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Abstract: Vitamin B micronutrients are essential regulators of one carbon metabolism that ensures
human health. Vitamin B9, or folate, lies at the heart of the folate cycle and converges with the
methionine cycle to complete the one carbon pathway. Additionally, vitamin B6 contributes by
orchestrating the flux of one carbon cycling. Dysregulation of vitamin B contributes to altered
biochemical signaling that manifests in a spectrum of human diseases. This review presents an
analysis of the past, present, and future work, highlighting the interplay between folate and vitamin
B6 in one carbon metabolism. Emerging insights include advances in metabolomic-based mass
spectrometry and the use of live-cell metabolic labeling. Cancer is used as a focal point to dissect
vitamin crosstalk and highlight new insights into the roles of folate and vitamin B6 in metabolic
control. This collection of vitamin-based research detailing the trends of one carbon metabolism in
human disease exemplifies how the future of personalized medicine could unfold using this new
base of knowledge and ultimately provide next-generation therapeutics.

Keywords: folate; pyridoxine; methionine; one carbon metabolism; cancer; methylation; B6; B9;
post-translational modification; CEST-MRI; aptamer; metabolic probe; fluorescent sensors

1. Introduction

Vitamins dynamically orchestrate cellular metabolic pathways to regulate human
physiology. One carbon metabolism is a vital pathway across living organisms that relies
on the levels of several vitamins from the B family. Vitamin B micronutrients are water-
soluble compounds obtained from diet. The era of vitamin discovery occurred in the early
20th century and were aptly named as ‘vital amines’ or ‘vitamines’ due to the common
amine in the chemical structure. While researchers had begun to understand the importance
of this new class of nutrients, Casimir Funk is attributed with the discovery and naming of
‘vitamins’ in 1912; a flurry of other vitamins were discovered shortly after, including the
B vitamins [1]. Researchers realized that deficiencies in this new class of molecules were
the cause of several diseases, including scurvy, anemia, and rickets. Over the past century,
the pioneering work of many researchers laid the groundwork of vitamin biology. Many
excellent review articles cover the folate cycle and the one carbon pathway [2,3]. This review
focuses on the central roles of vitamin B6 (pyridoxine) and B9 (folate), essential elements of
the one carbon pathway that contribute to functional activity in health and dysregulation
in disease (Figure 1). Folate enters the one carbon pathway through active forms of
tetrahydrofolate (THF) that carry methyl-groups throughout the folate cycle. Pyridoxine is
similarly obtained through diet and once converted to the most metabolically active form,
pyridoxal 5′-phosphate (PLP), is a crucial cofactor during one carbon metabolism. This
review highlights the recent advances that have revolutionized our understanding of B6
and B9 vitamins and how these lines of research offer novel insight to improve treatments
in disease.
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Figure 1. One carbon metabolism is a collection of cyclical metabolic pathways that orchestrates myr-
iad metabolic processes. The one carbon pathway is comprised of the folate cycle and the methionine
cycle. Folate enters the pathway through a two-step reaction that generates tetrahydrofolate (THF)
with the dihydrofolate reductase enzyme (DHFR). Within the methionine cycle, dietary methionine
is catabolized by methionine adenosyltransferase 2A or 1A (MAT2A/MAT1A) to produce the uni-
versal methyl donor S-adenosylmethionine (SAM). Upon substrate methylation, SAM is converted
to S-adenosylhomocysteine (SAH) and then converted by adenosylhomocysteinase (AHCY) to ho-
mocysteine (Hcy). The methionine cycle is completed by the conversion of Hcy back to methionine
by methionine synthase (MS). Alternatively, Hcy can fed into the transsulfuration pathway for glu-
tathione synthesis and redox metabolism using vitamin B6-dependent enzymes. The methionine
salvage pathway also sparks off the methionine cycle to produce the by-product methylthioadenosine
(MTA) from methionine for polyamine biosynthesis. Figure made with BioRender.

2. Vitamin B9: Folate
2.1. Dietary and Active Forms

Vitamin B9, or folate, can be obtained directly from diet via leafy greens, seeds, and
fruit juice as 5-methyltetrahydrofolate (5-MTHF) and in fortified grains or supplements as
folic acid. Originally discovered in 1931, Dr. Lucy Wills found that this micronutrient was
able to treat anemia during pregnancy [4,5]. Since then, the mechanistic underpinnings of
vitamin B9 have been described in embryonic development [6], redox homeostasis [7], im-
munology [8], and cancer [9]. Dietary B9 recommendation for adults in the United States is
set to 400 µg/day (CDC.org). Circulating B9 levels in adults range from 2 to 20 ng/mL [10]
where the highest concentrations are the most active B9 vitamer 5-methyltetrahydrofolate
(5-MTHF) at 5 µM [11]. Folate can be assessed in patients through various approaches, such
as by measuring the levels of circulating homocysteine (Hcy) or by urinary formiminoglu-
tamate (FIGLU) excretion. Additionally, folate can be directly measured in red blood cells
and through deoxyuridine suppression tests [10].

2.2. Metabolic Pathways and Key Enzymes of the Folate Cycle

The folate family contains a 2-amino-4-hydroxy-pteridine ring and a p-aminobenzoyl
moiety linked by a methylene (CH2) group, which are then linked through an amide
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bond to the α-amino group of a monoglutamate or poly-γ-glutamate (Figure 2). Methyl
groups occupy the N5 and N10 positions across vitamers [12]. Tetrahydrofolate (THF) is
generated from dietary folic acid and operates as the universal one carbon acceptor [7],
where the oxidation states of methyl-units include methanol, formaldehyde, or formate.
Dihydrofolate reductase (DHFR) catalyzes a two-step reaction that converts folic acid to
dihydrofolate (DHF) and then to THF.

Figure 2. Vitamin B9 and the Folate Family. Folate or folic acid is obtained from diet and must be
converted to tetrahydrofolate (THF) before it can enter the folate cycle. Dietary 5-methyl-THF can
also become incorporated. Folate is converted first to dihydrofolate (DHF) before becoming THF, the
universal methyl-acceptor of the one carbon pathway. Methylation can occur on the 5 or 10 N groups
of THF in 5,10-methylene-THF and 5-methyl-THF.
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Upon entering the folate cycle, THF is converted to 5,10-methylene THF (5,10-MTHF)
by serine hydroxymethyltransferase (SHMT1) in the cytosol or by SHMT2 in the mito-
chondria [7]; this step concomitantly converts serine to glycine. Then, 5,10-MTHF is
reduced further to 5-MTHF by methylenetetrahydrofolate reductase (MTHFR), which uses
flavin adenine dinucleotide (FAD) as a cofactor. In a side pathway, 5,10-MTHF can act
as a cofactor for thymidylate synthase (TS), which converts dUMPs to dTMPs for DNA
synthesis and repair [13]. In a second major offshoot of this pathway, methylenetetrahydro-
folate dehydrogenase (MTHFD) is a trifunctional enzyme that interconverts 5,10-MTHF
(pyrimidine biosynthesis) and 10-formylTHF (purine biosynthesis) via a 5,10-methenylTHF
intermediate [14].

Together, the folate cycle and the methionine cycle make up the one carbon metabolic
pathway. The methionine cycle is essential for generating the universal methyl-donor of the
cell, S-adenosylmethionine (SAM) [15,16]. The folate and methionine cycles intersect with
5-MTHF and methionine synthase (MS), which uses Hcy to generate THF and methionine.
Methionine adenosyltransferase (MAT) is responsible for the hydrolysis of methionine to
SAM. Methionine is an essential amino acid that is obtained from diet and is among the
most variable in circulation [17]. Fluxes in the one carbon metabolism pathway regulate
methionine and directly impact SAM concentrations, which in turn shape cellular signaling
and epigenetics.

2.3. Vitamin B9 Regulation

The cell has evolved multiple levels of regulation to ensure the proper concentration
of folate is maintained. Enzymes throughout the one carbon pathway are subjected to
multiple forms of regulation through post-translational modifications, allosteric inhibition,
and the abundance of key cofactors (Figure 3 and Table 1). The effects of post-translational
modifications on one carbon metabolic enzymes have been recently investigated.

Figure 3. One-carbon enzymes are modified post-translationally. Enzymes involved in the one
carbon metabolism pathway undergo a variety of post-translational modifications (PTMs), includ-
ing phosphorylation, acetylation, methylation, and ubiquitylation. Several modifications (MTHFR
phosphorylation and MTHFD1 methylation) affect protein activity and efficiency, thereby altering
one carbon metabolic flux. Since identifying many other PTMs with proteomic screens, the biolog-
ical effects of several other PTMs remain undefined. Note that the illustrated modifications only
represent a selection of identified PTMs. Y, tyrosine; K, lysine; S, serine; R, arginine; T, threonine. P,
phosphorylation; Ac, acetylation; Me, methylation; U, ubiquitylation. Figure made with BioRender.
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Table 1. One carbon metabolic enzymes are regulated by post-translational modifications and cofactor
availability.

Enzymes Function PTM Regulation Cofactor Ref.

BHMT
Methionine from

betaine and
homocysteine

Acetylation (K232,283)
Phosphorylation (T45, Y363, S366)

Homocysteine:
Methionine Zn2+ [18,19]

DHFR DHF reduction to
THF

Acetylation (R33, K174)
Phosphorylation (S145, Y183)

R-monomethylation (R29)
Ubiquitylation (K47, K153)

THF NADPH [20–23]

MAT SAM synthesis
R-monomethylation (R264)

Phosphorylation (S114, Y296)
Ubiquitylation (K351)

SAM ATP, H2O, methionine [23–25]

MS Methionine synthesis Phosphorylation (T1264) Methionine Cobalamin, Zn2+ [26]

MTHFD Tetrahydrofolate
interconversion R-monomethylation (R37, R324, R495) THF ATP, NADPH, H2O [27]

MTHFR 5-MTHF synthesis Phosphorylation (S9, 10, 19, 20, 21, 23, 25, 26,
29, 30, 103, 394; T34, 94, 451; Y90) 5-MTHF FAD [28,29]

SHMT 5,10-MTHF and
glycine synthesis

Acetylation (K271)
Phosphorylation (Y34) THF Serine [30]

PDXK PLP synthesis Acetylation (K76)
Phosphorylation (S59, 164, 213, 285) PLP ATP [31]

PNPO PLP synthesis Phosphorylation (S231, T238) PLP O2 [32,33]

TS DHF synthesis Phosphorylation (S114, Y153)
Ubiquitylation (K169, K308) dTMP - [23,34]

Intrinsic feedback systems are essential for tuning the dynamics of one carbon
metabolism. For example, MTHFR activity is sensitive to SAM levels. When present in
excess, SAM allosterically inhibits MTHFR to reduce the regeneration of methionine; SAM
levels of ~5 µM decrease MTHFR activity by half [35]. A phosphorylation of MTHFR by
dual-specificity tyrosine phosphorylation-regulated kinase (DYRK1/2) primes a subsequent
phosphorylation cascade by glycogen synthase kinase (GSK3) α/β that further sensitizes
MTHFR to allosteric SAM inhibition [36]. Additional allosteric regulation occurs in the
case of SHMT whose activity is inhibited by elevated THF levels above 40 µM [37].

Methylation senses SAM levels and dietary methionine. Since ATP, the cofactor for
protein phosphorylation, is highly abundant in cells (~1–5 mM), kinase active sites are
saturated by ATP because kinase Km, ATP is often in micromolar ranges [38–40]. Thus,
the dynamics of substrate phosphorylation by kinases and phosphatases is independent of
metabolism [15,41]. In contrast, alternative post-translational modifications that use less
abundant metabolites as cofactors are rendered sensitive to the changes of cellular metabolic
fluxes [42–44]. Methylation is paradigmatic of this phenomenon as the levels of methionine,
the precursor of SAM, can rapidly change within minutes based on diet [17]. The impact
of dietary methionine on cellular methylation was first appreciated in the regulation of
epigenetics and the methylation of histones and DNA [45–47]. Similarly, demethylase
activity relies on the abundance of a cofactor, α-ketoglutarate, which has been shown to be
dynamically linked to canonical Wnt signaling [48]. More recently, methylation of lipids
and proteins has also been shown to link the nutrient status of a cell with molecular signal
transduction [47,49]. In fact, several B9- and other one carbon-metabolizing enzymes are
methylated; in the case of MTHFD1, R173 methylation increases enzymatic activity and
subsequently NADPH levels [27].

A finely tuned crosstalk between vitamin B6 and folate plays central roles in several
developmental and adult processes (Figure 4). Beyond the regulation by one carbon metabo-
lites, folate levels are also regulated by other B vitamins such as B6 and B12. Active vitamin
B6, PLP, is a necessary cofactor for enzymes linked to B9 metabolism (e.g., SHMT1/2 and
cystathionine-β-synthase) and, therefore, altered B6 levels directly shape the fate of B9
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vitamer conversions [50]. This regulation occurs for both SHMT isoforms, though it is
interesting to note that cytosolic SHMT1 is more sensitive to decreased vitamin B6 than
mitochondrial SHMT2 [51]. In the case of a vitamin B6 deficiency, folate cycling is disrupted
due to the B6-dependent conversion of THF to 5,10-MTHF, thereby depriving neural cells
of the amino acid precursors of several monoamine neurotransmitters, including dopamine
and serotonin [52].

Figure 4. Vitamins B6 and B9 are essential in development and in adult tissues. Vitamin B6 and folate
are involved in the biosynthesis of nucleotides for DNA and RNA synthesis, cell growth, neurological
development during pregnancy and infancy, hemoglobin synthesis and red blood cell formation,
blood homocysteine balance, immune system functioning, and nutrient metabolism. Figure made
with BioRender.

2.4. Folate Deficiency and Disorders

Folate deficiency (FD) has longstanding links to defective neurological and cardiovas-
cular function [53], which can often be prevented by dietary supplementation. As 5-MTHF
can be readily imported by somatic cells, it is often the recommended vitamer for B9
supplementation. A hallmark example of this condition is FD-induced spina bifida during
embryogenesis, whose etiology is linked to hypomethylation and disrupted DNA mismatch
repair [54]. Folic acid supplementation during the course of pregnancy can greatly prevent
these defects; such recommendations from the WHO and FDA contributed to a 35–50%
reduction in the incidence of FD-induced neural tube defects in the U.S. [55]. Beyond
low folate diets, FD can arise through the loss-of-function mutations in key metabolizing
enzymes such as MTHFR, where disrupted conversion of 5,10-MTHF to 5-MTHF alters
DNA and purine synthesis, in addition to global methionine levels, resulting in impaired
tissue development [28]. As a precursor for methionine synthesis, folate deficiencies are
often congruent with altered methionine metabolism [56]. Alternative routes are available,
however, to synthesize methionine from betaine and 5-MTHF via betaine-homocysteine
methyltransferase (BHMT), although this route is limited to the liver and kidney [7]. In
contrast, an excessive level of folate can in some cases be detrimental, such as through
the masking of symptoms of vitamin B12 deficiencies, delaying diagnosis and therapeutic
intervention [57,58].

2.5. Folate in Cancer

The folate cycle is intertwined with cellular programs that are integral to cancer
metabolism and proliferation. Following the discovery of folic acid, Sidney Farber was
inspired to test the hypothesis that folate could restore blood cells in leukemia, given its
role in healing macrocytic anemia [59]. However, clinical trials abruptly stopped as folate



Metabolites 2022, 12, 961 7 of 29

was found to promote leukemia in patients. This unfortunate case led to the revolutionary
concept of antifolate therapeutics, with methotrexate (MTX) being the first of its kind.
Indeed, many folate enzymes are overexpressed in cancer. However, the roles of vitamin
B9 during cancer cell initiation, transformation, and metastasis are highly dependent on
the cancer type and surrounding tumor microenvironment (Table 2) [10].

Table 2. Vitamin B9 has been implicated across a spectrum of cancers. Cellular and tissue responses
are defined.

Cancer B9 Model Readout Cellular and Tissue Response Ref.

Lung

Up Meta-analysis Cancer incidence
1. MTHFR C677TT genotype

correlated with increased risk
2. MTHFR 1298CC genotype

correlated with increased risk

[60]

Down Case-control study Cancer incidence
MTHFR C677TT genotype

correlated with decreased risk in
women

[61]

Colon

Down
1. Meta-analysis
2. Animal model

1. Folate supplement intake
2. Serum, blood, liver, and colonic

folate levels; lesion
measurements; p53 methylation
assessment via HpaII-PCR

1. Inverse correlation between
supplementation and risk

2. Deficiency enhanced
carcinogenesis

[62–64]

None

1. Case-control
study

2. Population-
based study

1. Serum folate, B6, B12,
riboflavin, and homocysteine

2. Dietary folate, methionine, and
associated B vitamin intake;
Serum folate levels

1. No association between folate
and risk

2. No association between
dietary intake of folate and
risk

[65,66]

Ovarian

None Meta-analysis Dietary and total folate intake No association between folate and
risk [67]

Up Tumor biopsy p53 and MDM2 tissue expression
Folate receptor (FR) increases
chemotherapy resistance by

stabilizing MDM2
[68,69]

Down Meta-analysis Dietary folate intake Inverse association between folate
and risk [70]

Pancreatic

None Meta-analysis Dietary folate intake Inconsistent results linking dietary
folate intake with risk [71]

Down Meta-analysis Dietary folate intake
1. Decreased risk with increased

dietary folate intake
2. MTHFR 677TT associated

with increased risk

[71–73]

Prostate

None Meta-analysis Serum folate levels No association between folate and
risk [74,75]

Up
1. Meta-analysis
2. Case-control

study
Serum folate levels

1. 24% increase in risk
2. 4% increase risk with every 5

nmol/L increase in serum
folate

[76,77]

Down Case-control study
Serum folate, homocysteine, and B12

levels and 5,10-MTHFR
polymorphism

Low folate and high homocysteine
associated with increased risk [78]

Breast

None Meta-analysis Dietary folate intake No association between folate and
risk [72,79,80]

Down/Up Systematic review Serum folate levels

Dietary intake between 153–400
ug/day correlated with reduced

risk. More pronounced in women
with high alcohol consumption

[79]

Folate deficiencies have been linked to mechanisms of cancer progression [81]. Re-
ducing folate cycling similarly decreases methionine cycling and SAM production, which
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may contribute to hypomethylation in cancer [82]. While cellular methylation dynamics
on DNA and histone have been thoroughly studied, recent works highlight the significant
impact of SAM homeostasis on the substrate methylation status of lipids, proteins, and
RNA [47,49,83]. Additionally, folate deficiency can trigger DNA damage by decreasing the
flux of dUMP to dTMP, which typically occurs during the TS-mediated side reaction that
generates DHF from 5,10-MTHF. By increasing the dUMP:dTMP ratio, the rate of uracil mis-
incorporation into DNA increases and could trigger single- or double-stranded breaks, and
potentially oncogenic mutations [81,82]. Recent work showed that folate-supplemented
diets protected mice prior to and during xenografting with pancreatic cancer cells [84].

2.5.1. Lung Cancer

Methylenetetrahydrofolate reductase (MTHFR) has been linked to the progression
of lung cancer, through the generation of fresh nucleotides for DNA synthesis and repair
in the folate cycle [61]. Meta-analysis of MTHFR polymorphisms revealed that the most
common variant in the MTHFR gene, C677TT, is correlated with an increased risk of lung
squamous carcinoma in East Asian populations [60,85]. Surprisingly, the 677TT mutation
reduces MTHFR activity by 70% by disrupting FAD cofactor binding [86]. A reduction
in MTHFR efficiency lowers folate in circulation, decreasing methionine and SAM levels,
and causing an accumulation of Hcy. Notably, high Hcy is a risk factor in cancer and
cardiovascular disease by increasing red blood cell coagulation and pro-inflammatory
pathways [87–89]. Individuals with this variant have a folate blood concentration 16%
lower than those with the 677CC genotype, indicating that high levels of B9 have also been
associated with reduced risk of lung cancer [90]. Interestingly, a hospital-based case-control
study of a non-Hispanic white population found that the 677TT genotype was associated
with a decreased risk of lung cancer in women but not in men [61]. Dietary vitamin B6,
vitamin B12, and methionine in women with C677T genotypes were associated with a
decreased risk of cancer. Conversely, the MTHFR 1298CC genotype was associated with an
increased risk of lung cancer in women [61].

2.5.2. Colon Cancer

Low folate intake has been associated with an increased risk of colon cancer [91] and
long-term folate supplementation was shown to lower the risk of colon cancer by 75% [92].
Folate has been implicated in colorectal carcinogenesis through mechanisms of DNA syn-
thesis and methylation [93]. As the folate and methionine cycles are at the center-stage of
one carbon metabolism, low levels of folate lead to decreased methionine in circulation and
a reduction in DNA methylation essential for DNA expression, stability, and repair [94,95].
Folate cycle intermediates acting as cofactors for purine and pyrimidine synthesis are also
essential for DNA synthesis [96,97]. Due to this, low levels of folate have been associated
with aberrant DNA regulation and stability via strand breaks, mutations, and hypomethy-
lation [96,98–100]. Human colonocytes cultured in folate-deficient media were unable
to repair DNA strand breaks and showed a five-fold increase in uracil misincorporation.
Proteomics revealed altered activity and expression of proteins involved in proliferation,
DNA repair, apoptosis, and malignancy in these cells [101]. Folate deficiency was also
shown to induce mitotic aberrations [102]. A meta-analysis investigating the relationship
between folate supplements and colon cancer risk found an inverse correlation between the
two [62]. Similarly, folate deficiency has been shown to aggravate carcinogenesis in colon
cancer rat models, while increasing dietary intake reduced neoplasms [63,64]. Nevertheless,
epidemiological studies have failed to find an association between dietary and circulating
folate and colorectal cancer risk [65,66].

2.5.3. Pancreatic Cancer

Similar to colorectal cancer, molecular underpinnings between pancreatic carcinogen-
esis and folate appear to involve DNA hypomethylation and impaired DNA synthesis,
but specific insights are yet to be uncovered. Conclusions regarding dietary folate intake



Metabolites 2022, 12, 961 9 of 29

yielded inconsistent results [71]. A meta-analysis investigating the link between folate
intake and MTHFR polymorphisms revealed that the 677TT variant was associated with
increased risk of gastrointestinal and pancreatic cancer. This variant lowers circulating
folate by preventing 5-MTHF synthesis from 5,10-MTHF, which reduces DNA methylation.
In contrast, meta-analyses based on folate intake instead of genetic mutations revealed a
decreased risk of pancreatic cancer [72,73]. Together, this suggests that MTHFR status may
dictate the relationship between folate and pancreatic cancer prognosis.

2.5.4. Ovarian Cancer

Ovarian cancer is the most lethal cancer of the female reproductive system [103].
Interestingly, 80% of ovarian cancers have an overexpression of folate receptors (FR), which
is largely absent in healthy tissue. Thus, FRα serves as a serum biomarker [104] in ovarian
cancers. Folate receptor α (FRα) binds the active form of folate and transports it inside cells
via receptor-mediated endocytosis. This receptor overexpression leads to a higher intake
of folate into the cell, increasing rates of DNA synthesis that facilitate cancer cell growth.
This receptor overexpression on cell surfaces has allowed FRα to emerge as an attractive
target for monoclonal antibody therapies such as farletuzumab. Though epidemiologic
studies report no association or an inverse association between folate intake and ovarian
cancer risk [67,70], FRα has been shown to increase chemotherapy resistance by stabilizing
murine double minute 2 (MDM2), an oncogene that can be used as a prognostic factor in
ovarian cancer [68,69].

2.5.5. Esophageal, Liver, and Gastric Cancer

A systematic meta-analysis of esophageal cancer found a decreased cancer risk within
a certain folate intake range [105]. Accordingly, vegetarian diets have been shown to be
protective against esophageal cancer [106]. Just as FRα is overexpressed in ovarian cancer,
tumor-associated macrophages weaponize folate receptor β (FRβ) to promote liver cancer
metastasis [107]. While folate levels are not increased in hepatocellular carcinoma, FRβ
can serve as a potential therapeutic target [108] through FRβ-targeting lipid nanoparticles
that deliver anti-neoplastic drugs [109]. Folate deficiency is a risk factor for gastric cancer.
Interestingly, gastric cancer is frequently related to vitamin B deficiencies such as B12
in pernicious anemia. Whether folate drives gastric cancer or is merely a byproduct of
oncogenic metabolism remains an open area of research [110].

2.5.6. Prostate Cancer

Epidemiologic studies have reported inconclusive correlations between folate and
prostate cancer prognosis. Two meta-analyses found no association between folic acid
and prostate cancer risk [74,75], while one meta-analysis found a 24% increase in risk [76].
Additionally, a case-control study found that low levels of folate and high levels of Hcy
were associated with various cancers including prostate [78]. Another study found a
4% increase risk with every 5 nmol/L increase in serum folate, although dietary folate
intake had little to no effect on cancer risk [77]. During prostate cancer, polyamine levels
required for normal prostate growth are increased [111,112]. High levels of polyamines
have been shown to sensitize cells to folate. Conversely, inhibition of adenosylmethionine
decarboxylase 1 (AMD1) blocks polyamine synthesis, increasing SAM and decreasing folate
levels in the cell [113]. This raises the possibility that increased folate sensitivity increases
the rate of DNA synthesis, driving prostate cancer progression.

2.5.7. Breast Cancer

A systematic review and meta-analysis found a U-shaped relationship between folate
concentration and breast cancer risk, where women with dietary folate intake between
153 and 400 µg showed reduced breast cancer risk, unlike those outside of this range.
No correlation was found with circulating folate levels [79]. It is reported that the usual
folic acid dosage for breast cancer patients is less than 400 µg per day [114]. Notably, the
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chemoprotective effect of folate in this study was more pronounced in women with high
alcohol consumption, as alcohol is an established breast cancer risk factor [115]. Alcohol is
a known antagonist of folate and interferes with folate metabolism by disrupting uptake,
storage, and release from hepatocytes [116]. Folate supplements are recommended to
reduce cancer risks associated with alcohol use. Nevertheless, other studies report no
influence of blood or dietary folate levels on breast cancer risk [72,79,80].

3. Vitamin B6: Pyridoxine
3.1. Dietary and Active Forms

Vitamin B6 has been considered to be the forgotten B vitamin as the clinical manifesta-
tions are less severe than B9 deficiencies. However, vitamin B6 is an essential cofactor with
numerous regulatory functions in glycogen catabolism, gluconeogenesis, lipid metabolism,
amino acid synthesis, heme biosynthesis, neurotransmitter biosynthesis, anaplerosis, and
redox homeostasis [117,118]. It can be directly obtained from diet via fish, beef liver, for-
tified cereals, dark leafy greens, chickpeas, and potatoes. PLP and PMP are the primary
derivatives found in animal-derived foods, while plant-derived foods are primarily PN,
PNP, and a modified PN, pyridoxine-5′-β-D-glucoside (PNG) [52,119]. The physiological
outcomes of these molecular pathways serve to regulate many tissues. Initially, vitamin
B6 was discovered as an anti-dermatitis factor by Paul Gyürgy in rats on a riboflavin
and thiamin diet that developed acrodynia [120]. Recommended vitamin B6 doses have
been clearly defined as 1.3 mg/day, or 1.9 mg/day during pregnancy to support neural
development [121]. Supplements can reach over 5000% of the required daily value. Re-
gardless of this overabsorption, the majority of the supplemented vitamin B6 is excreted
in urine as 4-pyridoxic acid (PA) [122]. Notably, high-performance athletes may benefit
from vitamin B6 supplements as physical exercise increases the excretion of PA [123], with
a study reporting lower B6 levels in endurance athletes after exercise [124]. Plasmatic
PLP can increase 10-fold upon supplementation and respond within 1–2 weeks following
depletion or repletion. PLP also decreases within hours of carbohydrate ingestion [125,126].
Interestingly, studies have shown that although plasmatic PLP in an individual fluctuates
with B6 intake, cellular and tissue PLP levels remain relatively steady [127]. Vitamin B6
levels in patients can be approximated by levels of PLP and Hcy in plasma, levels of PLP in
erythrocytes and blood, the urinary excretion of 4-PA, and tryptophan catabolites [121].

3.2. Metabolic Pathways and Key Enzymes in Pyrixodine Metabolism

Structurally, B6 is a substituted pyridine with a hydroxyl and methyl group at the
5 and 6 positions, respectively (Figure 5). The 4 position is interconverted between a
hydroxymethyl, formyl, or amino group at different stages in the metabolic pathway;
another hydroxymethyl group at the 2 position can be phosphorylated. These variations
account for the B6 vitamers: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), and their
phosphorylated equivalents, pyridoxine-5′-phosphate (PNP), pyridoxal-5′-phosphate (PLP)
and pyridoxamine 5′-phosphate (PMP). Vitamin B6 is ingested as PN and is converted to
PNP via pyridoxal kinase (PDXK), an ATP-dependent enzyme. Then, PNP is transformed
to PLP by pyridoxine 5′-phosphate oxidase (PNPO). Both PL and PMP can be directly
phosphorylated to PLP or PMP, respectively, via PDXK. Finally, PMP is converted to PLP
by PNPO. The active B6 vitamer is PLP, which is the dominant form in circulation and
accounts for 60–70% of B6 in humans, while PL is secondary at 30% [128].

In physiology, PLP is a cofactor for over 160 enzyme reactions [129]. As the dominant
vitamer, PLP is an index for general B6 measurements; however, PL and 4-PA are also
measured, usually by employing fluorometric high-performance liquid chromatography
(HPLC) or liquid chromatography-tandem mass spectroscopy (LC-MS/MS) [130]. Some
studies have suggested measuring total vitamin B6 or at least PLP+PL in order to (1)
minimize person-to-person variability and (2) account for different levels of albumin (binds
PLP in the bloodstream) and alkaline phosphatase (AP, converts PLP to PL) [131,132].
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Figure 5. Vitamin B6 is an umbrella term for various vitamers. Vitamin B6 is ingested as the vitamer
pyridoxine (PN, red) and is phosphorylated by PDXK to become pyridoxine-5′-phosphate (PNP,
orange). PNP is finally converted to the most metabolically active form of vitamin B6, pyridoxal-5′-
phosphate (PLP, yellow), via PNPO. PLP can also originate from pyridoxal (PL, purple) via a one-step
phosphorylation reaction by PDXK, or from pyridoxamine (PM, green) via a two-step enzymatic
reaction by PDXK and PNPO, where it is first phosphorylated to become pyridoxamine-5′-phosphate
(PMP, blue) before becoming PLP.

3.3. Vitamin B6 Regulation

Vitamin B6 is absorbed in the jejunum, metabolized to its active form in the liver, and
excreted in urine from the kidney. Pyridoxal kinase (PDXK) is expressed in many tissues,
with its highest expression being in the cerebral cortex and basal levels in the adrenal
gland, lung, breast, gastrointestinal tract, urinary tract, testis, and adipose tissue [133]. As
a main regulator of PLP levels and B6 activity, PDXK regulation occurs at the transcrip-
tional and post-translational levels to shape PLP flux. Several phosphorylations decorate
PDXK (multiple of which are mutated in cancer patients), although the effects of these
post-translational modifications (PTMs) have yet to be defined [20,31,134] (Figure 3). To
restrict PDXK enzymatic output, PDXK can be tagged for proteasomal degradation at eight
identified ubiquitination sites [135]. It can also be pharmacologically inhibited with drugs
such as 4′-O-methylpyridoxine, which competitively inhibits the PDXK active site [136].
Beyond vitamer interconversion, B6 activity can also be suppressed via PLP sequestration
by a PLP-binding protein [137]. Natural PN antagonists such as 1-amino-D-proline exist in
foods such as flaxseed, which reduce PLP levels and the output of several PLP-dependent
enzymes [138].

Cellular uptake requires PLP dephosphorylation by a membrane-bound AP, which
is expressed across several organs (bone, kidney, and liver) [81]. PLP and PMP are the
primary derivatives found in animal-derived foods, while plant-derived foods are primarily
PN, PNP, and a modified PN, pyridoxine-5′-β-D-glucoside (PNG) [52,119]. Interestingly, a
study reported a 13% loss of vitamin B6 in food after cooking, though the remaining vitamin
B6 was still sufficient to meet daily requirements [139]. Vitamin B6 is also available as
supplements as either a complex with other B vitamins or as PN (specifically as pyridoxine
hydrochloride).

3.4. Pyridoxine Deficiencies and Disorders

Vitamin B6 deficiency is caused by reduced intake, poor absorption, or increased
utilization. Low intake of vitamin B6 has been associated with malnutrition, whereas
low absorption can be caused by alcoholism where PLP fails to be released from the
liver [140]. In areas with adequate access to food, diet-based B6 deficiencies are less
common and are instead exacerbated by environmental factors [141], smoking, and adverse
drug interactions [142–144]. Increased demand for vitamin B6 is common in pregnancy,
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where it promotes central and peripheral nervous system development [145]. Beyond
its role as a cofactor for over 160 enzymes, B6 deficiency alters neurological functioning
via depressed N-methyl-D-aspartate (NMDA) receptor function [145]. Medications such
as isoniazid can also interfere with vitamin B6 metabolism. Isoniazid is used to treat
tuberculosis but can lead to peripheral neuropathy by interfering with the metabolism
of PN, an essential component of the nervous system. Isoniazid reacts with PL to form
hydrozone derivatives that act as a PDXK inhibitor, therefore reducing PLP levels required
for central nervous system function [146,147].

Vitamin B6 levels directly impact a wide array of physiological processes and defi-
ciencies can present as pruritic rash, glossitis (tongue swelling), cheilitis (cracks on lips
and skin), and neurological disorders [148]. Despite divergent manifestations, many of
these disorders converge with mechanisms of poor antioxidant defense, lower purine
synthesis, and disrupted glutathione synthesis. Severe deficiency can result in dermatitis,
where B6-dependent enzymes involved in creating collagen amino acid precursors lack
their necessary cofactor [149], and anemia, as low levels of PLP hinder heme synthesis.
Other consequences of low vitamin B6 are nausea, confusion, depression, and even dream
loss [150].

Similar to folate, vitamin B6 is critical for neurological function and red blood cell for-
mation. The neuroprotective role of B6 stems from its capacity as a cofactor for glutathione,
thereby lowering the aging brain’s susceptibility to oxidative stress-based damage [151].
Thus, B6 deficiencies directly skew oxidative stress balance, thereby contributing to neu-
rodegeneration as cells accrue damage from reactive oxidative species [152]. In the bone
marrow, PLP is used as a coenzyme in heme synthesis and subsequently hemoglobin for-
mation [153]. Interestingly, Parkinson’s patients treated with L-DOPA often report vitamin
B6 deficiency, which can induce anemia [154]. The classic vitamin B6 antioxidant role
has also been shown to support diabetes prognosis. Diabetic rats treated with vitamin
B6 showed marked reductions in oxidative stress markers in tissues [155,156]. Notably,
the role of vitamin B6 as an antioxidant also allows for the quenching of reactive oxygen
species resulting from UV light [157].

In addition to diet, low PLP can also result from genetic mutations in PDXK, PDXP, or
PNPO enzymes [119]. Loss-of-function mutations in PDXK are found in Charcot-Marie-
Tooth disease, which could be remedied by PLP supplementation, and PNPO enzyme
mutations have been reported in early onset epileptic encephalopathy [158–160].

Conversely, high levels of vitamin B6 also contribute to pathologies across different
tissues. Most notably, excess PN, both from PNPO mutations as well as supplement abuse,
has been linked to sensory neuropathy characterized by numbness, nerve damage, and
muscle pain [161]. Interestingly, a cohort study of post-menopausal women revealed that
those treated with high doses of vitamin B6, a common treatment of menopausal symptoms,
had an increased risk of hip fractures [162]. Similarly, vitamin B6 has recently emerged as
a novel biomarker for ankle fractures and osteoporosis, where high levels of vitamin B6
are thought to overstimulate bone remodeling and erode bone tissue [163]. Additionally,
pellagra, a B3 deficiency characterized by scaly skin, has been reported to be aggravated by
high levels of vitamin B6 [164]. Several other mechanisms of B6 involvement in disease
include immune suppression by downregulating pro-inflammatory cytokines such as IL-1β
and IL-18, thereby shutting down NF-κβ and JNK activation, and suppressing the NLRP3
inflammasome [165].

3.5. Pyridoxine and Cancer

The physiological roles of vitamin B6 in coordinating cellular metabolism and amino
acid synthesis are misregulated in numerous cancers. Vitamin B6 was first linked to cancer
in the late 1960s when increased urinary excretion of tryptophan in Hodgkin’s lymphoma
patients was related to plasma PLP deficiency, as PN deficiencies are known to impact
the metabolism of amino acids including L-tryptophan [51]. Since this discovery, vitamin
B6 has been implicated across a spectrum of cancers in tissues derived from the colon,
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lung, breast, and blood. Intensive efforts have focused on distinguishing which cancers are
exacerbated or shunted by vitamin B6 supplementation. The multifaceted roles of vitamin
B6 in cancer and recent mechanistic insights are detailed in Table 3.

Table 3. Vitamin B6 has been implicated across a range of cancers. Cellular and tissue responses are
defined.

Cancer B6 Model Readout Cellular and Tissue Response Ref.

AML
Up CRISPR-Cas9 screen Cancer incidence

AML addiction to PLP; PDXK
disruption inhibited AML

proliferation
[136]

Down Clinical Serum PLP levels Low vitamin B6 levels associated with
increased cancer risk [166]

Colon

Down

1. Population-based
study

2. HT29, LoVo, HepG2
cell lines; mouse
model

1. Serum PLP levels
2. Real-time PCR p21 expression; p53

protein levels

1. Increased cancer risk; high PLP
levels decrease risk of
alcohol-associated colon cancer

2. Vitamin B6 increases p21
expression and p53 activation

[167–169]

Down Xenograft mouse model Tumor volume Vitamin B6 elevated in exercising mice
associated with slowed tumor growth [170]

Lung

Down

1. Genome-wide
siRNA-based screen;
A549 cell line;
xenograft mouse
model

2. Case-control study

1. NSCLC response to anti-tumor
drug cisplatin

2. Serum PLP, folate, methionine, and
cotinine levels

1. Vitamin B6 sensitizes cells to
cisplatin; low PDXK levels
correlated with poor prognosis.

2. Low vitamin B6 levels
associated with increased
cancer risk

[171,172]

Up 1. Case-control study
2. Cohort study

1. Serum PLP, folate, and B12 levels
2. Daily supplement doses

1. High vitamin B6 levels
associated with increased risk

2. High vitamin B6 levels
associated with increased risk,
especially in male smokers

[173,174]

None Systematic review Dietary PLP intake and serum or blood
PLP levels

No association between vitamin B6
and lung tumor sites [175]

Breast

Up Population-based
case-control study Dietary PLP intake and serum PLP levels Breast cancer patients displayed

higher serum vitamin B6 levels [176]

Down Population-based
case-control study Dietary PLP intake and serum PLP levels

Vitamin B6 increase folate’s
chemoprotective effect, lowering

breast cancer risk
[176]

None Population-based
case-control study

Dietary PLP intake and serum PLP levels;
PCR-RFLP-based assay

No association between high vitamin
B6 intake or serum levels with cancer

risk
[177]

Pancreatic Down
1. Meta-analysis
2. Population-based

study

1. Blood PLP levels
2. Dietary PLP intake

1. Higher vitamin B6 levels
inversely associated with
cancer risk; cancer risk
decreased by 9% for every 10
n/mol PLP increment

2. Higher vitamin B6 levels
inversely associated with
cancer risk

[32,178]

Prostate

None 1. Meta-analysis
2. Case-control study

1. Blood PLP levels
2. Food-frequency questionnaire

No association between PLP and
cancer risk [175,179]

Down Case-control study Dietary PLP intake

Low vitamin B6 levels associated with
increased cancer risk; organ sensitivity
to hormone action increased with low

levels of vitamin B6

[180]

Skin Down

1. B16 cell line;
xenograft mouse
model

2. B16F10 cell line

1. Cell proliferation; tumor growth
2. Cell proliferation

1. Reduction in cell proliferation
when grown with 5.0 mM PN
or 0.5 mM PL; tumor reduction
with vitamin B6 pretreatment

2. 500 uM PL suppressed cell
growth but PN displayed a
weak inhibitory effect

[181,182]

Kidney
Down Case-cohort study Plasma PLP levels

High vitamin B6 levels associated
with decreased risk of cancer and

better prognosis
[183,184]

None Meta-analysis Dietary PLP intake No association between vitamin B6
intake and kidney tumors [175]
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3.5.1. Colorectal Cancer

High levels of vitamin B6 have been correlated to a reduced risk of colon cancer [167]
in population-based studies as marked by plasma PLP concentrations. A population-based
study revealed that a diet high in vitamin B6 reduced the risk of alcohol-associated colon
cancer in women that consumed moderate and high amounts of alcohol, as alcohol leads to
decreased vitamin B6 by interfering with methionine synthase and vitamin B6 synthesis
and absorption [168].

In a xenograft model of colorectal carcinoma, vitamin B6 metabolism was among the
most upregulated in an exercise-induced model [170]. Additionally, mechanistic insight into
the role of vitamin B6 in colorectal cancer cell lines found that PL significantly stimulated
p21 mRNA expression, which is well known as a negative regulator of the cell cycle [185].
Similarly, PL raised phospho-p53 levels, which promote p21 expression, though no changes
in p53 protein levels were observed. These results were recapitulated in mice, where mice
fed diets low in vitamin B6 displayed low expression of p21 mRNA. As p21 and p53 are
known to suppress cell proliferation, vitamin B6 levels may play a role in the p21 and p53
pathways leading to tumorigenesis [169].

3.5.2. Pancreatic Cancer

A meta-analysis examining the association between vitamin B6, vitamin B12, methion-
ine levels, and risk of pancreatic cancer revealed that increasing concentrations of vitamin
B6 inversely correlated with risk of pancreatic cancer. Similarly, increasing blood PLP levels
also showed an inverse association with pancreatic cancer risk, with risk decreasing by 9%
for every 10 nmol/L increment [178]. Consistent with this, a Singaporean–Chinese health
study revealed that at a 16-year follow-up, 271 pancreatic cancer cases were identified out
of over 63,000 men and women enrolled, with a higher intake of vitamin B6 statistically
correlating with a decrease in pancreatic cancer risk [186].

3.5.3. Lung Cancer

Lung cancer is the most common cause of cancer death in all sexes [187]. Similar to
colorectal cancer, high levels of vitamin B6 have also been reported to reduce lung cancer
risk. In non-small cell lung cancer (NSCLC) patients under cisplatin regimens, vitamin
B6 sensitizes cancer cells to cisplatin-mediated DNA damage and cell apoptosis [171].
Low PDXK levels also correlated with poor disease prognosis. Consistent with this, a
case-control study revealed that among diverse participants, high vitamin B6 serum levels
correlated with a decreased risk of lung cancer [172]. It should be noted, however, that con-
tradictory studies showed correlations between high vitamin B6 levels and high incidence
of lung cancer, and vice versa [173,174]. Nevertheless, there have also been reports finding
no association between sera and dietary B6 levels with increased cancer risk in lung tumor
sites [175].

3.5.4. Breast Cancer

Breast cancer is the most common cancer in women (cancer.gov). Unlike the estab-
lished role of vitamin B6 in cancers such as that of the colon and the lung, there is a less
convincing association between vitamin B6 and breast cancer prognosis. Population-based
studies have reported different results. A 2001 study reported that breast cancer patients
presented with higher serum vitamin B6 levels than the control group [176], while a 2004
study reported no correlation between breast cancer risk and vitamin B6 intake or serum
PLP levels [177]. A study on the link between folate and breast cancer risk revealed that
vitamin B6 increased the protective effect of folate on breast cancer, lowering risk [176]. This
effect suggests that different players of the one carbon metabolism may also collaborate in
preventing or reducing cancer incidence. It would be interesting to evaluate how folate-
based dietary interventions combine with methionine-related chemotherapeutics, such
as methyltransferase inhibitors like MS023, which reduces triple negative breast cancer
development [188].
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3.5.5. Prostate Cancer

Prostate cancer is the second most common cancer among men (cancer.gov). A meta-
analysis of observational and interventional studies assessing the association between
vitamin B6 intake, PLP levels, and cancer risk revealed that there was no statistically
significant association [175]. Nevertheless, a previous study observed that an increasing
consumption of vitamin B6 reduced risk [180], and suggested it could be due to the role of
vitamin B6 in organ sensitivity to hormone uptake and action, which is increased with low
levels of the vitamin [189].

3.5.6. Skin Cancer

Though vitamin B6 has been shown to have protective properties on the skin, such
as its anti-oxidant and anti-inflammatory roles, there is little to no evidence linking it
to cancers of the skin, warranting more clinical and scientific attention. A 1985 in vitro
study revealed that B16 melanoma cells grown with 5.0 mM PN or 0.5 mM PL had an
80% reduction in cell proliferation [181]. Furthermore, B16 melanoma xenografted mice
pretreated with PL showed a 62% reduction in tumor growth compared to those without
the pretreatment. Similarly, a 2018 study revealed that PL at 500 µM suppressed B16F10
cell proliferation, while PN had a weak inhibitory effect [182], with both studies supporting
that PL has a stronger inhibitory effect on melanoma cell growth at lower concentrations
compared to other B6 vitamers. Though there appears to be potential, whether vitamin B6
may serve as an antineoplastic drug for skin cancers requires further investigation.

3.5.7. Kidney Cancer

Vitamin B6 is part of the vital renal vitamins, and is commonly supplemented to
Chronic Kidney Disease (CKD) patients at 5 mg/day on non-dialysis and 10 mg/day on
dialysis regimens [190]. The role of vitamin B6 in the context of renal cancer remains to be
closely investigated. A World Cancer Research Fund-funded study revealed that patients
with higher plasma concentrations of vitamin B6 had reduced risks of renal cell carcinoma
and overall better prognosis [183]. In support of this, a case-cohort study revealed that
higher vitamin B6 concentrations were associated with lower risk of death in renal cell
carcinoma patients [184]. Similarly, PLP depletion in diabetic patients has been linked to
an increased risk of developing several malignancies, including that of the kidney [191],
though a meta-analysis study revealed no evidence of association between high vitamin B6
intake and kidney tumors [175].

3.5.8. Acute Myeloid Leukemia

Vitamin B6 was originally thought to play a role in blood cancers, such as leukemia.
This was attributed to the role of vitamin B6 in red blood cell production [192]. Following
this discovery, low levels of vitamin B6 have been continuously reported in blood cancers,
where low levels are correlated with worse outcomes. In the context of acute myeloid
leukemia (AML), high vitamin B6 levels are associated with increased risk of cancer. Vi-
tamin B6 is low in circulation of AML patients, which may indicate an addiction of AML
cells to vitamin B6 [136,166]. In normal tissues, PDXK phosphorylates inactive into active
vitamin B6 when cellular levels are low. In AML cancerous states, PDXK constitutively
phosphorylates PL and PN into PLP, thereby promoting cancer cell proliferation, while
a dominant negative PDXK mutant was unable to restore PLP levels or the proliferative
effects of AML cells [136]. These surprising findings were uncovered using a CRISPR-Cas9
screen to determine which metabolic enzymes required PLP for AML proliferation, reveal-
ing GOT2 and ODC [136], which may also support dysregulated cell growth by increasing
one carbon metabolic flux towards biomacromolecule precursor synthesis. This deeply
mechanistic experimental approach provided new insights into a central mystery in the
field of vitamers and oncology.
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3.5.9. Brain Cancer

It is interesting to note the absence of vitamin B6 involvement in brain-related cancers
given the high levels of PDXK expression across neuronal tissues, with the exception of
some neuroblastoma studies [193]. One could speculate that high PDXK may be chemopro-
tective by promoting PLP production.

4. Key Advances and Implementation of Innovative Tools and Instrumentation

Vitamin B6 and B9 levels have been historically measured Ex vivo from blood or sera
samples using microbiological or enzymatic assays [194,195]. However, approximating one
carbon metabolite levels within cells was limited until recent advances of metabolomics-
based mass spectrometry [196]. An additional challenge surrounds the measurement
of metabolic fluxes, particularly in real time, where the metabolism within a cell can
dramatically change within seconds [197]. Modeling metabolic flux in vitro with cell
lines also suffers from current culture methods, where excess nutrient levels can skew
the metabolism of a cell [198]. Exciting advances using in vivo imaging, physiologic
cell culture media, metabolite labeling, and organelle proteomics have resulted in new
discoveries surrounding one carbon metabolism in physiology and pathological states.
Indeed, metabolomics enables the precise quantification of intracellular metabolites with
resolution to distinguish between different vitamers [199–203]. When combined with
metabolite labeling in vivo, these advances have enabled metabolic flux measurements and
paradigm-shifting insight for the fields studying folate and PN metabolism [204].

Metabolomics has also offered novel biomarkers and new areas for therapeutic in-
tervention in researching the etiologies of B6- and B9-related disorders. In the case of
PN-dependent epilepsy, untargeted metabolomics uncovered several candidate biomarkers
in blood (α-aminoadipic semialdehyde, piperideine-6-carboxylate, and pipecolic acid) that
had been previously disregarded given their instability in urine-based sampling [205].
Given the higher sensitivities of modern analytical tools, clinical sampling is more practical
as in the case of cerebrospinal fluid detection of several B6 vitamers [206,207]. In vivo
metabolite measurements overcome major obstacles in the field by correlating metabolic
activity with gene expression and patient histology. A particularly exciting innovative
technology overcomes these limitations and even enabled quantitative metabolic flux mon-
itoring of human tumors. The De Bernardis lab applied multiparametric, preoperative
imaging with intraoperative infusions of isotope-labeled nutrients (e.g., 13C-glucose) to
resolve the dynamics of metabolism in lung and brain tumors and even across organ
systems [208]. Metastasis rates in a profile of 17 patient-derived xenograft melanoma
mouse models were directly linked to variable usages of methionine metabolism, which
was explained by H3K9 and H3K27 methylation patterns [27]. Modulating the levels of
methionine in the diets of cancer patients has become of increasing clinical interest, where
methionine usage directly explains features such as metastatic potential [27,209]. Since
B6 and B9 both control one carbon metabolic flux, combining B6 and/or B9 restrictions
with methionine restriction therapies could offer synergistic benefits for patient health.
Use of new techniques that can decipher the differences between the tumor metabolic
environment from those in adjacent and benign tissues could provide insight into new
vulnerabilities for targeting cancer tissues specifically.

Additional transformative techniques include those to visualize metabolite levels
in vivo or in vitro. Folate uptake by cells has historically been imaged using radiolabeled
or fluorophore-conjugated folate analogs [210]. Such techniques have progressed to the
point of observing fluorescence in operating rooms, as is the case with Cytalux. Cytalux
is a fluorescent folate analog that was approved by the FDA in 2021 to illuminate cancer
lesions for diagnosis, as well as during surgery for immediate identification of malignant
versus benign tissue [211]. Cytalux binds to folate receptors, which are overexpressed in
ovarian and lung cancers, and can be excited via near-infrared light [210].

Imaging B6 has proved elusive until a first-of-its-kind probe was developed by Jun
et al. in 2019. Utilizing the reactivity of acyl-hydrazides with aldehydes, they designed
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a rhodamine-based probe that selectively fluoresces upon binding PLP [212]. The probe
demonstrated excellent selectivity among other biological aldehydes—including other
B6 vitamers. The probe was employed in vitro to monitor the conversion of PL to PLP
upon addition of PDXK, with fluorescence building over an 18-h time course. The probe
was further tested in control and PDXK-knockdown cells. Interestingly, PLP levels in
PDXK-deficient cells remained similar to that of control cells, hypothesized to be a result
of PNPO conversion of PMP and PNP to PLP. However, the addition of exogenous PL
specifically enhanced fluorescence. Another B6 probe was recently developed by Brun
et al. in the form of a hydrazine-derived contrast agent (2-hydrazinonicotinic acid, or
2-HYNIC) that reacts with an aldehyde to form a hydrazone in 2021 [213]. 2-HYNIC adopts
a unique planar conformation when bound to PLP, allowing for enhanced contrast and
hence imaging using chemical exchange saturation transfer MRI (CEST-MRI). With this
technology, B6 metabolism was tracked in vitro in lung cancer cell lines, as well as in vivo
with animals bearing tumor xenografts. Differences in CEST-MRI contrast between the cell
lines reflected metabolic differences of tumor cells [171].

Nucleic acid-based imaging modalities likewise offer a unique approach that could
promote the rapid development of selective metabolite sensors for vitamins B6, B9, and
their constituent vitamers. Aptamers are short nucleic acid sequences that bind a ligand,
and thus can be harnessed for use as sensors. Upon binding to a target of interest, aptamer
sensors fold into a structure that resembles the fluorophore of fluorescent proteins [214,215].
Aptamer sensors have already been used and optimized to detect metabolites in one
carbon metabolism, including SAM [216,217]. While fluorescent aptamers are now well-
characterized, more difficulty lies in designing a high-affinity ligand-binding sequence.
Conveniently, bacteria contain endogenous small-molecule-binding RNA regulatory ele-
ments among their mRNA known as riboswitches. A riboswitch has been discovered for
THF [214,218,219]. In principle, the appropriate riboswitch could be coupled to a fluorescent
aptamer, granting dynamic imaging of folate metabolism. It is predicted that thousands
of other riboswitches exist for metabolites, which may enable complex imaging of the
metabolic interplay between B6, B9 and other metabolites [220]. Other imaging approaches
have exploited inducible CRISPR-dCas9 transcription activation of a fluorescent protein
reporter combined with a split riboswitch system that associates upon SAM binding [221],
or riboswitches for ZTP, a molecule that indicates a lack of folate biosynthesis [222].

As long-awaited goals of sensing small molecules in living contexts have been realized
and continue to advance, it will be easier to illuminate these metabolic mechanisms to
advance biomedical sciences. The complementation of these sensors can further expand the
chemical toolbox to improve understanding of one carbon metabolism and pathogenicity.

5. Exploiting One Carbon Metabolism for New Therapeutics

Metabolic enzymes across the folate and methionine cycles have been shown to be
overexpressed in cancer. Recent advances have already led to exciting new therapies that
target key enzymes in the one carbon pathway. Advances in technology have allowed
deeper mechanistic insight and offer a vulnerability for designing novel therapies.

The DHFR enzyme is the target of MTX, the first antimetabolite therapeutic that was
initially developed for the treatment of acute lymphoblastic leukemia (ALL) [58]. The
success of MTX-based interventions gave rise to a series of antifolate cancer therapies
such as 5-fluorouracil (5-FU) [223], which targets TS in the folate cycle. MTX has been
prominently used to treat psoriasis, rheumatoid arthritis, and several cancers [72,224,225].
MTX functions through several mechanisms related to inflammation and proliferation;
within the context of cancer, its inhibitory effects on DHFR block conversion of DHF to
THF, thereby slowing metabolic flux towards nucleotide synthesis and halting proliferation.
Challenges surrounding toxicity limit the extended use of MTX treatments, depleting
THF pools from healthy cells [226]. A CRISPR-Cas9 screen of MTX-treated leukemia cells
revealed a possible mechanism to attenuate MTX-induced cellular toxicity of healthy cells.
Formimidoyltransferase cyclodeaminase (FTCD) is an enzyme that uses THF as a cofactor
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to perform histidine catabolism. In the presence of histidine supplementation, available
pools of THF were redirected to the histidine catabolic pathway, increasing the sensitivity
of cells to MTX and reducing its toxicity [227,228]. This landmark discovery highlights the
fundamental importance of environment folate sources to antifolate therapies and provides
mechanistic insight into improving therapeutic conditions. Indeed, several exciting reports
have followed this and similarly demonstrate how cancer cells overexpressing folate
pathway enzymes can be targeted with higher specificity. Either MS or MTR convert
5-MTHF, the predominant form of folate in circulation, to THF and are overexpressed in
many cancer cell types. Exposing cancer cells to dietary 5-MTHF was sufficient to increase
resistance to MTX-based treatments [229,230].

Small-molecule SHMT inhibitors have recently been shown to block the growth of
many human cancer cells [231]. Cancers with defective amino acid transport systems such
as B-cell lymphoma are particularly vulnerable to SHMT inhibitors because glycine is the
byproduct of SHMT reactions. MTHFD2 is overexpressed in cancer and contributes to
genomic instability during the early stages of cancer initiation that are associated with an
activated DNA-damage response (DDR) [50]. MTHFD2 inhibitors prevented thymidine
production leading to misincorporation of uracil into DNA and replication stress.

Tumor cell metabolism is rewired to enable aberrant proliferation and expansion [232].
However, cancer cells do still rely on metabolites provided by the patient’s diet. For
this reason, dietary restriction of specific amino acids has been deeply investigated as a
potential therapy across different cancer types. Methionine is a prime example of this
new avenue of research [233]. In KRAS-driven lung and pancreatic cancers, reduction
of asparagine showed promising results [234]. Within the one carbon pathway, limiting
dietary methionine reduced tumorigenesis in chemotherapy-resistant KRAS-driven col-
orectal cancer and radiation-resistant KRAS-driven soft tissue sarcoma [235,236]. Similarly,
lowering the levels of non-essential amino acids serine and glycine was sufficient to reduce
tumor progression in APC-inactivated models of intestinal cancers [237]. It is interesting to
note that cancer cells may use 50% of glucose-derived carbon for serine biosynthesis and
catabolism [215]. The amplification of breast and melanoma cancers has an upregulation of
3-phosphoglycerate dehydrogenase (PHGDH), a rate-limiting serine biosynthesis enzyme
that was found to be required for growth in vitro and in vivo models [238,239].

The combination of metabolomics and metabolite tracing analyses led to the discovery
that tumor-initiating cells have high activity of the methionine cycle via MAT2A over-
expression. Importantly, the high consumption of methionine outcompetes regeneration
and renders these cancer cells auxotrophic to methionine and vulnerable to pharmaco-
logical inhibition [240] (Figure 6). Similarly, genetic mutations in one carbon metabolic
enzyme methyl-5′-thioadenosine phosphorylase (MTAP) offer a point to help identify
tumor cell populations that could be vulnerable to reducing dietary methionine [241–244].
The mechanism for this underlies the methionine salvage pathway and the generation of
metabolite MTA, which acts as an inhibitor of methylation. Reports from multiple labs have
now shown that MTA accumulation with either methionine deprivation or methylation
inhibitors led to dramatic decreases in proliferation of many cancers. This exemplifies how
genetics can help to inform clinicians in the design of dietary regimens during chemothera-
peutic interventions [17]. As metabolic disease states cannot be determined using classic
genomic analysis, these lines of research elucidating the contributions of metabolic regu-
lation and enzyme mutations in disease will provide key insight for clinicians and basic
researchers.
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Figure 6. Dietary vitamin B6 and folate are essential for human health. Diets high in vitamin B6- and
B9-rich foods (left) correlate with decreased risks of several cancers, but may mask the symptoms of a
vitamin B12 deficiency, increase risk of ovarian and AML cancers, aggravate pellagra symptoms, and
lead to numbness, nerve damage, and muscle pain. Diets low in vitamin B6- and B9-rich foods (right)
can lead to dermatitis, glossitis, cheilitis, nausea, confusion, dream loss, as well as an increased risk
of several cancers and a decreased risk of AML. Figure made with BioRender.

6. Future Perspective and Ending Notes

The progress of folate research has unfolded at an accelerated rate and new therapeu-
tics are on the horizon [3]. The rapid development of new tools to monitor the dynamic
control of metabolism through multidisciplinary approaches that incorporate synthetic
biology and systems biology provide clear readouts at the transcriptional, translational,
and post-translational levels. For example, one carbon metabolism was recently implicated
in viral replication and infection [245]. Methionine metabolism determined viral latency by
controlling the B cell EBV epigenome [246].

Going forward, advances that tackle challenges associated with the complexity of
vitamer chemical structures and the vast number of low quantity metabolites could aid
in current limitations. Between advanced metabolomics, new models of disease, isotopic
labeling approaches, and sensors, new technologies will have revolutionary impacts on
medicine and forge a future for dietary regimens that enhance therapeutic interventions.
Over the next decade, user-friendly and affordable metabolomics-based instrumentation
will play a major role in the clinical diagnosis across a spectrum of diseases and cancer to
enable precision medicine.
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210. Sobczyńska-Malefora, A. Chapter 11—Methods for Assessment of Folate (Vitamin B9). In Laboratory Assessment of Vitamin Status;
Harrington, D., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 219–264. ISBN 9780128130506.

211. Shamir, M.; Bar-On, Y.; Phillips, R.; Milo, R. SnapShot: Timescales in Cell Biology. Cell 2016, 164, 1302.e1. [CrossRef]
212. Cantor, J.R.; Abu-Remaileh, M.; Kanarek, N.; Freinkman, E.; Gao, X.; Louissaint, A.; Lewis, C.A.; Sabatini, D.M. Physiologic

Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase. Cell 2017, 169,
258–272.e17. [CrossRef]

213. Chen, L.; Ducker, G.S.; Lu, W.; Teng, X.; Rabinowitz, J.D. An LC-MS Chemical Derivatization Method for the Measurement of
Five Different One-Carbon States of Cellular Tetrahydrofolate. Anal. Bioanal. Chem. 2017, 409, 5955–5964. [CrossRef] [PubMed]

214. Schittmayer, M.; Birner-Gruenberger, R.; Zamboni, N. Quantification of Cellular Folate Species by LC-MS after Stabilization by
Derivatization. Anal. Chem. 2018, 90, 7349–7356. [CrossRef] [PubMed]

215. Meadows, S. Multiplex Measurement of Serum Folate Vitamers by UPLC-MS/MS. Methods Mol. Biol. 2017, 1546, 245–256.
[CrossRef]

216. Garrett, M.; Sperry, J.; Braas, D.; Yan, W.; Le, T.M.; Mottahedeh, J.; Ludwig, K.; Eskin, A.; Qin, Y.; Levy, R.; et al. Metabolic
Characterization of Isocitrate Dehydrogenase (IDH) Mutant and IDH Wildtype Gliomaspheres Uncovers Cell Type-Specific
Vulnerabilities. Cancer Metab. 2018, 6, 4. [CrossRef]

217. Jang, C.; Chen, L.; Rabinowitz, J.D. Metabolomics and Isotope Tracing. Cell 2018, 173, 822–837. [CrossRef]
218. Bae, H.; Lam, K.; Jang, C. Metabolic Flux between Organs Measured by Arteriovenous Metabolite Gradients. Exp. Mol. Med. 2022,

1354–1366. [CrossRef]
219. Van Outersterp, R.E.; Engelke, U.F.H.; Merx, J.; Berden, G.; Paul, M.; Thomulka, T.; Berkessel, A.; Huigen, M.C.D.G.; Kluijtmans,
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