevance maps, and abnormalities, etc. The versions available in LRP are LRP CNN, LRP
DNN, LRP BiLRP, LRP DeepLight for the heatmap visualizations. The LRP relevance is
higher as compared to other visualization/sensitivity analysis. The input representations
are forward-propagated using CNN until the output is reached and back-propagated
by the LRP until the input is reached. Thus, the relevance scores for the categories are
yielded in LRP CNN [18]. For the LRP DNN [19], the CNN is tuned with initial weights
for the activity recognition with pixel intensity. In LRP BiLRP [20], the input features pairs
having similarity scores are systematically decomposed by this method. The high nonlinear
functions are scaled and explained by using composition of LRP. Thus, the BiLRP provides
a similarity model for the specific problem by verifiability and robustness.

The BiLRP is presented as a multiple LRP combined procedure and recombined on
input layer. Here, x and x’ are input which are to be compared for similarity, ∅x as a
group of network layer with {∅1 to ∅L}, and y(x, x’) as the combined output given in
Equation (2).

BiLRP
(
y, x, x′

)
=

h

∑
m=1

LRP([∅L ◦ · · · ◦∅1]m, x)
⊗

LRP
(
[∅L ◦ · · · ◦∅1]m, x′

)
(2)
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The DeepLight LRP [17] performs decoding decision decomposition, which is used to
analyze the dependencies between multiple factors on multiple levels of granularity. It is
used to study the fine-grained temporo-spatial variability of the high dimension and low
sample size structures.

4.1.3. Statistical Functions for the Feature Analysis and Processing

The statistical analysis [21] of survivors and non-survivor’s comparison for categorical
variables is performed by chi-square test/Fisher’s exact test and reported as interquartile
range (IQRs) and standard deviation/medians. Whereas, the continuous variables by
Mann–Whitney U test or Student’s t-test and expressed as frequencies. The Kaplan–Meier
is used for graphical analysis of the relationship between two features with a significance
log rank test. The hazard model of multivariate cox proportional regulation regulates
the risk factor for the outcome and is analyzed graphically by the log-log prediction
plot. In such cases, a significant p-value is less than 0.05 for single variate and 0.10 for
bi-variate analysis. The generalized estimating equation (GEE) [23] is used to present the
correlations between the feature matched sets. The incidence difference between the feature
inheritance with GEE matching is within pre and post data adjustments. The Charlson
comorbidity index score [25] is used to determine the comorbidities affected hospitalized
patient life span risk within one year by a weighted index. The multivariate imputation is
performed by the multiple imputation for the post-hoc sensitivity analysis for discrete and
continuous data using chained equations. The lambda, mu, and sigma (LMS) method [29]
is used to calculate the spirometric values for the normal lower limits in the z-scores. The
kappa is an account chance agreement, where measurement agreement produces output
as kappa 1.0 else 0. The least absolute shrinkage and selection operator (LASSO) [32] is
a method of variable selection and regularization for improving prediction accuracy as
a regression analysis. The imbalance classification problem is popularly solved by using
Synthetic Minority Oversampling Technique (SMOTE) [44]. The cause of imbalance is
usually due to the minority class, which are later duplicated in the training set before fitting
the model. Such duplication helps to balance class duplication but does not provide any
additional information.

4.1.4. SHapley Additive exPlanations (SHAP)

The SHAP [35] uses ranking based algorithms for feature selection. The best feature is
listed in the descending values by using SHAP scores. It is based on the features attribution
magnitude and is an additive feature attribution method. SHAP is a framework that uses
shapley values to explain any model’s output. This idea is a part of game theoretic approach
which is known for its usability in optimal credit allocation. SHAP can compute well on the
black box models as well as tree ensemble models. It is efficient to calculate SHAP values
on optimized model classes but can suffer in equivalent settings of model-agnostic settings.
Individual aggregated local SHAP values can also be used for global explanations due to
their additive property. For deeper ML analysis such as fairness, model monitoring, and
cohort analysis, SHAP can provide a better foundation.

4.1.5. Attention Maps

Popularly used to be applied on the LSTM RNN model, which highlights the specific
times when predictions are mostly influenced by the input variables and has a high inter-
pretability degree for the users [51]. In short, the RNN’s predictive accuracy, disease state,
decomposition for performance, and interpretability is improved. The attention vector
learns feature weights, to relate the next model’s layer with certain features mostly used
with LSTM for forwarding attention weights at the end of the network.

ak = so f tmax (Wkxk) (3)
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Here, the Wk learned weights are used for calculating ak for every k feature of xk. A
feature on every time step is xk weighted with a learned attention vector, which is later
given as yk in Equation (4).

yk = ak � xk (4)

An ICU critical task to capture individual physiological data that is time sensitive is
demonstrated in DeepSOFA [52]. The attention mechanism is used to highlight variables in
time series, which are crucial for mortality prediction outcome. Successively, the time step
is assigned with more weights thought to be more influential for outcome.

4.1.6. Local Interpretable Model-Agnostic Explanations (LIME)

The LIME is a feature-scoring method, which performs the input data samples pertur-
bation and checks for prediction change for understanding the model. In SurvLIME [53],
cox proportional hazard is used to approximate a survival model within the range of the
test area. The cox uses covariates coefficient of linear combination for the prediction impact
of solving unconstrained optimization problems and other applications. The black-box-
based human understandable explanations are given by medical examiner XAI [54], which
is a LIME-like with rule-based XAI. In this case, a model agnostic technique is used for
handling sequential, multi-labelled, ontology-linked data. This model trains a decision tree
on labeled synthetic neighbors and the decision rules help to extract the explanations. The
applications are used to predict the next diagnosis visit of the patient based on EHR data
using RNN. The Lime based super-pixel generation is given in Appendix A.1.

4.2. Knowledge Base and Distillation Algorithms
4.2.1. Convolutional/Deep/Recurrent Neural Networks (CNN/DNN/RNN)

CNN is a deep learning method, which is used to depict the human brain for higher
performance and solving of complex tasks. It basically takes an input data/image, assigns
weights and biases to its various factors, and later differentiates them from each other. The
filters used here act as a relevant converter for spatial and temporal dependencies. The
CNNs designed for structured output are used for image captioning [11]. To improve this
captioning, the local discriminative image regions are found to be better with the CNN
+ LSTM models. The CNN scoring [12] provides precise localization. Later, based on
some categories and thresholds, the scores are calculated. The DNN [43] is termed on the
network consisting of multiple hidden layers. The DNN, once trained, can provide better
performance for the suspicious image findings, which can be used to identify faults and
status. The RNN is mostly used in the natural language processing applications as they are
sequential data algorithms. It is usually preferred for remembering its input by its internal
memory structure and thus is mostly suitable for machine learning methods involving
sequential data. The bi-directional RNN [14] is designed to function as an encoder and
decoder, which emulates searching through sequences at the time of its decoding. Thus,
the sequences of forward and backward hidden states can be accessed.

4.2.2. Long Short-Term Memory (LSTM)

The advancement for processing, classifying and making predictions on time series
data is achieved by using LSTM. The vanishing gradient problem is popularly solved by
using LSTM. The bi-directional LSTM [17] is used to model the within and across multiple
structures with the spatial dependencies. Deeplight also uses a bi-directional LSTM, which
contains a pair of independent LSTM iterating in the reverse order and later forwarding
their output to the fully-connected softmax output layer. The LSTM encoder takes n-sized
embedded sequences with dual layer, n cells, and outputs dense layers. The second LSTM
is the reverse architecture known as a decoder to reconstruct the input. The dropout layer
can be used in between encoder and decoder to avoid overfitting.
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In this LRP, the linear/non-linear classifier f is used with input a having dimension d,
positive prediction f (a) > 0, and Rd is having a single dimension of relevance.

f (a) ≈
D

∑
d=1

Rd (5)

Here, R(l)
j with a j neuron at l network layer, R(l−1,l)

i←j defined by deep light where

Zij = a(l−1)
i w(l−1,l)

ij having coefficient weight w, a as input, and ε as stabilizer given in
Equation (6).

R(l)
j = ∑

iε(l)
R(l−1,l)

i←j

R(l−1,l)
i←j =

Zij

Zj+ ∈ .sign
(
Zj
)R(l)

j (6)

4.2.3. Recent Machine Learning-Based Approaches

The support vector machines (SVMs) are used for regression, classification, and outlier
detection, which are supervised learning algorithms. It is more popularly used in high-
dimensional spaces, which can be even greater than sample size. The linear SVM [29]
is used in ultra large datasets for solving multiclass classification problems, which is the
version of the cutting plane algorithm. The polynomial SVM is also known as polynomial
kernel, which shows the polynomial having feature space with a training set focusing on
the similarity vectors. The decision boundary flexibility is controlled by degree parameter.
Hence, the decision boundary can increase based on the higher degree kernel. The SVM
also uses one more kernel function known as Gaussian RBF (Radial Basis Function). The
value calculated on the basis of some point or origin distance is RBF kernel. In machine
learning, a deep neural network class or generative graphical model is known as deep
belief network (DBN) [31]. It is constructed with latent variables of multiple layers having
interconnected layers excepts for the units in each layer. The deep rule forest (DRF) [39]
are multilayer tree models, which uses rules as the combination of features to outcome
interaction. The DRF are based on the random forest and deep learning based algorithms
for identifying interactions. Validation errors can be effectively reduced by DRFs hyper-
parameters fine tuning.

The DBN [55] consists of the following evolution of a restricted boltzmann ma-
chine (RBM) having posterior probability of each node with values 1 or 0.

P(hi = 1|v) = f (bi = Wiv) (7)

P(hi = 1|h) = f (ai = Wih) (8)

Here, the f (x) = 1/(1 + e−x), which has energy and distribution function as:

E(v, h) = −∑
i∈v

aivi −∑
j∈h

bjhj −∑
i,j

vihjwij (9)

p(v, h) =
1
z

e−E(v,h) (10)

The RBM follows unsupervised learning with pdf p(v), θ ε {W, a, b} as likelihood
function, and v as input vector given as p(v, θ), where the gradient method has logp(v, θ)
as likelihood function and higher learning can be achieved by revising gradient parameters
as ∂p(v,θ)

∂θ .

θ(n + 1) = θ(n) + a×
(
−∂p(v, θ)

∂θ

)
, θ ε {W, a, b}
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−
∂logp

(
v, wij

)
∂wij

= Ev
[
p(hi|v)× vj

]
− v(i)j × f

(
Wi × v(i) + bi

)
− ∂logp(v, bi)

∂bi
= Ev

[
p(hi|v)× vj

]
− f

(
Wi × v(i)

)
−

∂logp
(
v, aj

)
∂ai

= Ev
[
p(hi|v)× vj

]
− v(i)j (11)

4.2.4. Rule-Based Systems and Fuzzy Systems

A rule-based system uses knowledge representation rules for obtaining the knowledge
coded in systems. They are completely dependent on the expert systems, which solves the
knowledge-intensive problem by reasoning similar to human experts. It is used in stroke
prediction models by interpretable classifiers using Bayesian analysis [56]. The interpretabil-
ity of decision statements is simplified by the high dimensional and multivariate feature
space by the discretization of if-then conditions. The decision list has posterior distribution
yielded by Bayesian rule list. The structure used here to support sparsity has a highly
accurate medical scoring system. The interpretable mimic learning uses gradient boosting
trees and has high prediction performance as a knowledge distillation approach [57]. Mimic
learning uses a teacher and student model, where the teacher model eliminates training
data noise/error and soft labels are passed to the student model as regularization to avoid
overfitting. It is applied in the medical domain of acute lung injury and achieves high
prediction results. It is also known to be applicable in speech processing, multitask learning,
and reinforcement learning. Fuzzy rules are a form of if-then conditional statements that
are yielding truth to a certain degree instead of complete true/false. A deep rule-based
fuzzy system is used to predict ICU patient’s mortality which consists of a heterogeneous
dataset combining categorical and numeric attributes in hierarchical manner [58]. The
interpretable fuzzy rules can be found in each unit of hidden layer within this model. Also
to gain interpretability, a supervised random attribute shift is added in the stack approach.

The supervised clustering has fuzzy partition matrix and cluster centers. Here, βdp is
the output weight vectors having a building unit as dp-th, where the partition matrix is
Udp and output set as T given in Equation (12).

βdp =

(
1

Const
I + UT

dp Udp

)−1
UdpT (12)

The interpretability is the layer’s prediction with random projections for higher linear
separability, where α′ is the sub constants of α, Zdp as random projection matrix, and Ydp
as the last unit’s output vector.

Xdp = X + α′YdpZdp

Ydp = Udpβdp (13)

4.2.5. Additional XAI Methods for Plots, Expectations, and Explanations

The partial dependence plot (PDP) in machine learning presents a marginal effect
between input of one or multiple features on the final prediction, which is usually having
a partial dependency. The PDP algorithm performs the average of all input variables
except for PDP computed variable n [59]. This variable n is then checked in relation to
the change in target variable for the purpose of recording and plotting. In comparison
to the PDP, individual conditional expectations focus on specific instances that disclose
variations in the recovery of the patient’s subgroup [60]. The XAI-based explanation
to the classifier prediction is best achieved by the Local Interpretable Model-agnostic
Explanations (LIME) as an interpretable model approximating black box model to the
instance under consideration [61]. The artifacts are user defined interpretable modules and
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are used later to generate local black boxes for instance neighbors. The user intervention
and artifact limits are overcome by Semantic LIME (S-LIME) for possessing semantic
features which are independently generated using unsupervised learning.

The fidelity function is given below consisting of model g with the instance x and y
for feature characterizing agreement and the function π having exponential kernel with
weighted σ with a distance D.

F (x, f, g,π) = ∑
yεX

π(x, y).( f (y)− g(y))2 (14)

D(x, y) = ∑
xi=1
|xi − yi| (15)

LIME is popular to highlight the important features and provides explanation based
on its coefficient but suffers due to randomness in sampling step, making it unacceptable
in medical applications. To gain trust, safeguard stakes, and avoid legal issues, a high
stability and an acceptable adherence level system is proposed known as optimized LIME
explanations (OptiLIME) for diagnostics [62]. The mathematical properties are clearly
highlighted and are kept stable across several runs in OptiLIME to search for the best kernel
width in an automated way. As per the formula given below in Equation (16), the declining
R2 is converted into l(kw, R̃2) a global maximum to get the best width. Here, the R̃2 is the
expected adherence with random kw values.

l(kw, R̃2) =

{
R2(kw), i f R2(kw) ≤ R̃2

2R̃2 − R2(kw), i f R2(kw) > R̃2 (16)

In the classical ROC plot and AUC, the alterable threshold leads to the changes in
false positive and false negative errors types [63]. As the partial part of ROC and AUC are
useful in imbalanced data, then optional methods include partial AUC and the area under
precision recall (PR) curve but are still insufficient to be trusted completely. Therefore, a
new method known as partial AUC (pAUC) and c statistics of ROC are present, maintaining
characteristics of AUC which are continuous and discrete measures, respectively. For the
horizontal partial AUC, where x = 1 for the AUC integration border and other parts as true
negative. Integration with baseline as x-axis and baseline x = 0 in case of swapping x and y
axis. Thus, by transforming x (FPR) to 1 − x (TNR) then TNR can be received as required
and x = 0 changes to 1.

pAUCx ,
∫ y2

y1

1− r−1(y)dy (17)

The partial c statistic (c∆) for ROC data is given in the normalized form as below in
Equation (18). The c∆ can be expressed as J out of positive’s P and the k as a subset out of
negative’s N.

Ĉ∆ ,
2PN.c∆

J. N + K.P
(18)

The partial c statistic can be summed up as shown by the whole curve having q disjoint
partial curves.

c =
q

∑
i=1

(c∆)i (19)

4.3. Interpretable Machine Learning (IML)

Machine learning has made phenomenal progress recently in a wide variety of ap-
plications including movie recommendation, language translation, speech recognition,
self-driving cars, etc. [64,65]. IML aims to provide human-friendly explanations with the
combined efforts from computer science, social science, and human–computer interaction.
As self-driving cars need to make decisions by themselves in real time, the black box model
would not be feasible and acceptable. Therefore, an open box model with explainability
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will convey the decision to the user and its choice based on the related reason [66], i.e., why
the daily route was changed is due to the traffic congestion in the upcoming lane. The two
categories of IML can be given as:

4.3.1. Intrinsic Interpretability

Inherently interpretable models consist of self-explanatory features within their struc-
ture. It has more accurate explanations with the slight trade-off of prediction performance.
The global interpretable models can be either made by interpretable constraint or by com-
plex model extraction. In interpretability constraints, the pruning of decision trees is
performed to replace subtrees with leaves for deep trees instead of balanced structure. In
the case of interpretable CNN, natural objects are identified accurately by adding regu-
larization loss for learning disentangled representations, whereas in interpretable model
extraction, also known as mimic learning, the trade-off of explanation is not substantial.
In this case, the complex model is converted into a simple interpretable models, i.e., de-
cision trees, linear model. The obtained model has better prediction and explainability
performance, e.g., the ensemble tree or DNN is transformed into a decision tree, where the
overfitting is handled by active learning.

The local interpretable models are more focused on providing specific prediction
by a more justified model architecture. The attention mechanisms used by the RNNs as
sequential models are interpreted by the attention weight matrix for explaining individual
predictions. Attention mechanism is mostly used in image captioning with CNN for image
vectorization and RNN for descriptions. Additionally, it can also be used in neural machine
translation applications.

4.3.2. Post-Hoc Interpretability

These are the independent model, which requires supporting models to provide
explanation. The post-hoc global explanation consists of machine learning models that
capture several patterns from the training data and retain knowledge into the model. Here,
the knowledge within the pre-trained models are presented to the end user understanding.
In machine learning, the data is converted to features, which are interpretable and are
mapped to output, i.e., feature importance. Model agnostic explanations are known to
be a black box model with no transparency, whereas in permutation feature importance,
the n features are shuffled to check the model’s average prediction score and is known to
be an efficient and robust strategy. The model-specific explanation is based on internal
model structure for its explanation. The generalized linear models (GLM) consist of linear
model combinations for features transformation, e.g., linear regression, logistic regression,
etc. GLM has limitations when the feature dimensions become too large. In tree-based
ensemble models, i.e., random forests, gradient-boosting machines (GBM), XGBoost, which
measure feature contribution by accuracy, feature coverage, or split data count. In case of
DNN explanation, the representations are given by the neurons at the intermediate layers
for detail analysis. The activation maximization is utilized for iterative optimization of the
image interpretations at different layers. Even though some noise and errors can be faced
during classification, generative models are found to provide better visualization. Therefore,
the CNN can capture better visualization from object corners, textures to object parts, and
then whole objects or scenes. The RNN are better known for abstract knowledge where
language modeling is required for learning representations. The RNN are good at capturing
complex characteristics such as dependencies, syntax, and semantics. RNNs can capture
hierarchical representations from different hidden layers, whereas the multi-layer LSTM
are used to construct bi-directional language models with context aware understanding
of words.

The post-hoc local explanations are focused on individual predictions based on the
features supporting it and are also known as attribution methods. In model-agnostic
explanations, the predictions from different machine learning models as black boxes are
explained without guarantee, whereas the local approximations explanation supports in-
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terpretable white box based explanation in an adjacent part of the input, e.g., attribution
methods, sparse linear models such as LASSO. The perturbation-based methods, the feature
contribution, determines the prediction score. Thus, if the input part can change the predic-
tion, then it is known as counterfactual explanation. The model specific explanations refer
to white-boxes such as back-propagation method, deep representations, and perturbation
methods. For perceptive interpretability, refer to Appendix A.2.

5. Characteristics of Explainable AI in Healthcare

In this section, a complete aspect of the medical XAI system is given in detail. Con-
sidering the hospital situation, the interaction, explanation, and transparency detail of the
system will be disclosed. The characteristics will provide a complete overview about the
new generation of XAI healthcare system, equipped with enhanced capabilities [66] as
shown in Figure 4.
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5.1. Adaptability

The transparency needs to be provided equally amongst all the healthcare system users.
In case of medical examiners, the details of complete dataset preprocessing, algorithm
function and decision analysis at each step should be provided. The medical examiners
should be familiar with the system usage by training provided earlier to consultation and
the protocol followed by the hospital treatment standards. The detailed decisions based on
the model training on the previous year’s consultations can help the medical examiners to
check on multiple factors and then provide a final decision.

Early prediction systems can help medical examiners to take immediate actions to
avoid severe conditions. In case of nurses, the statistics of the patient’s health can be
displayed to help them record the patient’s health recovery and administer the required
procedure. The history records of the patients should be accessible and should provide
reminders about the emergency and regular scheduled procedure to be achieved. For
the administrators, the patient’s record, clinical tests, previous history of payments, and
alerts for the future treatment possibility as decided by the medical examiners can be
predicted. The patients connected to the hospital system can receive the daily reminders of
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the personal treatment, doses, warnings about the diets, alerts for the improvements and
updates from the system in case of major infections spread, etc.

5.2. Context-Awareness

An XAI system should be complete in every sense. In case of diagnosis, the system
should provide detailed vital signs, CXR, clinical tests are given as the affected patient’s
conditions and disease. Hence, a prediction or classification system is used to provide
the discharge status after one week or month based on the patient’s history records. For
the surgical/ICU department, the features would vary as the oxygenation, ventilators,
supporting instruments based on the alternative mechanical methods, etc. Therefore, the
algorithms used in this XAI model should be adaptable to the new feature depending
on the patient’s case-to-case basis. In the drug development/consultation process, the
XAI algorithm can predict the required dose schedule, the weighted contents of the drug,
the combination of drug should be suggested for the comorbidities case, etc. The risk
associated with the different types of cases should also be disclosed in the drug usage
case. Exceptional circumstances can also be made for high risk patients and the supporting
dietary or treatment with different age and continental patients should be constituted.

5.3. Consistency

The healthcare dataset and model should be consistent during the continuing patient’s
treatment. Also there should be consistency between multiple evaluations for the same
patient. Therefore, versioning is required to be maintained and report the updates as per
the module changes. A version reports the updates as per the module enhancements. A
version report can be made available to know the updated module details and the changes
affecting the past patient’s records. Log records should be maintained for every patient
that can display complete history with health status and respective time series records. The
system log records should be immutable and must store the versioning information with the
updates and fixes. A database maintained with such rules must also include the patient’s
medication course applied, clinical test report, ICU/emergency facilities details and some
special treatment applied based on some exceptional circumstances. The comorbidities
are related to complex cases that may require careful treatment and dependency factors
to be analyzed. Consistency is an important aspect of the hospital’s quality control and
research department.

5.4. Generalization

In the healthcare system, every patient’s data consists of vital signs, CXR, clinical tests
and comorbidities. In case of ICU treatment, additional features are present. The designed
model must be able to distinguish between multiple patients based on the features with
high accuracy and less error rate. Thus, if many instances have similar explanations, then
the generalization is not acceptable for the treatment and operating process. The XAI
model should be adaptable to different features and must be effective to provide distinct
explanations based on the case-to-case basis. The XAI algorithm must be able to provide
high transparency of every category of the patient’s data, i.e., vital signs, CXR, clinical
test, and comorbidities. It will be useful to distinguish between patients’ affected status
in different categories. These explanations will be helpful to the medical examiners and
medical staff for knowing about the patient’s current health status, i.e., slight/mild/severely
affected and to take appropriate further actions.

5.5. Fidelity

A designed XAI model should be configured as per the available dataset categories
and must be specific to the objective application, i.e., healthcare. To provide a more effective
explanation, the model must be interpretable. Thus, the benefit of having interpretable
models is to analyze the processing of the input data at each level. Considering the
CXR images, the interpretable model will provide analysis by CXR image quality as
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high, average, and low. Additionally, to know whether the CXR processing for the chest
cage edge identification is aligned or not. The feature identification for the different
categories of diseases/infection as infiltrate, cardiomegaly, effusion, COVID-19, etc. The
level of severity analysis of the patient’s condition either as normal, slight, mild, and severe
infection are some of the factors. Furthermore, interpretation must be aligned with the XAI
model prediction to enable the patient’s discharge and/or mortality status prediction with
high transparency.

6. Future of Explainability in Healthcare

In this section, we have identified and provided the four key aspects for the future
of explainability in healthcare. The human-in-the-loop (HITL) enhances the classification
capability of XAI, human–computer interaction (HCI) provides the deep understanding
of a patient’s condition, explanation evaluation provides key insights for personalized
outcome, and explainable intelligent systems (EIS) significantly improves the medical XAI
system. The demands of the medical system in healthcare are always at priority. The future
of XAI shows promising solutions that can improve the healthcare facilities as shown in
Figure 5.
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6.1. Human–Computer Interaction (HCI)

The concept of HCI refers to the interaction between the real world and augmented
reality [67]. The human subject here is the patient whose interaction with the computer is
recorded for the symptoms feature identification purposes. Here, the computer sensors are
used to record the human movements, e.g., sneezing, coughing, chest pain, stress level, lack
of focus, etc. The HCI then provides the output based on machine learning algorithms for
the predictions of the results. The HCI is also a crucial aspect in the future of XAI as it will
add the symptoms feature for disease identification. The HCI has further applications to
detect human poses, body structure, movement discontinuities, speech recognition, object
handling using motion detection, psychological response, etc. Even though the recent AI
is thought to be progressing, with the future XAI, a complete human body functioning is
thought to be a progressive step towards the goal.
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6.2. Human in the Loop

Applying the XAI concept in the healthcare domain is thought to be incomplete
without the human in the loop process [68]. Considering an infection/disease, there can be
several symptoms including EHR, CXR, clinical tests, etc. In recent works, it can be noticed
that multimodal data analysis is a challenge for the machine learning algorithms because
of trade-offs, less domain knowledge, high false positives, etc. To effectively solve such
a challenge, the domain expert should be continuously involved within the interpretable
model implementation to set the required hyper-parameters at each level, manage the
trade-off, add/remove features manually, decision-based system, manual labeling of data,
handling exceptional conditions, etc. A versioning-based system or feedback evaluation
system should be used for continuous improvement so that the final system will be used in
the hospital evaluation with trust. Human in the loop is hence necessary to manage the
identification/diagnosis or prediction system for the new category of infection/diseases
without replacing the whole XAI model and by adapting to the current scenario.

6.3. Explanation Evaluation

The XAI explanation for the final results evaluation is one of the most crucial aspects
in healthcare. During the peak hours for patient’s diagnosis and health prediction, medical
examiners prefer to only check the final result as an expert opinion. Therefore, the final
explanation provided by the system should be effective and acceptable. Nevertheless,
recent works have discussed the selection of the explanation from multiple robots [69].
For the different robots the explanation may vary, so during the initial phase of the model
deployment in the hospital center, the medical examiners are asked to choose the sentence
type from the multiple explanation options as best suitable to the respective medical
examiner/user. The type of explanation selection determines which robot is most suitable
to the medical examiner and is thus finalized to that specific medical examiner’s personal
account. Therefore, both the system transparency of the evaluation and the explainability
are achieved. The detailed explanation of the results provides model interpretability and
helps to gain the user’s trust.

6.4. Explainable Intelligent Systems

Modern healthcare is being strengthened and revolutionized by the development in
AI [70]. The XAI-based system can improvise the previous analysis, learning, predict, and
perform actions with explainability for the surgery-assisted robots, relationship within
genetic codes to detect, and evaluate minor patterns. The XAI intelligent system is aimed
at explaining the AI-led drug discovery, so that faster, cheaper, and effective drug develop-
ment is performed, e.g., COVID-19, cancer treatments, etc. Healthcare robotics are used
for assisting certain patients in paralysis, smart prosthesis, assistive limbs, spinal cord
injuries and can explain how much recovery in the patient is recorded. Additionally, during
the surgery process, the robots can explain the decision taken and necessary actions. The
AI-powered stethoscope can be used in remote areas where medical personnel shortage
is present and can analyze high clinical data for discovering disease patterns and abnor-
malities. Ultimately, the intelligent systems can treat and provide better explanations for
transparent and trustable processes.

7. Prerequisite for the AI and XAI Explainability

A user is recommended to choose complete XAI explainability categories of preprocess-
ing, methodology and healthcare as shown in Figure 6, as a part of the human-in-the-loop
approach with the discussions provided in the following subsections:
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7.1. Discussion for the Initial Preprocessing

n Whether the dataset is consistent?

The dataset is the input given to the model for its processing. In practical aspects, the
dataset is not always complete, as it may include missing data, incomplete data, etc. Thus,
consistency within the dataset is very crucial. Therefore, the dataset should always need to
be checked prior to the utilization, as it may lead to miscalculation for predictions.

n Which data imputation functions are required for data consistency?

In case of an inconsistent dataset, which is usually encountered by the researchers,
an appropriate selection of data imputation techniques is quite necessary. This process
can also be known as cleaning, which performs fixing inaccurate values by deleting,
modifying, or replacing the records. The imputation operations include missing/non-
missing at random, mean, median, replace by zero or constant, multivariate imputation by
chained equation (MICE), stochastic regression, interpolation/extrapolation, hot deck, data
augmentation, etc.

n Presentation of analysis of the data distributions?

The dataset can be analyzed by its distribution in detail. The distribution is used to
present the relationship between observations within the sample space. There can be vari-
ous types of distribution, i.e., normal, uniform, exponential, Bernoulli, binomial, poisson,
etc. The distribution will provide an idea by the analysis with the graphical presentation.

n Image registration techniques required for the image dataset?

In medical image processing, the input given for the chest X-rays (CXR) is not always
consistent. For the alignment, the scene/object must be aligned in the correct angle. Thus, the
issues of image scaling, rotation and skew needs are addressed by using image translation.

n Whether some feature scoring techniques are used prior?

Recently a need for high accuracy and productivity is present within the medical
domain. Thus, feature engineering and scoring helps us to achieve this goal. The feature
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scoring is calculated based on the relevant features obtained by local explanation which has
optimal credit allocation using SHAP. Several other methods include GRAD-CAM, saliency
maps, LRP, Deep LIFT, LIME, etc.

n Is there any priority assigned to some features by domain experts?

In case, the expert will be supportive for achieving better prediction accuracy.

n What actions are taken in case of equal feature scores?

In the complex cases of feature scores showing equal values, the domain experts have
to take the decision as to which features need to be considered on priority. There can be top
20 or 30 features shown by the feature scoring techniques, but the least important features
having high variability needs to be eliminated. In such a case, manual selection of features
on a case by case basis would be applicable.

n Is there some threshold assigned for feature selection?

Possessing several features is usually not effective, as it may lead to high imbalance
within the dataset. Thus, applying thresholds to sort features as priorities can also be
thoughtful to better prediction. In case of general ward patients, the thresholds applied
are on the age, pulse rate, body temperature, respiratory rate, oxygenation (SaO2), etc. are
considered to be beneficial.

n Are the features selected based on domain expert’s choice?

Comorbidities may cause complications in some rare patient cases. To handle such a
situation, the domain expert/medical examiner can select a set of features from a particular
sub-category including the ICU features. The categories of severe patient or critically ill
can be given as slight, mild, or severe.

n How are binary or multiclass output based features used?

There can be binary or multi-class based output that can be managed effectively to
provide considerate prediction. The domain expert in binary case can select either a class 0
or class 1 for priority, whereas for multiclass, a specific priority listing can be assigned to
the features with that multi-class features.

7.2. Discussion for the Methodology Applicability in XAI

• What feature aspects make the method selection valid?

The machine learning algorithms are divided into multiple categories, i.e., unsuper-
vised/supervised, regression, clustering, classification, etc. For a small dataset, principal
component analysis, singular value decomposition, k-means, etc. can be applied. In the
case of a large dataset, where speed and accuracy is important then classification algorithms
experimented are SVM, random forest, XGBoost, neural networks, etc.

• Is the approach genuine for the system model?

A good survey paper reference will be useful to know the recent models and their
respective results. Therefore, selecting an appropriate method for the preprocessing for
feature scoring then using a suitable algorithm based on the available dataset by performing
multiple experiments based on the shortlisted/recent models with hyper-tuning can yield
better results. A good sense of data behavior will be useful for selecting the suitable model
and configuring neural network architecture with parameters.

• Why would some methods be inefficient? Are references always useful for literature?

A recent literature works before or during the initial work of the XAI-based project
would be crucial in this case as given in Tables 1–4. It is recommended that instead of
implementing all the methods, a reference from several books and papers can save time
and help to understand different model behavior based on the dataset availability, thus
helping us to know which methods can be better from the survey paper.
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• In case of multi-modal data analysis is the model suitable? Will it be efficient to use
such a model?

A multi-modal dataset includes data from different categories/formats (i.e., raw data,
images, speech) required to be evaluated by a machine learning/artificial intelligence
model with a binary or multiclass output. Such multiple data is hard to be evaluated by a
single model. Thus, a hybrid model consisting of a combined independent model is made
to ensure appropriate processing for the respective format data, which is later combined
by regression, voting, ensemble, classification predictions, etc. Appropriate combination
methods used will have efficient performance.

• How is the model synchronization made for input?

Multi-modal data has different input provided to the respective same/different models.
A separate algorithm is present, which collects the output of both the models and gives the
prediction/classification. Thus, the synchronization is achieved in this process in parallel.

• Are the features of the current patient affected more or less than the average dataset?

The processing model must provide the details of the patient’s condition by his
features. During the prediction of the results, it is expected prior by the XAI to provide the
patient’s condition in detail comparison to the population for the domain expert analysis
and acceptance with trust.

• What is the current patient’s stage the methods have classified?

The XAI informs in advance about the patient’s affected stages, i.e., stage 1, stage
2, and stage 3. These disease-affected stages depict the critical condition the patient is
at present. The patient affected stage is useful for the medical examiner to provide the
required medical treatment.

n What is the current patient’s medication course assigned and its results?

Upon assigning a medication course, the medical examiner can check the patient’s
recovery progress and can change/update it accordingly. In case of comorbidities, the
patient medication course may vary. A medication may have different recovery progress
based on case to case basis.

n How much of a percentage of a patient’s clinical features are affected?

An affected patient’s data such as vital signs, clinical laboratory features, intensive care
unit (ICU) features, and medication courses are crucial for the complete status overview.
The overall recovery of the patient can be expressed in percentage, which must provide
detailed patient’s features for the confirmation.

n Are the features showing positive or negative improvement status?

With the hospital admission, a medical course in the standard operating proce-
dure (SOP) improves the patient’s condition which shows a positive improvement. In rare
cases of speciality treatment requirements, negative improvements can also be seen in the
patient’s status. Thus, the patients are required to be shifted to the specialty care to the
different section or hospital ICU.

• Which output metrics are suitable for the model evaluation?

A learning model is evaluated either on a statistical function, machine learning, or
AI. The statistical function usage provides numerical p-value or graphical results, whereas
machine learning models provide prediction with the metric of accuracy and deep learning
by classification. In fact, all the metrics are suitable but the medical examiner can select the
one which is more accurate and easy to interpret.
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7.3. Discussion for the Evaluation Factors in XAI

• What cases are important for the output classification?

In case of binary output, the learning model must provide the classification as either
infected or not infected (Yes/No), whereas for multi-class output, the learning model must
classify clearly about the infection, current stage and improving/deteriorating condition
by handling the false alarms carefully. The XAI explainability in such a case will play a
crucial role.

• Is the output improving based on recursion?

The AI expert/architect can design the model carefully with the necessary parameters
or layer configuration. The model can either be back-propagation, epoch based or a
feedback model. It is a best practice to update the training at regular intervals with auto-
weights adjustments. In the case of a feedback model, the domain expert’s suggestions are
considered for the feature engineering.

• How are the multi-model outputs combined?

As discussed previously, the multi-modal data handled by the multiple models are
combined as approximated by an algorithm. The output can then be represented either by
a profitability value/prediction/graph. The limitation for multiple model systems is to
overcome for handling a single model output.

n How are the bar graphs compared and evaluated?

The bar graphs are usually drawn by the iteration value and its respective prediction.
The graphs are given for AUROC curve, PR curve, sensitivity vs. specificity, NPV, PPV, etc.
The graphs are crucial in any system for the performance analysis as well as its effectiveness.

• Whether the user/domain expert likes to manually select features for evaluation?

In some special cases of comorbidities, there can be many false positive alarms that
can cause panic. To handle such a situation, the domain expert can select manually a group
of features by his choice and can take an appropriate treatment decision for the affected
patient’s ahead.

• Is the system designed to record feedback from the domain experts?

As none of the system is considered perfect but it is supposed to continuously update
itself for improvement. The feedback from the domain experts can resolve major issues
about the new infections or its variants, which are not known by the trained system before
and may compromise on performance.

• Whether the model updates training features with every evaluation?

The model re-training takes high processing time, which is a major issue in the ML/DL
models. Therefore, an appropriate schedule is planned by the domain experts and research
team to update the model based on the couple of weeks/months interval. Re-training is
important for the system adaptation for the future tasks, and alternatively it can be done
by proxy system for transferring weights later.

• Which model is suitable for such medical cases, machine learning (ML) or deep
learning (DL)?

A white box model such as a decision tree is easy to understand but cannot be easily
applied on complex human body features, as it may react differently than one another.
Some ML models are known to work with high accuracy for some PPG disease cases,
whereas for several other major infections/diseases, an interpretable deep learning-based
model is required to provide explainability for every step of the multi-class output with the
growth analysis.
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n How the feedback suggestions by domain experts are adapted in the current model?

In case of data imbalance, the domain expert may decide to remove some features from
the classification for high accuracy. However, if the feedback consists of adding scoring
functions features, i.e., CCI, SOFA, OASIS, APS, SPSS, etc. then it is updated in the new
version. The system adaptability is crucial for its progress.

Table 5 provides the problems addressed by the references as given for the Section 6,
even though there exist some concepts that still need to be worked on by the future
XAI research, including multi-modal data analysis [5], model synchronization, recursion,
fusion algorithm, manual features effect, feedback model, model re-training [15], model
design [15,16], and feedback design.

Table 5. XAI Human-In-The-Loop References.

XAI Category Sub-Section References

Pre-Processing

Dataset Consistency [15,18,21–23,25,26]

Imputation [4,22,25,26,28,29]

Data Distribution [15,18,21,22,25,26,28,29]

Image Registration [4,5,17,19]

Feature Scoring [11–13,17,18,25,28]

Feature Priority [9,11,16,23–25,28]

Equal Feature Scoring [11,15,19,20,29]

Threshold (Feature Selection) [12,17,20,23–26]

Manual Feature Selection [12,24–26,28]

Binary/Multi-Class Feature [4,23,25,29]

Methodology

Feature Validation [14,18,25,26,28]

Novel Approach [4,11,16,20]

Method Inefficiency [22,23,25,26,28]

Feature Analysis [11,18,25–29]

Severity Level Analysis [9,23,25,29]

Feature Effectiveness [18,20,23,25,28]

Feature Averaging [4,28,29]

Feature Improvements [16,17,24,25,29]

Evaluation

Model Metrics [4,17,26–29]

Classification [11,12,14,17,27]

Graphs [12,16,18,25,27–29]

8. Case Study

The recent progress in XAI have further advanced the research with higher accuracy
and explainability. Table 6 shows some of the medical datasets with references. The
following discussion will help to understand the influential score (I-score) for the affected
pneumonia patients [71] in Figure 7. The EHR data is known to possess many challenges,
which would be very interesting when the supporting decisions taken for predictions
are explainable.
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Table 6. Publicly available dataset for medical experiments.

Dataset Source Medical Domain Category Size

RSNA(Radiological Society of
North America) and NIH [72]

Pneumonia NIH chest X-ray dataset with initial
annotation.

26,601 CXR Images

Kermany [73] Pneumonia Chest X-rays 5856 CXR Images

Chest radiographs (SCR) dataset
X-ray images [74]

Pneumonia Chest radiographs 247 frontal viewed
posterior-anterior (PA)

Central Line-Associated
Bloodstream infections (CLABSI)
in California Hospitals [75]

Blood Stream Infections (BSI) The CLABSI (text/csv) dataset
contains reported infections, baseline
data predictions, days count for
central line, standard infection
ratio (SIR), associated confidence
interval of 95%, and grading with
respect to national baseline.

Details from 461 hospitals.

MIMIC Clinical Database [76,77] Epidemics (HER Data) The MIMIC dataset consists of ICU
data with high patient’s count
including vital signs, laboratory test,
and medication courses.

The MIMIC-III database has 26
relational tables containing
patient’s data (SUBJECT_ID),
hospital admissions (HADM_ID),
and ICU
admissions(ICUSTAY_ID).

ICES Data Repository [78] EHR Data EHR Data recorded from the health
services of Ontario.

13 million people.

Veterans Health Administration
[79,80]

EHR Data EHR data from US Veteran’s
Affairs (VA) dataset

1293 health care facilities with 171
medical center and 1112
outpatient sites.
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An interaction-based methodology is proposed for the image noise and non-informative
variables elimination using I-score for feature prediction. The explainable and interpretable
features are used to demonstrate its feature prediction, which has an interactive effect.
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Even though there is a tradeoff observed with the learning performance and effectiveness
of explainability, it can still be overcome by providing new features scoring methods. An
explanation factor is determined clearly by the prediction, which is related to the feature
selection technique known to be interpretable with explainable. In this case, I-score variable
used for explainability is processed in discrete form, which may be converted from the
continuous variable as required.

The largest marginal I-score is also specified as a random variable drawn from a
normal distribution. The I-score is maximized by the optimal subsets of variables which
are searched by the backward dropping algorithm (BDA). The BDA achieves its goal by
variable elimination in a stepwise manner from an initial subset in a variable space. In this
research, a pre-trained CNN is applied before I-score and/or alternative BDA, which is later
evaluated using a feed-forward neural network requiring less number of parameters. The
predicted 512 features from pneumonia affected CXR are further reduced to top 19 features
which are explained to provide warning about the disease location.

The EHR used for the prediction of acute critical illness (ACI) in the hospitalized
patients needs to be explained by an open box model [81]. The open box model is usually
an interpretable neural network model with explainable AI (XAI). The drawbacks of AI
models are known to lack correct results, i.e., identifying false positives or true negatives
for critical care. To overcome this problem, the XAI-EWS is designed to provide visual
explanations for sepsis, AKI and ACI. The architecture of XAI-EWS consists of deep
Taylor decomposition (DTD) with temporal convolutional network (TCN) in the prediction
module and a separate explanation module. The explanation module is used to support
prediction relevant to the clinical parameters. These clinical parameters are listed in the
form of top 10 parameters with high weights to recent values. The XAI-EWS model provides
the user with the transparency of the system model and helps to earn trust by giving
explanation of every key decision within the algorithm. The XAI-EWS has an individual
and population based perspective for the model based explanation. The DTD has been
beneficial for predicting the development of ACI from the individual perspective. Back-
propagation is used for the relevance output processing with a global parameter having
mean relevance scores and the correlations in the clinical parameters in local explanation of
the population perspective.

The Influence score (I-score) and the backward dropping algorithm are used in combi-
nation for the Figure 7 output demonstration. This proposed methodology includes select-
ing high potential variables for influential modules, which is filtered by inter-activeness
and later combined for the prediction. This I-score is known to work better with discrete
variables. In case of random variables taken from normal distribution, then optimal cut-off
is set to the highest marginal I-score. It supports limited categories to avoid classification
error rates.

I = ∑j ε

Sensors 2022, 22, x FOR PEER REVIEW 28 of 43 
 

 

The largest marginal I-score is also specified as a random variable drawn from a nor-
mal distribution. The I-score is maximized by the optimal subsets of variables which are 
searched by the backward dropping algorithm (BDA). The BDA achieves its goal by var-
iable elimination in a stepwise manner from an initial subset in a variable space. In this 
research, a pre-trained CNN is applied before I-score and/or alternative BDA, which is 
later evaluated using a feed-forward neural network requiring less number of parameters. 
The predicted 512 features from pneumonia affected CXR are further reduced to top 19 
features which are explained to provide warning about the disease location. 

The EHR used for the prediction of acute critical illness (ACI) in the hospitalized pa-
tients needs to be explained by an open box model [81]. The open box model is usually an 
interpretable neural network model with explainable AI (XAI). The drawbacks of AI mod-
els are known to lack correct results, i.e., identifying false positives or true negatives for 
critical care. To overcome this problem, the XAI-EWS is designed to provide visual expla-
nations for sepsis, AKI and ACI. The architecture of XAI-EWS consists of deep Taylor 
decomposition (DTD) with temporal convolutional network (TCN) in the prediction mod-
ule and a separate explanation module. The explanation module is used to support pre-
diction relevant to the clinical parameters. These clinical parameters are listed in the form 
of top 10 parameters with high weights to recent values. The XAI-EWS model provides 
the user with the transparency of the system model and helps to earn trust by giving ex-
planation of every key decision within the algorithm. The XAI-EWS has an individual and 
population based perspective for the model based explanation. The DTD has been bene-
ficial for predicting the development of ACI from the individual perspective. Back-prop-
agation is used for the relevance output processing with a global parameter having mean 
relevance scores and the correlations in the clinical parameters in local explanation of the 
population perspective. 

The Influence score (I-score) and the backward dropping algorithm are used in com-
bination for the Figure 7 output demonstration. This proposed methodology includes se-
lecting high potential variables for influential modules, which is filtered by inter-active-
ness and later combined for the prediction. This I-score is known to work better with dis-
crete variables. In case of random variables taken from normal distribution, then optimal 
cut-off is set to the highest marginal I-score. It supports limited categories to avoid classi-
fication error rates. 

𝐼 = ෍ 𝑛௝
ଶ(𝑌ത௝ − 𝑌ത)ଶ

௝ ఢ Ƥ
  (20)

Here, 𝑌ത௝  is the average of Y observations over the local average jth partition and 
global average Ƥ. Y is the response variable (binary 0/1) and all explanatory variables are 
discrete. Ƥ୏ is a subset of K explanatory variables {x௕ଵ . . x௕௞}. 𝑛ଵ(𝑗) is the number of ob-
servations with Y = 1 in partition element j as given in Equation (20). The BDA algorithm 
is used as a greedy algorithm, which selects optimal subsets of variables having highest I-
score. The architecture consists of an interaction based convolutional neural network 
(ICNN). 

The explainable deep CNN (DCNN) is used for the classification of normal, virus 
infection (pneumonia), and COVID-19 pneumonia-infected patients [82]. A fine distin-
guishing criteria is set by designing application specific DCNN for different infection cat-
egories with high accuracy. 

The training set consists of a gold-standard diagnosis set by a radiologist by confir-
mation. The training set provided is quite balanced in this system consisting of healthy, 
pneumonia-infected, other virus-infected and COVID-19-infected, thus providing high 
accuracy by avoiding trade-off of features within infection categories belonging to the 
same patients. 

The base model is adapted from VGG-19, where its convolution kernel is set as per 
the requirements. The final values are set with bright colors to identify the region of inter-
est for medical analysis. The hyper-parameters are trained using the grid search to find 

n2
j
(
Y j −Y

)2 (20)

Here, Y j is the average of Y observations over the local average jth partition and global
average
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K is a subset of K explanatory variables {xb1 . . . xbk}. n1(j) is the number of observations
with Y = 1 in partition element j as given in Equation (20). The BDA algorithm is used as a
greedy algorithm, which selects optimal subsets of variables having highest I-score. The
architecture consists of an interaction based convolutional neural network (ICNN).

The explainable deep CNN (DCNN) is used for the classification of normal, virus infec-
tion (pneumonia), and COVID-19 pneumonia-infected patients [82]. A fine distinguishing
criteria is set by designing application specific DCNN for different infection categories with
high accuracy.

The training set consists of a gold-standard diagnosis set by a radiologist by confir-
mation. The training set provided is quite balanced in this system consisting of healthy,
pneumonia-infected, other virus-infected and COVID-19-infected, thus providing high
accuracy by avoiding trade-off of features within infection categories belonging to the
same patients.
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The base model is adapted from VGG-19, where its convolution kernel is set as per the
requirements. The final values are set with bright colors to identify the region of interest for
medical analysis. The hyper-parameters are trained using the grid search to find the best
settings. The two CNN models include CNN1 for training samples with category labels,
test samples to partition the standard set, and CNN2 for the virus infection output. Finally,
the CNN2 generates the output by classifying the infection in Figure 8 detail.
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Figure 8. Explainable DCNN for CXR analysis and COVID-19 pneumonia classification.

The graph diffusion pseudo-labelling by deep network for CXR-based COVID-19 iden-
tification is presented [83]. The Figure 9 GraphXCovid is used for COVID-19 identification
by using a deep semi-supervised framework. It performs pseudo-labelling generation
using dirichlet energy by a novel optimization model. Thus with minimal labels a high
sensitivity in COVID-19 is generated. An iterative scheme in a deep net and attention maps
are the highlights of this model. The work is considered to be the successor of deep SSL
technique [84–87] combining generalization and feature extraction of deep neural networks.
Therefore, the process can be given in detail as optimizing epochs for deep net extraction
for graph construction, diffuse labelled sets to un-labelled data. Thus, pseudo-labels are
generated, which optimizes the model parameter by regular updates, which is later iterated
until completion. In this case, the medical data imbalance problem is handled during the
diffusion process.

The feedback system is designed to evaluate which robot explanation is more suitable
for an explainable AI system [69,88]. In the initial implementation which consists of having
multiple feature evaluators such as CAM, Grad-CAM, and network dissection are used
to support explanation by the robot as shown in Figure 10. The feature engineering pre-
processing uses top 20% by the heat-maps, which are labeled with the respective concepts.
The classification models then provide detailed accuracy for explanation by Resnet-18,
Resnet-50, VGG 16, and AlexNet.

Even though the outcomes are the same by best accuracy, the explanations are distinct.
In such a case the user can decide which robot explanation is more suitable for his under-
standing, and based on that the further outcomes are planned to be explained. The selection
is taken from multiple questionnaires at the beginning, which are later evaluated based on
five points Likert scale. In parallel, the suggestions given by the user in the feedback box
are also collected for the advancements in the new version [89].
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Nevertheless, multiple surveys for computer vision [90], deep learning [91], AI imag-
ing techniques [92], and explainable AI [93] are present, which are informative and provide
basic as well as in-depth knowledge about the concept and applications.
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9. XAI Limitations

In order to claim the research work to be XAI-compatible, the designed model should
be rated based on its explainability level and XAI evaluation. In practice, many XAI systems
are not adaptable to the new challenges of model tuning and training [71]. Even though
some models are well-designed but are not correctly trained and classified, which usually
suffer from performance issues. Therefore, such challenges are hidden and are discussed in
more detail as follows.
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9.1. Explainability Ratings for the New Models

Several recent works claim to be XAI compliant but no specific rating based standard
is present [71,82,83]. Therefore, at the base level a system can be checked for preprocessing,
methods, and post evaluation explanation of the model which can still be further improved
by point-based ratings. The explainability also depends on the ease of understanding and
the prediction/classification of the XAI system usage. The language compatibility and
parameter settings provide more transparency. The data statistics provided at every level
and interpretability at every DNN layer can further improve the transparency with more
explanation [94]. The decision transparency is rarely dealt with, and the user has no exact
knowledge about the sudden change in decision [71]. Therefore, the decision taken at every
step should be disclosed to the user, which can be helpful in the scenario of having false
alarms and leading to chaos within the hospital staff.

9.2. Measurement System for the XAI Evaluation

During the XAI evaluation phase, the results comparison is not measurable [81]. Re-
cently, robot-based explanations popularly known as bots have different classification
explanation depending upon distinct models [88], i.e., CAM, GRAD-CAM, Network Dis-
section, etc. Subsequently, the CXR feature highlighting may differ by distinct models.
Therefore, in such a case, the user’s profile account having different priorities can make the
required settings for such preferences optionally by using multiple XAI analysis techniques
known as intrinsic and post-hoc, which are used everywhere [83].

It is still unknown how to apply an automatically adapting system that can select
different optimal techniques to provide the best classification/prediction. Ensemble algo-
rithm can be one of the optional solutions but it uses a brute force method and leads to a
performance trade-off. Nevertheless, a local dataset does tend to bias the classification and
is not effective enough on the global data. A severe security threat for making the model
training biased is made by adversarial attacks [95]. Therefore, identifying such a bias issue
is also a challenge.

9.3. XAI System Adaptation to the Continuous Improvements

Many of the recent works have designed a specific hyper-tuned classification model that
may have shortcomings/over-fitting on the different dataset or feature modification [82,83].
Thus, a model will not perform significantly for the transfer learning cases too. The XAI
system must also be open to adapt to the new feature set, i.e., vitals signs, CXR image, ICU
parameters, clinical tests, etc. [96]. Modification of such features by using a user feedback
system is crucial for the system’s upgrade. A user feedback compatible system improves
the model scope and is thought to be continuously adaptable. In case of model with input
of single or multi-modal data source, the user must be able to choose either of the option as
per data available, e.g., in a multi-modal system, if the CXR is not available for the patient’s
disease diagnosis, then it must be able to classify on single source of vital sign or different
data source of ICU parameters/clinical tests, whereas the model parameter tuning is also
important for optimal performance, which needs to be performed automatically without
sacrificing performance.

9.4. Human in the Loop Approach Compatibility

The saliency map analysis is not perfectly designed to identify certain features with
vital signs data or CXR image data [71]. Therefore, the medical examiner’s based data
labeling is required at the initial training phase of the model for better quality and to achieve
high classification output [97]. Higher expectations from XAI has subsequently led to an
intelligent system that can discuss and convince its classification to the medical examiners,
so that an effective decision about the medical treatment can be made. Achieving such a
highly capable human in the loop can greatly benefit the XAI progress. In addition to the
previous discussion about user profile management for priority-based feature selection, XAI
must be able to serve also in the multi-specialty hospitals concerning different departments.



Sensors 2022, 22, 8068 32 of 42

Interest for the single patient’s health analysis is one of the major challenges. Considering
the XAI transparency and explainability at every DNN layer, the user must also be able
to configure the layer size and weights for the effective analysis of diagnosis or severity
analysis by feature highlighting is necessary.

10. XAI Recommendation System (XAI-RS)

Table 7 for XAI post-treatment recommendation system is beneficial to the hospi-
talized/treated patients for a group of diseases. As discussed earlier, the hospitalized
patients were treated for a group of diseases i.e., pneumonia, bloodstream infections, acute
kidney injury, mortality prediction, etc. have different features and symptoms. Therefore,
the XAI-RS can evaluate the results as per the recent health condition of the discharged
patient. For every patient, the XAI-RS will be personally evaluated. Thus, the patient’s
recovered from AKI will have a default recommendation set with additional suggestions
for personalized evaluation.

Table 7. XAI post-treatment recommendation chart.

1. Diet 2. Medicine/Treatment 3. Exercise 4. Regular Checkup 5. Side Effects

a. Fruits
b. Vegetables
c. Seafood
d. Meat
e. Grains
f. Soup
g. Milk Products

a. Morning dose 1
b. Afternoon dose 2
c. Evening dose 3
d. Lotions/Drops
e. Physiotherapy
f. Injections
g. Dialysis

a. Walking/Running
b. Yoga
c. Cycling
d. Swimming
e. Sports

a. Daily
b. Alternate day
c. Weekly
d. Bio-sensors/Remote
health monitoring
e. Monthly
f. Quarterly/Year

a. Vomiting
b. Dizziness
c. Headache
c. Loss of Appetite
d. Skin rashes
e. Palpitations

Table 8 presents the XAI-RS for the AKI-affected patient. These recommendations are
default to every AKI-discharged patient but if the patient is addicted to smoking and/or
consuming alcohol, then an additional recommendation needs to be added as shown by
the orange highlighted box. The purpose of the XAI recommendation system is to provide
best continuous treatment to the post-discharged patients to live a healthy lifestyle.

Table 8. XAI Personal Post-Treatment Recommendation Chart for AKI Patient.

1. Diet 2. Medicine/Treatment 3. Exercise 4. Regular Checkup 5. Side Effects

11. XAI Scoring System (XAI-SS)

The XAI-SS determines the standard grade for the newly designed and in use XAI
systems. This scoring system in Table 9 can be extended to multiple areas, i.e., indus-
trial, finance, sensor communications, etc. The scores can be assigned based on interna-
tional (10 points), group (8 points), and local (6 points) policy achievements. As each of
the 10 XAI factors are assigned equal scores with balanced/equal weightage, the final
evaluation grade is assigned as Class I (≥90%), Class II (≥70% and <90%), and Class
III (≥60% and <70%). Designing a new XAI system must involve experts for setting the
objectives for a high quality work plan.

The training provided to the XAI system must involve an international dataset for
its effectiveness (Table 6), whereas the detail for the XAI factors can be referred for pre-
processing (Sections 4.1 and 7.1), model selection (Section 4.2), model re-configuration
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(Section 7.2), interpretability (Sections 1.2 and 4.3), explainability (Section 7), evalua-
tion (Sections 1.3 and 7.3), human-in-the-loop (Section 6.2), and XAI-RS (Section 10). It is
recommended that the XAI should be evaluated every year to maintain the XAI system’s
quality and validity.

Table 9. Checklist for XAI scoring system.

Serial No. XAI Scoring Factor Description Checklist
(10 pts Each)

1 XAI based Objectives To serve the evaluation purpose for
effective problem solving following
laws and ethics.

2 Dataset for Training
Model

Whether the dataset has global and
local scope?

3 Data Pre-processing Manage the data consistency and
imbalance issue.

4 Model Selection To perform feature analysis and
select an appropriate model with a
novel approach.

5 Model
Reconfiguration

The model’s hyper-parameter tuning
for better prediction by handling
bias and variance.

6 Interpretability How much does the model support
intrinsic and post-hoc
interpretability?

7 Explainability Transparency in every step and
decision of the model should be
given by the algorithm.

8 Evaluation, Feedback
loop and
Post-evaluation

The outcome should provide
meaningful results. Graphs,
prediction, and classification should
be cross-verifiable. The feedback
loop consisting of interacting with
domain experts is helpful for
post-evaluation.

9 Human-in-the-Loop
Process

Continuously involve the domain
expert for improving multi-modal
data and feature management.

10 XAI
Recommendation
System

To maintain the discharged patient’s
health conditions.

The Table 10 Grades for the XAI scoring system in Figure 11 provides the evaluation
for the recent XAI medical references [98]. It is helpful to analyze the applicability of XAI
in the recent works and for the future works mapping.

Table 10. Grades for the XAI Scoring System.

Reference XAI Scores Grades

W. Qiu et al. 2022 [99] 90 Class I

Y. Yang et al. 2022 [100] 86 Class II

L. Zou et al. 2022 [101] 88 Class II

C. Hu et al. 2022 [102] 86 Class II

L. Zhang et al. 2022 [103] 84 Class II
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12. Conclusions

The XAI survey presents a detailed approach for the XAI research development. Legal
and ethical XAI aspects are presented, as well as some important areas within the medical
field that need attention to improve it further and gain the user’s trust by providing
transparency within the process. The contribution of XAI Recommendation System and
XAI Scoring System will be suitable for overall development of XAI in the future. The future
work will be focused on presenting the enhancements by XAI and further contributions as
the recent progress is quite impressive.
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the project for adverse event prediction using deep learning algorithm (AEP-DLA), pneumonia status
prediction, XAI-based blood stream infection classification, etc. It has become possible to achieve
publication sharing of this medical survey with the efforts, discussion, and working with many
hospital staff from the past 4 years. We hope this survey will be helpful to new researchers and
present tremendous opportunities to overcome the upcoming challenges in XAI healthcare.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1 LIME-Based Super-Pixel Generation

Pixels present the image in grid format and as a part of the original picture. Pixels are
also known as artifacts that are meant to create digital images. In contrast, the originating
source and semantic meaning of a specific super-pixel can be estimated [104,105]. A super-
pixel is usually a pixel group or combination based on a set of common properties including
pixel color value. The benefits of using super-pixel are given as: (a) Less complexity: The
grouping of pixels based on distinct properties reduces the complexity and requires less
computations. (b) Significant entities: A group of super-pixels having texture properties
achieves an expressiveness through embedding. (c) Marginal information loss: In case of
over-segmentation, crucial areas are highlighted with a minor deficit of less valuable data.
Figure A1 shows the four types of super-pixel classification algorithms are explained as
given below:
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(i) Felzenszwalb and Huttenloch (FSZ) algorithm: The FSZ is a well-known algorithm
for graph based approach and utilized for image edge operation with a O(M logM) com-
plexity. The FSZ algorithm takes a weighted gradient with the same properties between
two adjacent pixels. Successively, a future super-pixel seed is administered per pixel for
obtaining the shortest gradient difference and largest for adjacent segments.

(ii) Quick-Shift (QS): QS is the default algorithm used by LIME. The QS algorithm
generates super-pixels by mode seeking segmentation scheme. It then moves every point
towards higher density leading to increased density.

(iii) Simple Linear Iterative Clustering (SLIC): The SLIC belongs to a cluster based
super-pixel algorithm. It operates on the basis of k-means algorithm with a search space
proportional size (S × S) for reducing distance calculations significantly.
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The spatial ds and color dc proximity is combined by weighted distance measure
having complexity of O(N). The size and compactness of super-pixel is given by m as
given in the above equation. The algorithm initiates k cluster process as centers, which

is grid scanned with S pixel’s distance with S =
√

N
K approximately. To avoid super-

pixel placement on the edge, the centers are shifted towards the smallest gradient. Later,
each pixel is allotted to proximate clusters whose search area is overlaid on a super-pixel.
Successively, the new cluster center is taken as pixels’ average vector for every center’s
update. Finally, the residual error E is minimized until the threshold value and independent
pixels are added to proximate super-pixel.

(iv) Compact-Watershed (CW): The CW algorithm is the optimized version of water-
shed super-pixel algorithm. The gradient image is used as input, where the altitude is the
gray tone of each pixel that can be depicted as a topographical surface. The watershed with
catchment basins are resulted from the continuous surface flooding, which may lead to
over-segmentation and can be avoided by markers. The algorithm includes: (i) Flooding
avoidable markers for each label, (ii) Marked areas neighboring pixels are collected in
priority queue and graded by gradient magnitude equivalent to its priority level. (iii) Pixels
with highest priority are pulled out and labeled according to their neighboring pixel. Later,
labeled pixels are added in this queue. (iv) Step 3 is repeated until the priority queue is null.

The CW in terms of size and extensions has more compact super-pixels than watershed
algorithms. To obtain this, the use of Euclidean distance for the difference with a pixel
from super-pixel seed point by weighted distance measure and the gray value comparison
within pixel and gray pixel’s value is performed.

Appendix A.2 Perceptive Interpretability Methods

The XAI based perceptive interpretable methods [106,107] are LIME and GRAD-CAM,
which are the CNN architecture-based decision explanation methods. The input given is a
trained model for this interpretable process known as post-hoc analysis. The details of the
XAI perceptive models for the shapes detection of cancerous masses in the breast imaging
by computer-aided diagnosis (CAD) are as given below:

(a) Local Interpretable Model-Agnostic Explanations (LIME): The LIME interpretation
is provided by highlighting the top contributing of class S, which is evaluated on an image
classification by observing a ground truth prospect. Figure A2 shows the S perturbations
executed by LIME, which are similar to GRAD-CAM, whereas Figure A3 GRAD-CAM is
using the same image for comparison with LIME in Figure A2. The ground truth class is
used for the CNN based prediction is the same class used for LIME perturbations. The green
color indicates positive correlation of regions with the CNN decision, and red color indicates
negative correlation. Figure A2 shows the saliency scheme is used for the presentation of
saliency zones, where higher intensity red color focuses more for classification and lower
intensity blue color has less focus. Several classes are distinguished by header bars with
distinct colors.

(b) Class Activation Mapping (CAM): The Figure A3 shows the GRAD-CAM methods
based pictorial presentation of eight fine-tuned networks for visual explanation. The figure
includes for every class, two sample images are presented and every network’s respective
saliency maps for the images. The links within lesion area and network performance are
highlighted for which accurate prediction of images is given by the network. The ground
truth is considered for generating saliency maps of the approximate features. Subsequently,
the lesion areas which are incorrectly identified by CN architectures are also affected during
classification tasks. In case of SqueezeNet, the AUC is not significant and AUC trade-offs
with the number of parameters obtained from VGG-16 are incapable of highlighting the
lesion area, whereas, the lesion of the images is accurately highlighted by the ResNet-50,
DenseNet-121, and DenseNet-161. Therefore, the GRAD-CAM is distinct from LIME as it
emphasizes the color intensity closer to the center of the lesion area. Figure A3 presents the
super-pixels with red color for negative contribution and green color otherwise. Similarly,
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several classes are distinguished by header bars with distinct colors. Samples belonging to
the same class are represented by similar images header color.

Thus, it can be noticed that graphical reasoning has good understanding in the CAM-
based interpretations, whereas the evaluation of LIME and GRAD-CAM activation maps
are completely different which can be noticed from Figures A2 and A3. Ultimately, it is
recommended to consider both interpretations and models evaluation to gain a broader
view of this process.
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