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Abstract: In the present study, we propose and analyze an epidemic mathematical model for malaria
dynamics, considering multiple recurrent phenomena: relapse, reinfection, and recrudescence. A
limitation in hospital bed capacity, which can affect the treatment rate, is modeled using a saturated
treatment function. The qualitative behavior of the model, covering the existence and stability criteria
of the endemic equilibrium, is investigated rigorously. The concept of the basic reproduction number
of the proposed model is obtained using the concept of the next-generation matrix. We find that the
malaria-free equilibrium point is locally asymptotically stable if the basic reproduction number is less
than one and unstable if it is larger than one. Our observation on the malaria-endemic equilibrium
of the proposed model shows possible multiple endemic equilibria when the basic reproduction
number is larger or smaller than one. Hence, we conclude that a condition of a basic reproduction
number less than one is not sufficient to guarantee the extinction of malaria from the population. To
test our model in a real-life situation, we fit our model parameters using the monthly incidence data
from districts in Central Sumba, Indonesia called Wee Luri, which were collected from the Wee Luri
Health Center. Using the first twenty months’ data from Wee Luri district, we show that our model
can fit the data with a confidence interval of 95%. Both analytical and numerical experiments show
that a limitation in hospital bed capacity and reinfection can trigger a more substantial possibility of
the appearance of backward bifurcation. On the other hand, we find that an increase in relapse can
reduce the chance of the appearance of backward bifurcation. A non-trivial result appears in that a
higher probability of recrudescence (treatment failure) does not always result in the appearance of
backward bifurcation. From the global sensitivity analysis using a combination of Latin hypercube
sampling and partial rank correlation coefficient, we found that the initial infection rate in humans
and the mosquito infection rate are the most influential parameters in determining the increase in
total new human infections. We expand our model as an optimal control problem by including
three types of malaria interventions, namely the use of bed net, hospitalization, and fumigation as a
time-dependent variable. Using the Pontryagin maximum principle, we characterize our optimal
control problem. Results from our cost-effectiveness analysis suggest that hospitalization only is the
most cost-effective strategy required to control malaria disease.

Keywords: malaria; relapse; reinfection; recrudescence; backward bifurcation; hysteresis; optimal
control; cost-effectiveness

1. Introduction

In many parts of the world, diseases spread by intermediary vectors such as mosquitoes,
are still a serious problem for policymakers. Some examples of mosquito-borne diseases
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include yellow fever, dengue, zika, malaria, filariasis, etc. [1]. Malaria is an example of
a vector-borne disease caused by a mosquito (female anopheles mosquito). It is still a
problem in many countries, where most cases are found in Africa (almost 95% of cases).
The rest are spread out in parts of Latin America and Southeast Asia, including Indone-
sia [2]. Malaria causes a global problem that threatens hundreds of millions of people
every year, mainly children under five years old, pregnant women, travelers who go to
malaria-endemic areas without protection, and patients with other acute conditions (HIV,
diabetes, etc.). Four types of Plasmodium cause malaria (P. vivax, P. falciparum, P. malaria,
P. ovale [3,4]. Malaria involves both humans and mosquitoes in their life cycle. The term
sporogonic cycle refers to the life cycle in the mosquito’s body. Furthermore, the life cycle
in the liver and human blood are called the exo-erythrocytic cycle and the erythrocytic
cycle, respectively. Plasmodium will destroy the liver and red blood cells when it gets
into the bloodstream and causes symptoms such as fever and flu-like illness, muscle aches,
headache, tiredness, and even death.

Stakeholders have introduced many different types of efforts in many countries to
control the spread of malaria, focusing on preventing mosquitoes’ bites and controlling
the population of mosquitoes. These interventions include using insecticide-treated bed
nets (ITNs), antimalarial drugs, or fumigation, which is already banned in several areas
because it will harm the non-targeted population. Recent studies proposed transmission-
blocking interventions (TBIs) to stop the transmission of gametocytes from humans to
mosquitoes [5]. The high incidence of malaria worldwide every year suggests that these
types of intervention are still not producing optimal results, so continuous development is
needed. The difficulties of malaria control are mainly due to mosquitoes’ good adaptability
to environmental changes (for example, the ability to build resistance to insecticides) [6,7].
Another possible reason is the different characteristics of each Plasmodium make it difficult
for antimalarial drugs to be effective for everyone.

Another thing to be considered in malaria reduction strategy besides the lack of
hospital capacity [8] is the recurrent phenomena that frequently appear in the infected
human. These recurrent phenomena (relapse, reinfection, and recrudescence) develop
another complex problem in malaria eradication policy [9], which makes malaria harder
to eradicate. Authors in [10] state that 21.5% of infected individual by P. falciparum in
Myanmar experience recurrence 63 days after treatment, while for P. vivax, the recurrence
rate is 31.5%. Relapse occurs due to the manifestation of the emergence of malaria infection
as a result of reactivation of the Plasmodium parasite in the human liver. Relapse occurs
mostly in malaria infection with P. vivax and P. ovale. Reinfection occurs from a new bite of
a female anopheles mosquito to an infected individual. On the other hand, recrudescence is
defined as the reactivation of malaria due to incomplete eradication of Plasmodium after
treatment. Although genetic reasoning of the cause of recurrent malaria has not yet been
well defined, proper malaria-monitoring treatment should be implemented to prevent any
recurrent episodes in infected individuals [11].

Since the model by Ross [12] and Macdonald [13], many authors have developed more
complex mathematical models to understand the mechanism of malaria transmission. For
example, Tumwiine et al. [14] introduced a host–vector model for malaria transmission,
which considers temporary immunity. An analysis regarding the existence and stability
of the equilibrium points was conducted by Tumwiine et al. They found that malaria
will always exist if the basic reproduction number is larger than one. Traore et al. [15]
considered a structured mosquito population and variation in the temperatures in their
model. They found that the global behavior (persistence of malaria) depends on two thresh-
olds: the reproduction of mosquitoes and the basic reproduction number. Aldila et al. [4]
considered vector-bias phenomena in their model and used an optimal control approach
to find the best possible strategies to eradicate malaria. Several other mathematical mod-
els for malaria have also introduced the consideration of several factors, such as human
mobility [16], control strategies [17], temperature [18], vector-bias [19], superinfection [20],
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seasonal factors [21,22], impact of vaccines and transmission-blocking drugs [23], social
hierarchy [24], etc.

Although there are many mathematical models for malaria transmission, not much
research considers recurrent phenomena in their model. Niger and Gumel [25] considered
reinfection in their model and found that reinfection can trigger a backward bifurcation
phenomenon. Chamcod and Beier [26] considered relapses, treatment, seasonality, and
G6PD in their model. Their results indicate that increasing the deficiency of G6PD will
increase the number of infected humans. Ghosh et al. [27] considered two types of recurrent
on their proposed model, namely relapse and reinfection. Cost-effectiveness analysis was
considered in their model, to find the most effective strategies for the malaria eradication
program. Woldegerima et al. [5] considered relapse in their model with transmission-
blocking drug (TBD) intervention. They used incidence data from Sub-Saharan Africa
to validate their model and found that TBD combined with other interventions could
suppress the spread of malaria in a few years. Recently, Wang et al. [28] introduced an
age-structure malaria model considering vaccination and contact prevention as eradication
efforts. To date, not many mathematical models include three types of infection in malaria:
recrudescence, relapse, and reinfection in a single model. Recently, [29] introduced their
malaria model involving the three types of infection mentioned before. A mathematical
analysis regarding the equilibrium points, the basic reproduction number, the backward
bifurcation phenomena, and the global stability of the endemic equilibrium was discussed
in detail. However, the authors in [29] did not yet include limited hospital capacity in
their model. This factor is essential since health services will be able to be provided more
optimally if the hospital capacity is also adequate in number.

Motivated by the above discussions, this paper aims to fill the gap in the mentioned
references, where we consider all recurrent phenomena (relapse, reinfection, and recrudes-
cence) together in one model. Limitation of hospital capacity to treat infected individuals is
accommodated into our model as a saturated hospitalization function. We analyze the exis-
tence and stability criteria of our equilibrium points thoroughly. Bifurcation analysis on our
model shows three possible types of bifurcation phenomena at basic reproduction numbers
equal to one, namely forward bifurcation, backward bifurcation, and forward bifurcation
with hysteresis. To calibrate our mathematical model, we estimated our parameter using
malaria incidence data from the Wee Luri Health Center in Indonesia. In addition, we
consider our second model, namely the malaria intervention model, as an optimal control
problem. Cost-effectiveness analyses were computed to determine the most cost-effective
strategy necessary to control malaria leading to its eradication. The paper is organized as
follows: Formulation of the malaria model as a system of ordinary differential equations
is given in Section 2 along with its fundamental properties. In Section 3, we analyze the
existence criteria of our model and how it relates to the basic reproduction number. We also
conduct parameter estimation on the infection parameters in Section 3. Bifurcation analysis
using Castillo–Song theorem [30] is conducted analytically in Section 4 and supported
with some numerical experiments to give a visualization of our results. Optimal control
characterization of our intervention model is given in Section 6 and followed with optimal
control simulations. We wrap up our work with discussion and conclusion in Section 8.

2. Mathematical Model Formulation and Parameter Estimation
2.1. The Mathematical Model

To develop a mathematical model which describes the transmission process of malaria
considering relapse, reinfection, and recrudescence, we divided our human population
based on their health status into seven classes of the human population, namely the
susceptible class of human at time t, denoted by S(t); the exposed class of human at time t,
denoted by E(t); the dormant and latent classes of humans at time t, denoted by D(t) and
L(t), respectively; the infected class at time t, denoted by I(t); the treated class of human at
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time t, denoted by T(t); and the recovered class of human, denoted by R(t). Hence, the
total of the human population at time t, denoted by N(t), is given by

N(t) = S(t) + E(t) + D(t) + L(t) + I(t) + T(t) + R(t). (1)

In addition, the mosquito population is divided into susceptible and infected classes
of mosquitoes, which is denoted by U(t) and V(t), respectively. Note that we do not
consider a recovered class for the mosquito population due to the short life expectancy of
female anopheles mosquitoes, which is only ±10− 14 days [31]. Hence, the total mosquito
population (denoted by M(t)) is given by

M(t) = U(t) + V(t). (2)

We use the transmission diagram shown in Figure 1 to construct our model. The
derivation of the model is given in detail as follows.

Figure 1. Transmission diagram of malaria disease considering relapse, reinfection, recrudescence,
and saturated treatment.

The individuals of the susceptible human class are assumed to be recruited at a
constant number ∆h. We assume that all recruitment rates of humans from newborns are
entering the susceptible class only. However, several reports [32,33] indicate a possibility
of mother-to-children vertical transmission. We assume that no migration is involved in
our model, both in the human and mosquito populations. In addition, the susceptible
population may decrease due to acquiring malaria through direct contact with an infected
mosquito V with a successful contact rate of β̄1. We consider the standard incidence rate for

the interaction between humans and mosquitoes in the form of β̄1SV
N . These individuals are

then transferred to the exposed class. In the exposed class, Plasmodium is in the sporozoites
form. Hence, individuals in E are not yet capable of transmitting malaria to the susceptible
mosquito. We assume that the intrinsic incubation period of E is denoted by ξ̄−1 and takes
about 7–30 days [34]. In our model, it is possible that sporozoites in E may transformed into
different type of Plasmodium, namely hypnozoites (transferred into D with a proportion of
κ1) and scizont (transferred into L with a proportion of 1− κ1).

Plasmodium in the form of sporozoites is assumed to be dormant in the liver of individu-
als in class D. The dormant period of Plasmodium in the human liver varies depending on
the type of Plasmodium that infects the human (P. vivax or P. ovale). In our model, we assume
that exposed individuals who do not experience a dormant stage are given in a proportion
of κ1 and transferred to L, while a 1− κ1 proportion of E that experience the dormant
are stage transferred to D. As we mentioned earlier, relapse occurs due to reactivation
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of Plasmodium in the liver. Hence, after a dormancy period of η̄1, individuals in D go to
L due to relapse phenomena. In addition, infected individuals in the dormant class can
also experience reinfection with a transmission rate of β̄2 due to direct contact with the
infected mosquito. Hence, the total number of recruitment on latent class L is given by
κ1ξ̄E + η̄D + β̄2DV/N.

After passing through the schizont phase, Plasmodium will develop to attack the
human body and enter the gametocyte phase. In this phase, humans will begin to show
symptoms of malaria such as fever and flu-like illness, muscle aches, tiredness, depending
on each individual’s response to malaria. In our model, groups with characteristics such
as this are in the infected group (I). The number of individuals in I increases due to
transition from the latent group at a rate of ε̄. Our model assumes that a portion of I
will receive hospitalized care to get better treatment. The hospitalization action gives
rise to a new problem in many countries that have a low hospital bed capacity ratio.
Hospital bed capacity ratio is defined as the average number of beds available in hospitals
per 1000 population in a country [35]. For example, Nigeria, as the country with the
highest malaria cases in 2019 (27% cases worldwide) [2] had a hospital bed capacity
ratio of only 0.5 [35]. This means that there are only five beds available in a hospital for
10,000 people in Nigeria on average. In addition, four other countries with the highest
malaria cases in the world in 2020, namely the Democratic Republic of the Congo (12%),
Uganda (5%), Mozambique (4%), and Niger (3%) [2], only have hospital bed capacity ratios
of 0.8, 0.5, 0.7, and 0.4, respectively [35]. Therefore, when the number of cases increases
significantly, the number of people who can be hospitalized will certainly not be optimal.
To accommodate the limited hospitalization resources, we use the following assumption:
Let the hospitalization intervention as a function depending on the number of infected
individuals, f (I). We assume that increasing the number of infected individuals will
decrease the hospitalization rate. Hence, we have that d f (I)

dI < 0. In addition, we assume
limI→∞ f (I) = 0, which describes a situation where hospitalization is impossible to conduct
when the number of infected individuals is out of control. Hence, we choose f (I) = γ̄

1+ω̄I I,
where γ̄ and ω̄ present the hospitalization rate and half-saturation parameters, respectively.

The next class is the treated class. This class increased due to hospitalization from I
individuals and decreased after the treatment period, denoted by ᾱ−1. In our model, we
assume that after following the treatment program, an individual in T will go to the R class
due to treatment success with a proportion of 1− κ2 and return to I due to recrudescence
with a proportion of κ2. As we mentioned before, recrudescence occurs when the number of
Plasmodium in the treated individual can no longer be detected and then becomes detectable
again. Our model assumes that this recrudescence leads to malaria treatment failure. The
last class is the recovered class, which increases due to treatment success from I. It decreases
due to the end of the temporary period of immunity against malaria, whose rate is denoted
by φ̄. We assume that all classes of the human population decreased due to the natural
death rate, denoted by µ̄h. In addition, we neglect the death rate induced by malaria.

Unlike the human population, the mosquito population is divided into two classes
in our model, namely susceptible (U) and infected (V) mosquitoes. We assume that
susceptible mosquitoes can get infected by malaria due to biting infected humans I and
T, with rates of β3 and β4, respectively. Both of these mosquito classes decreased due to
the natural mosquito death rate, denoted by µv. A recovered class in mosquitoes was not
considered in our proposed model. This is because the infected female Anopheles mosquito
will continue to be infected for the rest of her life [36]. Based on transmission diagram in
Figure 1 and using all mentioned assumptions above, the mathematical model for malaria
transmission, considering relapse, reinfection, recrudescence, and saturated hospitalization
rate is given in Supplementary File (Equation (S1)). Please see Table 1 for a description of
the parameters.
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Table 1. Description of parameters of the model (See Supplementary file, Equation (S1) for the model).

Par Description Units Interval Values Baseline Value Ref.

Λh Recruitment rate of human population human
day (0, ∞) 100,000

60×365 Estimated

β̄1 Average probability of successful transmission
rate from mosquito to human in S

human
day×mosq. Fitted 0.062 Fitted

β̄2 Average probability of successful transmission
rate from mosquito to human in D due to reinfec-
tion

human
day×mosq. Fitted 0.06 Fitted

ξ̄ Intrinsic incubation rate of E 1
day

[
1
30 , 1

10

]
1
15 [34,37]

ε̄ Transition from L to D after incubation period
and ready to attack red blood cells

1
day

[
1
10 , 1

3

]
1
7 [34]

η̄ Rate of relapse 1
day

[
1

5×365 , 1
60

]
1

9×30 [38,39]

κ1 Proportion of exposed individuals who do not
experience a dormant period

- [0, 1] 0.7 Estimated

µ̄h Natural human death rate 1
day [ 1

85×365 , 1
54×365 ]

1
60×365 [34]

γ̄ Treatment rate 1
day (0, ∞) 0.013 Fitted

ᾱ Recovery rate 1
day

[
1

100 , 1
10

]
1
30 [27,40]

ω̄ Half-saturation parameter 1
human [0, 1) 1

100 Estimated

κ2 Proportion of treated individuals who experience
recrudescence (treatment failure)

- [0, 0.2] 0.19 [41,42]

φ̄ Rate of loss of natural immunity in human popu-
lation

1
day [5.5, 110]× 10−4 2.7× 10−3 [43]

Λv Recruitment rate of mosquito population mosq.
day 1.5× 105

[
1
21 , 1

7

]
1.5
21 × 105 Estimated

β̄3 Average probability of successful transmission
rate in mosquito after biting I individuals

1
day Fitted 0.048 Fitted

β̄4 Average probability of successful transmission
rate in mosquito after biting T individuals

1
day Fitted 0.048 Fitted

µ̄v Natural mosquitoes’ death rate 1
day

[
1
21 , 1

7

]
1
21 [44]

2.2. Parameter Estimation

In this section, we fitted the model against monthly data of malaria incidence from
Wee Luri Health Center, Central Sumba, Indonesia. We use the nonlinear-squared fitting
by minimizing the model solutions and the data [45]. In our model, we fit the num-
ber of treated individuals (T(t)) using the best fit parameter β1, β2, β3, β4 and γ. Let
Θ̂ = (θ1, θ2, . . . , θ5) present β1, β2, β3, β4, and γ, respectively, and be the set of parameters
that minimize the sum of squared error between the data Tti = Tt1 , Tt2 , . . . , Ttn and the
model solutions f (ti, Θ) of our malaria model, which is

Θ̂ = argmin
n

∑
i=1

( f (ti, Θ)− Tti )
2. (3)

The model’s solution is obtained by solving the model using the ode45 function in
MATLAB. The other parameter values are given in Table 1. The fitted parameter values are
given in Figure 2 and a plot of the data and model’s solutions is given in Figure 3. It can be
seen that the data is still in the range of the confidence intervals given in Figure 3.
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Figure 2. The values of the fitted parameters (β1, β2, β3, β4, and γ).

Figure 3. Plot simulation results and the data using the fitted parameter values based on monthly
data from Wee Luri Health Center, Sumba, Indonesia.

3. Mathematical Analysis

In this chapter, analysis of the mathematical model begins by non-dimensionalizing
the model on both variables and parameters. After the non-dimensionalization process,
an analysis of the existence of all equilibrium points is discussed in relation to the basic
reproduction number (R0). In addition, we analyzed the effects of three types of recurrences
on the size of R0.
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3.1. Non-Dimensional Model

To facilitate an easier analytical study, we utilized a non-dimensionalization process of
the variables and parameters in the original model (Equation (S1) in Supplementary File).
By assuming a constant total population and using some new transformations (see the
Supplementary Section S1 for the details), the model can be simplified into less dimensions
(please see Equation (S4) in the Supplementary File).

With this non-dimensionalization process, we reduce our system from 9 to
7 variables and from 17 to 14 parameters. Since our non-dimensionalized model presents the
number of humans and mosquitoes, then the value should be
non-negative. Hence, it is crucial to show that the non-dimensionalized model will
always give a non-negative solution for all time t ≥ 0. These properties are stated in the
following theorem.

Theorem 1. With non-negative initial condition s > 0, e ≥ 0, d ≥ 0, l ≥ 0, i ≥ 0, m ≥ 0 and
v ≥ 0, then any solution of the non–dimensionalized model will always be non-negative for all time
t ≥ 0.

Proof. Please see Supplementary Section S1 for the proof.

Since the total population is always constant, and each variable in the non-dimensionalized
malaria model (see Supplementary Section S1, Equation (S4)) always non-negative, then
we have that each variable is bounded at [0, 1].

3.2. Malaria-Free Equilibrium and the Basic Reproduction Number

In this section, we aim to determine the malaria-free equilibrium point of the non-
dimensionalized model, and the respective basic reproduction number (R0). The malaria-
free equilibrium point is given by

E1 =
(
s+, e+, d+, l+, i+, m+, v+

)
= (1, 0, 0, 0, 0, 0, 0). (4)

Next, we calculate the basic reproduction number, which is defined as the expected number
of secondary malaria cases caused by one primary malaria case in a single infection period
in a completely susceptible population [4]. The basic reproduction number provides a
dimensionless threshold, which becomes the endemic indicator of the respected epidemio-
logical models. In many epidemiological models [46–49], it was discovered that there is
a chance that the disease will disappear when the basic reproduction number is less than
one, and always exist when it is larger than one. Hence, it is important to find the R0, so
we can determine whether malaria will exist or disappear from the population. The basic
reproduction number is taken from the spectral radius of the next-generation matrix of the
respective model. Using next-generation matrix approach [50–52], the R0 is given by

R0 =
ξ (κ1µh + η)(α β3 + γ β4 + β3µh)β1

(ξ + µh)(η + µh)(µh + 1)(α γ (1− κ2) + µhα + γ µh + µh
2)µv

. (5)

It is easy to show that our model satisfies the five conditions described in [50]. Hence, using
the result in [50], we understand that whenever the basic reproduction number is less than
one, we will have a chance to eliminate malaria from the environment. On the other hand,
if the basic reproduction number is larger than one, then we will always have malaria in
the environment.

From the form of R0 in (5), we can see that the reinfection parameter β2 does not
appear. Hence, we can conclude that reinfection phenomena do not affect the size of the
basic reproduction number. In addition, we can see that R0 is linearly proportional to
all infection parameters, except for β2 (β1, β3, β4). To give further analysis on the impact
of recurrence phenomena on the malaria transmission on our proposed model, we will
analyze the basic reproduction number of a simple case using our proposed model.
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1. Model without recurrence. When all recurrence phenomena are not involved in the
model, i.e., β̄2 = 0, η̄ = 0, and κ2 = 0, then the transmission diagram in Figure 1 is
reduced to the transmission diagram in Figure 4.

Figure 4. Transmission diagram of malaria disease without any recurrence phenomena.

Using the parameter transformation in Supplementary Section S1, the basic repro-
duction number of the malaria model using transmission diagram in Figure 4 is
given by

Rstandard
0 =

ξ (α β3 + γ β4 + β3µh)β1

(ξ + µh)(µh + 1)(α + µh)(µh + γ)µv
. (6)

To give further interpretation of Rstandard
0 , Equation (6) can be rewritten as follows:

Rstandard
0 =

{
β1

µv

}
︸ ︷︷ ︸

infection in human

{
β3

µh + γ
+

γβ4

(α + µh)(γ + µh)

}
︸ ︷︷ ︸

infection in mosquitoes

{
1

ξ + µh

}
︸ ︷︷ ︸
life time of e

{
ξ

1 + µh

}
︸ ︷︷ ︸

Input-output ratio in l

.

It is clear to see that Rstandard
0 is a result of multiplication between the number of new

infected humans, new infected mosquitoes, and the lifetime of the exposed and latent
classes. It can be seen that the saturated parameter of the treatment term does not
appear in Rstandard

0 .
2. Model with reinfection only. When the malaria model in the transmission diagram

in Figure 1 includes reinfection only, without relapse and recrudescence, then the
transmission diagram becomes that depicted in Figure 5.

Figure 5. Transmission diagram of malaria disease with reinfection only, without relapse
and recrudescence.
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Calculating the basic reproduction number of the non-dimensional form of the model
from the transmission diagram in Figure 5, we have

Rreinfection
0 =

ξ (α β3 + γ β4 + β3µh)β1

(ξ + µh)(µh + 1)(α + µh)(µh + γ)µv
= Rstandard

0 . (7)

It can be seen that Rreinfection
0 = Rstandard

0 , which means that reinfections do not
change the standard basic reproduction number.

3. Model with relapse only. With the same approach as before, when reinfection and
recrudescence are not involved, β̄2 = 0 and κ2 = 0. Based on this, the transmission
diagram in Figure 1 changes to Figure 6.

Figure 6. Transmission diagram of malaria disease with relapse only, without reinfection
and recrudescence.

The basic reproduction number of a non-dimensional model based on transmission
diagram in Figure 6 is given by

R
relapse
0 =

ξ (κ1µh + η)(α β3 + γ β4 + β3µh)β1

(ξ + µh)(η + µh)(µh + 1)(α γ + α µh + γ µh + µh
2)µv

=

{
κ1µh + η

µh + η

}
︸ ︷︷ ︸

effect of relapse

Rstandard
0 . (8)

Since
κ1µh + η

µh + η
< 1, we can conclude that the existence of relapse phenomena reduces

the standard basic reproduction number Rstandard
0 . This reduction was due to the

dormant period experienced by infected individuals in the hypnozoite phase, which
made them unable to directly infect healthy mosquitoes. As previously mentioned,
malaria infection by Plasmodium Vivax and Ovale can result in a long dormant period
of up to 2–3 years.

4. Model with recrudescence only. When relapse and reinfection are not involved in the
original model (Equation (S1) in the Supplementary File), then we have β̄2 = 0, η̄ = 0.
Hence, the transmission diagram in Figure 1 is reduced to the one in Figure 7.
The basic reproduction number of the non-dimensional model based on transmission
diagram in Figure 7 is given by
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Rrecrudescence
0 =

ξ (α β3 + γ β4 + β3µh)β1

(ξ + µh)(µh + 1)(α γ (1− κ2) + α µh + γ µh + µh
2)µv

=

{
α γ + α µh + γ µh + µh

2

α γ (1− κ2) + α µh + γ µh + µh
2

}
︸ ︷︷ ︸

effect of recrudescence

Rstandard
0 . (9)

Figure 7. Transmission diagram of malaria disease with recrudescence only, without relapse
and reinfection.

It can be seen that since α γ+α µh+γ µh+µh
2

α γ (1−κ2)+α µh+γ µh+µh
2 > 1, we may conclude that recrudes-

cence will increase the standard basic reproduction number.

To summarize the biological meaning of the above special cases of the basic reproduc-
tion number, we have the following relations:

1. The basic reproduction number when all recurrence phenomena are constructed as a
multiplication between infection in humans, infection in mosquitoes, lifetime period
of class e, and the ratio between the in- and outflow of class l. We call this basic
reproduction number the standard basic reproduction number.

2. The existence of reinfection phenomena does not change the size of the standard basic
reproduction number. It means that increasing reinfection the rate will not affect
the size of the standard basic reproduction number. However, it will increase the
endemic size and the possibility for the existence of multiple endemic conditions in
the environment. We discuss this in the next section of this article.

3. The existence of relapse phenomena will reduce the size of the standard basic repro-
duction number. This is highly related to the duration of the dormant period of the
hypnozoite inside the human body.

4. The existence of recrudescence phenomena will increase the size of the standard basic
reproduction number.

3.3. Existence of the Endemic Equilibrium

In this section, we analyze the existence of the non-trivial equilibrium points, namely
the malaria-endemic equilibrium point. This equilibrium differs from the malaria-free
equilibrium, wherein malaria-endemic equilibria coexist between all classes, which means
that malaria may still exist among the human and mosquito populations. The malaria-
endemic equilibrium is given by

E2 = (s∗, e∗, d∗, l∗, i∗, m∗, v∗), (10)
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where

s∗ =
(µh + 1)(ξ + µh)(β2v∗ + η + µh)l∗

ξ β1(β2v + κ1µh + η)v∗
,

e∗ =
(µh + 1)(v∗β2 + η + µh)l∗

ξ (β2v∗ + κ1µh + η)
,

d∗ =
(1− κ1)(µh + 1)l∗

v∗β2 + κ1µh + η
,

l∗ =

(
i∗ α ωµh + i∗ ωµh

2 + α γ (1− κ2) + µhα + γ µh + µh
2)i∗

(α + µh)(1 + ω i∗)
,

m∗ =
γ i∗

(α + µh)(1 + ωi∗)
,

v∗ =
(α ωβ3 + ωβ3µh)i∗

2 + (α β3 + γ β4 + β3µh)i∗

(α ωβ3 + ωβ3µh)i∗
2 + (α ωµv + ωµhµv + α β3 + γ β4 + β3µh)i∗ + α µv + µhµv

,

and i∗ is a positive solution of the following five-degree polynomial:

f (i) = b6 i5 + b5 i4 + b4 i3 + b3 i2 + b2 i + b1 = 0 (11)

with

b6 = ω3β3
2(µh + 1)(α + µh)

3(ξ + µh)(µh + φ)(β2 + η + µh)(β1 + µh),

b1 = (ξ + µh)(η + µh)(µh + 1)
(

α γ (1− κ2) + µhα + γ µh + µh
2
)

µv (1−R0).

while b2, b3, b4, and b5 can not be shown in this article due to the complexity of their forms.
Since b6 > 0 and b1 < 0 ⇐⇒ R0 > 1, we always have at least one malaria-endemic
equilibrium point if R0 > 1. Furthermore, since the malaria-endemic equilibrium point is
taken from a five-degree polynomial, the possibility that the malaria-endemic equilibrium
point is not unique must be considered. For this purpose, we find that our model may have
an endemic equilibrium even though R0 < 1. Furthermore, we also have shown that it
is possible to find one or three malaria-endemic points when R0 > 1, and none or two
malaria-endemic equilibrium points when R0 < 1. Please see Supplementary Section S2
for the mathematical details of these results.

4. Bifurcation Analysis

The backward bifurcation phenomenon is believed to be one of the reasons why
several types of diseases with relapse or reinfection periods are difficult to control. Many
authors have studied a backward bifurcation phenomenon in the malaria model. In the
non-dimensional version of our proposed malaria model, our previous analysis shows the
possibility of the existence of backward bifurcation, which is indicated by the existence of
an endemic equilibrium when R0 < 1 under a specific condition (please see Supplementary
Section S2). Epidemiologically, this means that the basic reproduction number can not
be the only threshold in the determination of whether malaria exists or is extinct from
the population.

In this section, our aim is to investigate the possible bifurcation phenomena in our
model and determine another threshold that can be used to determine what type of bifurca-
tion can arise depending on this new threshold. In order to do so, we use the well-known
Castillo–Song bifurcation theorem [30]. For further details on the analysis of the bifurcation
type from the non-dimensionalized malaria model, please see Supplementary Section S3.
From the analysis that has been performed, we find that our model may undergo a back-
ward bifurcation phenomenon at R0 = 1.

The appearance of backward bifurcation phenomena (see Supplementary Section S3)
indicates another threshold that can determine the existence or extinction of malaria from
the field other than R0, namely the ω∗. The emergence of the backward bifurcation phe-
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nomenon indicates that concluding the basic reproduction number as the main threshold in
malaria control is no longer sufficient. This is because even though the basic reproduction
number is already less than one, it is still possible that malaria is endemic in the commu-
nity. In the following paragraph, we discuss this theorem’s mathematical and biological
consequences, backward and forward bifurcation, and hysteresis phenomena.

From the Castillo–Song bifurcation coefficient in Supplementary Section S3, we can
see that the sign of A will determine the type of bifurcation that will appear from our
model at R0 = 1. When A < 0, we will have a forward bifurcation phenomenon. On the
other hand, when A > 0, backward bifurcation is the phenomenon that we will obtain.
To visualize this result, we use the parameter in Table 1, we calculate ω∗, and we obtain
ω∗ = 65.64. We choose four different values of ω, and the bifurcation diagrams are shown
in Figures 8 and 9.

(a) (b)

Figure 8. Forward (a) and backward (b) bifurcation phenomena of the non-dimensionalized malaria
model (see Supplementary Section S1, Equation (S4)) from near R0 = 1 with ω = 25 and ω = 85,
respectively.

From Figure 8, we show that the malaria-free equilibrium point is always stable when
R0 < 1 and unstable when R0 > 1. When the saturation parameter ω, which presents
the capacity of the hospital, is more significant than ω∗, then backward bifurcation arises
(Figure 8b). This indicates that malaria does not go extinct, even when R0 is already smaller
than one. In this case, we have a large size of the malaria-endemic equilibrium that is
also stable for some values of R0 < 1. When the number of the bed capacity is significant
in the hospital (presented by a much smaller value of ω compared to ω∗), then forward
bifurcation arises at R0 = 1. Interesting results are shown in Figure 9. Even though we
set the value of ω smaller than ω∗, which will give us a forward bifurcation phenomenon,
as we can see from Figure 9a that we may still have a stable endemic equilibrium for
some values of R0 < 1. The reason for this is that the forward bifurcation phenomena
arise coupled with a hysteresis. As a result, we can have multiple stable malaria-endemic
equilibria for some values of R0 > 1, and bistability between the malaria-free equilibrium
and the malaria-endemic equilibrium for some values of R0 < 1.

In comparison to the simulation in Figure 9a where the bistability between the malaria-
free and malaria-endemic equilibrium points could arise when R0 < 1, the result in
Figure 9b is different. We can see from Figure 9b that we never had bistability between
malaria-free and malaria-endemic equilibria. We only obtain bistability between two
malaria-endemic equilibrium points for some value of R0 > 1. The phenomena above give
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an indication of the difficulty of creating malaria-controlling policy if only relying on the
magnitude of the basic reproduction numbers. The emergence of a stable endemic point is
still possible when backward bifurcation occurs because the basic reproduction number can
lead to policies that are not optimal. Furthermore, the emergence of forward bifurcation
with hysteresis allows the emergence of a stable endemic point of a large size even though
the basic reproduction number is larger but close to one.

(a) (b)
Figure 9. The 1st and 2nd types of forward bifurcation with hysteresis phenomena of the non-
dimensionalized malaria model (a,b) (see Supplementary Section S1, Equation (S4)) from near R0 = 1
with ω = 38 and ω = 34, respectively.

From the illustration of the impact of hospital capacity on the type of bifurcation of
our model in Figures 8 and 9, we can see that a smaller bed capacity in the hospital (larger
ω) will trigger the appearance of backward bifurcation. Hence, more bed capacity in the
hospital is better for malaria eradication policy. Furthermore, our aim in this article is also
to find the impact of reinfection (β2), relapse (η), and recrudescence (κ2) on the type of
bifurcation on our proposed model. To achieve this aim, we simulate the impact of β2, η, ω,
and κ2 on the sign of A. If A > 0, then backward bifurcation appears, and if A < 0, then
forward bifurcation appears. Using the same parameter as shown in Table 1, the results
are given in Figure 10. From Figure 10a, the larger the proportion of treated individuals
that failed the treatment (larger κ2), then the higher the chance that our model exhibits a
backward bifurcation. On the other hand, there is an interval for β2 depending on the value
of κ2 such that we can have a forward or backward bifurcation in our model. This means
that a larger reinfection rate does not always trigger a backward bifurcation phenomenon.
Figure 10b shows the impact of the treatment saturation parameter (ω) and relapse rate (η)
on the bifurcation type of the proposed model. A smaller capacity of beds in the hospital
(larger ω) will increase the chance of the appearance of backward bifurcation. On the other
hand, with a larger relapse rate value, there exists a larger possibility that we can avoid
a backward bifurcation. This illustration shows that relapse holds an important role in
determining whether malaria will exist or become extinct when the basic reproduction
number is already less than one, since it will trigger a condition where a basic reproduction
number smaller than one will not guarantee the extinction of malaria.
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(a) (b)

Figure 10. Plot of A as a function between rate of reinfection in human (β2) and recrudescence
proportion (κ2) in (a) and between treatment saturation rate and rate of relapse (η) (b).

5. Global Sensitivity Analysis

We perform a global sensitivity analysis using the combination of Latin hypercube
sampling (LHS) and partial rank correlation coefficient (PRCC) [53,54] to determine the
influential parameters of the model as in [55–57]. We measure against the increasing
number of infected individuals which is

I(t) =
∫ t f

0
(κ2α̃T + ε̃L)dt. (12)

Figure 11 shows that the parameters β1, β4, and µv are the most influential parameters,
where the first two have positive relationships and the latter has a negative relationship.
The results are similar to the other work, where the transmission-related parameters and
the death rate of mosquitoes are the most influential parameters [55]. However, our
results provide detailed information regarding which transmission parameters govern
the dynamics of infected individuals: the transmission rate from mosquito to susceptible
humans (β1) and the transmission rate from human to mosquitoes (β4). On the other hand,
the influence of the transmission rate from mosquitoes to dormant individuals is not as
strong as the previously mentioned transmission parameters. The results indicate that the
transmission from mosquitoes to susceptible human plays an essential role in determining
the dynamics of malaria transmission. Furthermore, the death rate of mosquitoes, which
are generally influenced by climatic factors, can reduce the number of infected individuals.
This suggests that further work to analyze the effects of climatic factors is important and is
the subject of future work.
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Figure 11. PRCC values when measured against an increasing number of infected individuals
over time.

6. Optimal Control Problem
6.1. Characterization of the Optimal Control Problem

In this section, we modify our proposed model in Equation (S1) of the Supplementary
File to include three different interventions which depend on time, namely the use of bed
net (u1(t)), hospitalization (u2(t)), and fumigation (u3(t)).

1. Use of a bed net. Use of bed net is reportedly successful in reducing malaria incidence
worldwide [58]. Bed nets provide protection to humans from the bite of a mosquito.
Let us assume u1 represents the proportion of the human population who use a bed
net. Hence, u1N and (1− u1)N represent the total human population who use and do
not use a bed net, respectively. The successful transmission rate for humans who use
bed nets now read as δβ̄i, where 1− δ presents the efficacy of bed nets in reducing the
number of successful bites. Note that in δ ∈ (0, 1), a smaller δ represents a bed net
with better quality. Based on this assumption, the total number of new infections for
non-users of bed nets in susceptible populations is given by

f1(u1, β̄1) = β̄1 ×
(1− u1)S

N
×V = (1− u1)β̄1

SV
N

,

and the total number of new infections for the bed net users is given by

f2(u1, β̄1) = δβ̄1 ×
u1S
N
×V = δu1 β̄1

SV
N

.

Therefore, total of new infections in the susceptible population is given by

f (u1, β̄1) = f1(u1, β1) + f2(u1, β1) = [(1− u1) + u1δ]β̄1
SV
N

. (13)

Note that if the entire human population used a bed net and the quality of the bed net
could provide 100% protection against mosquitoes’ bites (δ = 0), then no infections
would occur in the field (in this case, we have f (u1, β1) = 0). On the other hand, if all
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humans used a bed net but the efficacy level (protection from mosquito bites) is not
100%, then there is still a possibility that new infections occur, which given by

f (u1, β1) = δβ̄1
SV
N

.

Furthermore, when not all humans use a bed net, but the efficacy level of the bed net
is 100%, then the total number of new infections is given by

f (u1, β̄1) = (1− u1)β̄1
SV
N

.

A similar approach is applied to the reinfection term and the new infection in mosquito
population term, which involve β̄2, β̄3, and β̄4. Note that when u1 = 1, the infection
term is reduced into the standard model in Equation (S1) of the Supplementary File.
For the sake of simplification, we use another interpretation of bed net use, the
term ((1 − u1) + u1δ), as follows. The term ((1 − u1) + u1δ) can be rewritten as
[1− u1(1− δ)] = (1− u1ζ) where ζ = 1− δ represents the effective bed net utilization
rate. If ζ = 0 or (equivalently) δ = 1, then the bed net is useless, and regardless of
the number of people who use the bed net, there will not be any impact on malaria
prevention. In contrast, if ζ = 1, which is equivalent to the condition δ = 0, then the
bed net can always provide protection to humans from mosquito bites. The larger the
utilization rate u1ζ, the stronger the impact of bed net usage in the malaria prevention
program. Therefore, instead of using the expression as in (13), we use the following
expression to show the impact of bed net usage

f (u1, β1) = (1− u1ζ)β̄1
SV
N

. (14)

For another modeling approach on the application of bed nets in malaria intervention,
please see [17,59].

2. Hospitalization. In endemic malaria areas, hospitalization is the most frequently
used outbreak control effort. However, this effort is difficult to execute continuously
at a high intensity. Therefore, instead of using the constant hospitalization rate of γ,
we use the new term u2(t), which represents the time-dependent treatment rate.

3. Fumigation. For many types of vector-borne disease, including malaria, vector control
programs are the most common intervention to control the spread of the disease.
Hence, we introduce u3(t) as the additional death rate of the mosquito population
due to fumigation, where the intervention depends on time.

Based on the above descriptions of three time-dependent interventions, the original
model in Equation (S1) of the Supplementary File now reads as shown in Equation (S19) of
the Supplementary Section S4. Our aim is to minimize the number of infected humans with
an optimal intervention (as low as possible). Mathematically, the task reads as minimizing
the following objective functional:

J (u1, u2, u3) =
∫ t f

0

(
ω1E + ω2D + ω3L + ω4 I + ϕ1u2

1 + ϕ2u2
2 + ϕ2u2

3

)
dt, (15)

where ω1, ω2, ω3, and ω3 are the weights of the objective function for E, D, L, and I,
respectively. Furthermore, ϕj for i = 1, 2, 3 are the weight parameters for the control
variables. ωi and ϕj are the weight parameters that can balance each term in J . We use
the quadratic cost function for J to describe the cost of control efforts. quadratic form
is a common way to express cost functions in many mathematical epidemiology models
with optimal control [4,17]. This quadratic function can describe a nonlinear cost increase
related to the implementation of control efforts in the field.
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6.2. Optimal Control Characterization

Using Pontryagin’s maximum principle [60], the optimal solutions of u1, u2, and u3
are given by

u∗1 = min
{

1, max
(

0,
β1SVζ

2ϕ1N
(λ2 − λ1) +

β2DVζ

2ϕ1N
(λ4 − λ3) +

(
β3UIζ + β2UTζ

2ϕ1N

)
(λ9 − λ8)

)}
,

u∗2 = min
{

1, max
(

0,
I

2ϕ2(1 + ωI)
(λ5 − λ6)

)}
, (16)

u∗3 = min
{

1, max
(

0,
Uλ8 + Vλ9

2ϕ3

)}
.

Please see the Supplementary Section S4 for details on the derivation of the optimal
control characterization.

6.3. Optimal Control Simulation

This section presents the numerical optimal control simulation to numerically solve the
model with control and without control. Employing the backward and forward sweep as
described in [61], we obtained the optimality of the model, which is comprised of the model
without control, the adjoint system (see Supplementary Section S4), and the optimality
conditions (17). To ascertain which strategy or combination gives the efficient methods of
controlling malaria disease spread, we considered the following strategies/scenarios for
our simulation results as enumerated below:

6.3.1. Strategy 1. Single Intervention: Use of Bed Net Only

The intervention of bed net usage only was simulated against all the model state
variables, and the results are given in Figure 12. We observe in Figure 12 that the use of
bed net as a control strategy only impacts the dormant population and the total population
consisting of the exposed, dormant, latent, and infected individuals, while Figure 12a–d
shows that the control u1 does not have an impact on the control of the exposed, dormant,
latent, and infected population, respectively. Figure 12f shows the control profile for
strategy 1.

6.3.2. Strategy 2. Single Intervention: Use of Hospitalization Only

The use of hospitalization as the only control measure when simulating the model
with and without optimal control is depicted in Figure 13. We see that this control strategy
has no impact on the exposed (Figure 13a) and latent (Figure 13c) population as well as the
control profile, as indicated in Figure 13f. It can be seen that hospitalization has a negligible
impact on the dormant individuals and significantly affects both infected humans and the
total population (that is, the total population of E, D, L, and I) as depicted in Figure 13d,e.
The biological implication of hospitalization, as seen in Figure 13c, shows a decrease in
the number of infected individuals with an increase in time. In other words, there is a
reduction in the number of humans infected with malaria disease.
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Figure 12. Simulation results for strategy 1 shows the dynamics of exposed compartment, dormant
compartment, latent compartment, infected compartment, total of exposed, dormant, latent, and
infected population, and the dynamic of control u1 for subfigure (a)–(f), respectively.
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Figure 13. Simulation results for strategy 2 shows the dynamics of exposed compartment, dormant
compartment, latent compartment, infected compartment, total of exposed, dormant, latent, and
infected population, and the dynamic of control u2 for subfigure (a)–(f), respectively.

6.3.3. Strategy 3. Single Intervention: Use of Fumigation Only

Figure 14 shows the implementation of fumigation as the only control method with
its control profile. The optimal control time series trajectories for the dormant population
and the total combined population show a great decline in the number of individuals
with an increase in time (See Figure 14b,e). Additionally, we observe that strategy 3
has a small impact on controlling exposed, infected, and latent individuals, as seen in
Figure 14a,d,c, respectively.
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Figure 14. Simulation results for strategy 3 shows the dynamics of exposed compartment, dormant
compartment, latent compartment, infected compartment, total of exposed, dormant, latent, and
infected population, and the dynamic of control u3 for subfigure (a)–(f), respectively.

6.3.4. Strategy 4. Double Intervention: Combination of Hospitalization and Fumigation

While Figure 15 shows the implementation of the combined strategy consisting of
hospitalization and fumigation, Figure 15f shows its control profile. Clearly observable
in Figure 15b,e, the implementation of a combined strategy reduced the number of the
dormant, infectious, and the total combined populations while having a lesser impact
on the exposed/latent individuals, as seen in Figure 15a,c. We can deduce that using
the combined strategy is the best control measure to eliminate malaria infections. The



Trop. Med. Infect. Dis. 2022, 7, 263 22 of 27

shaded area in the control profile shows from our modeling that malaria can be controlled
when u2 = 0.2 and u3 = 0.4, rather than when the values are equivalent. However, this
signifies that the spread of malaria infection in any community with the disease can be
prevented or eradicated by implementing both fumigation to control/decrease mosquito
birth rate and hospitalization of infected individuals. Additionally, we observe that strategy
4 has a small impact in controlling exposed, infected, and latent individuals, as seen in
Figure 15a,d,c respectively.
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Figure 15. Simulation results for strategy 4 shows the dynamics of exposed compartment, dormant
compartment, latent compartment, infected compartment, total of exposed, dormant, latent, and
infected population, and the dynamic of control u1 and u2 for subfigure (a)–(f), respectively.
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7. Cost-Effectiveness Analysis

Here, we present the cost-effectiveness analysis for the model with and without control,
intending to determine the best control strategies among all the scenarios. The total averted
infection and total cost for each scenario are given in Table 2. The costs of the scenarios are
obtained from the numerical output for the objective function Equation (15), arranged in
incremental order.

ICER =
Difference in total costs by strategies A and B

Difference in the total number of averted infection by strategies A and B
. (17)

Using the values in Table 2, we calculate the incremental cost-effectiveness ratio (ICER) by
comparing each successive strategy with each other by employing (17) as defined in [62].

Table 2. Numerical value of total averted infections and cost of each strategy.

Strategies Optimal Controls Total Averted Infection Total Cost

1 u∗1 1.4963 2.0481× 103

3 u∗3 18.4577 2.0180× 103

2 u∗2 765.5569 842.5959

4 u∗2 , u∗3 773.8898 1.5202× 106

We arrange the strategies in increasing order from the lowest to the highest ICER values
(see Table 2). Note that in order to make decisions, higher ICER values are eliminated in
each step [62]. First, we calculate and compare the ICER values of strategies 1 and 3, where
the ICER for strategy 1 is calculated by comparing the baseline total averted infections and
total cost as given below

ICER(1) =
2.0481× 103 − 0

1.4963− 0
= 1368.7763

ICER(3) =
(2.0180− 2.0481)× 103

(18.4577− 1.4963
= −1.7746177.

Considering the results from the calculations of ICER(1) and ICER(3), we reject ICER(1),
as it has a higher cost than ICER(3). Next, we compute and compare the ICER values for
strategies 3 and 2. Using the total averted infections and total cost for strategy 2, we find the
new ICER value using strategy 2 as a baseline while comparing it to the value of ICER(3)
as follows:

ICER(3) =
2.0180× 103

18.4577
= 109.33101,

ICER(2) =
842.5959− 2.0180× 103

(765.5569− 18.4577)
= −1.573291. (18)

Based on the values in expression (18), ICER(2) is cheaper than ICER(3). Hence, we
reject ICER(3). Continuing the iteration

ICER(2) =
842.5959
765.599

= 1.1006313182

ICER(4) =
(1.5202)× 106 − 842.5959
(773.8898− 765.5569)

= 182332.3698. (19)

Similarly, comparing ICER(2) and ICER(4) using Equation (19), we eliminate strategy
4 since strategy 2 is cheaper than strategy 4. We conclude that to reach elimination/control
of malaria, it is most cost-effective to first implement strategy 2. We repeat the above
iteration to help establish the next most cost-effective strategy. Using the simulation
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results from the re-computation, we find that strategy 3 is the subsequent most cost-saving
intervention after strategy 2 followed by strategies 1 and 4. Our results suggest that strategy
4 is the least cost-effective intervention required for malaria control as projected by our
modeling framework.

8. Discussion And Conclusions

There are many mathematical models discussing malaria transmission, such
as [4,14,15,17,21,23] and many more, but none of the mentioned references discuss the
impact of relapse, recrudescence, and reinfection all together in one model. Recently, the
authors of [29] introduced a complex nine-dimensional system of ordinary differential
equations model to describe malaria transmission under the impact of relapse, recrudes-
cence, and reinfection. They found that backward bifurcation phenomena can be avoided
in the absence of reinfection. Different than [29], here we introduced a mathematical model
for malaria transmission considering the impact of relapse, reinfection, recrudescence, and
limited hospital bed capacity which affect the recovery rate. Malaria incidence data from
the Wee Luri district in Central Sumba, Kupang, Indonesia, were used to estimate the
model parameters. We investigated the existence and the local stability of the malaria-free
equilibrium point utilizing the concept of the basic reproduction number [50]. We found
that malaria can be driven to extinction if the basic reproduction number is less than one
and always exists if the basic reproduction number is larger than one. The malaria-endemic
equilibrium can not be shown explicitly. A gradient analysis and Descartes’s rules of sign
change were then used to show the malaria-endemic equilibrium when the basic reproduc-
tion number is larger than one. The concept of center manifold theory was used to establish
the local stability criteria of the malaria-endemic equilibrium. Using the Castillo–Song
bifurcation theorem [30], we determined another threshold other than basic reproduc-
tion number which can determine the existence or extinction of malaria from the system.
Our analysis shows that our model may exhibit backward or forward bifurcation with
hysteresis, triggering multiple malaria-endemic equilibria around the basic reproduction
number equal to one. The existence of backward bifurcation makes malaria eradication
more difficult since a basic reproduction number of less than one is no longer a sufficient
indicator of the endemicity level.

From sensitivity analysis on the second threshold (ω∗) which may determine the type
of bifurcation on our model, our findings suggest that backward bifurcation may likely
occur given the following: (1) the hospital bed capacity is sufficiently small, (2) the relapse
rate from dormant to latent compartment decreases, and (3) the proportion of treated
individuals who failed the treatment is sufficiently large. Furthermore, we find that a more
significant value of the reinfection rate cannot always guarantee the existence of a backward
bifurcation phenomenon. We also studied the global sensitivity analysis of the total number
of infected individuals (I). It was observed that the primary infection of humans and
mosquitoes and the death rate of mosquitoes are the most influential parameters for
determining the increase in the number of newly infected individuals. Hence, reducing
the infection rate and increasing the mosquito’s death rate could be an option for reducing
the number of infected individuals. Additionally, an increase in reinfection, recrudescence,
and relapse increases the number of newly infected individuals.

Further, an optimal control problem was formulated by modifying the malaria model
without control, incorporating three control variables: the use of a bed net, hospitalization,
and fumigation. The model consists of these interventions as a time-dependent variable
to minimize the number of infectious individuals and the cost of implementing the inter-
vention strategy. The characterization of the optimal control problem was done using the
Pontryagin maximum principle [60]. We solved our optimal control problem using the
forward–backward iterative method until the convergence criteria are achieved. Numerical
simulations for each control variable depict the fact that the use of bed net, hospitalization,
and fumigation can decrease the spread of malaria (see Figures 12–14. However, we can see
from Figure 12 that the use of a bed net is insignificant in reducing the number of infectious
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individuals when compared to hospitalization and fumigation intervention. Hence, we
combine hospitalization and fumigation as the fourth strategy, and the result can be seen in
Figure 15. Our sensitivity analysis indicates that the combination of hospitalization and
fumigation is the most cost-effective strategy. Implementing hospitalization is the most
cost-effective strategy if a single intervention is preferable to a combination of two or more
interventions. Another interesting observation is that if the number of infected individuals
already decreases, then the intensity of the intervention could be reduced to obtain a lower
implementation cost. Therefore, we may conclude that intervention with hospitalization,
fumigation, and bed nets can be used as a critical intervention strategy for controlling
malaria, although bed net use is not as effective as the other two interventions. Conclu-
sively, we predict that implementing the interventions which comprise the simultaneous
use of hospitalization, fumigation, and bed nets will play a crucial role in the control of
malaria disease.

However, our model has some limitations. As mentioned by several authors [4,63],
vector bias has an essential role in determining the success of malaria eradication programs.
Another important factor that needs to be discussed is the seasonal impact on malaria
transmission, as mentioned by many authors [64,65]. Including these factors in our model
will be the future quest in order to obtain a better understanding of malaria transmission.
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