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ABSTRACT

Machine learning and artificial intelligence approaches have revolutionized multiple disciplines, including toxicology. This
review summarizes representative recent applications of machine learning and artificial intelligence approaches in
different areas of toxicology, including physiologically based pharmacokinetic (PBPK) modeling, quantitative structure-
activity relationship modeling for toxicity prediction, adverse outcome pathway analysis, high-throughput screening,
toxicogenomics, big data, and toxicological databases. By leveraging machine learning and artificial intelligence
approaches, now it is possible to develop PBPK models for hundreds of chemicals efficiently, to create in silico models to
predict toxicity for a large number of chemicals with similar accuracies compared with in vivo animal experiments, and to
analyze a large amount of different types of data (toxicogenomics, high-content image data, etc.) to generate new insights
into toxicity mechanisms rapidly, which was impossible by manual approaches in the past. To continue advancing the field
of toxicological sciences, several challenges should be considered: (1) not all machine learning models are equally useful for
a particular type of toxicology data, and thus it is important to test different methods to determine the optimal approach;
(2) current toxicity prediction is mainly on bioactivity classification (yes/no), so additional studies are needed to predict the
intensity of effect or dose-response relationship; (3) as more data become available, it is crucial to perform rigorous data
quality check and develop infrastructure to store, share, analyze, evaluate, and manage big data; and (4) it is important to
convert machine learning models to user-friendly interfaces to facilitate their applications by both computational and
bench scientists.

Key words: artificial intelligence; computational toxicology; machine learning; physiologically based pharmacokinetic (PBPK)
modeling; quantitative structure-activity relationship (QSAR).

Toxicology is a disciplinary of science that studies the adverse
effects and the underlying mechanisms of toxicity caused by
chemicals, substances, or situations on humans, animals, and
the environments, and the prevention and amelioration of such
harmful effects, as well as the application of toxicology knowl-
edge to safety evaluation and risk assessment of xenobiotics
(Klaassen, 2018; NIEHS, 2022). Toxicology includes a variety of

subject areas based on different classifications, including chem-
ical toxicology (toxicity of different chemical classes, such as
pesticides, metals, etc.), organ systems toxicology (toxicity on
different target organs), nonorgan-directed toxicity (carcinogen-
esis, genetic toxicology, and developmental toxicology), toxico-
kinetics (eg, physiologically based pharmacokinetic [PBPK]
modeling), environmental toxicology, as well as toxicology
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applications in regulatory risk assessment, ecotoxicology, food
toxicology, clinical toxicology, and occupational toxicology.

Artificial intelligence is a rapidly developing subdiscipline of
computer science with the goal of designing and creating
machines or computational models that can perform a variety
of cognitive tasks at a level comparable or even exceed human
intelligence (Davidovic et al., 2021). The term artificial intelli-
gence can have different meanings in different fields. In the pre-
sent contemporary review, it refers to the applications of
various machine learning methods in the prediction and evalu-
ation of chemical toxicokinetic (ie, absorption, distribution, me-
tabolism, and excretion [ADME]) and toxicity properties.
Machine learning is a subarea of artificial intelligence, and it
refers to mathematical or computer algorithms designed to
teach or train a computational model to solve a problem or per-
form complex tasks based on some input parameters (Russell
and Norvig, 2020). Machine learning is generally categorized
into 3 types: supervised learning, unsupervised learning, and re-
inforcement. Commonly used machine learning methods in the
field of toxicology and a brief description of each method are
listed in Table 1 (Baskin, 2018; Lin et al., 2022).

In recent years, machine learning and artificial intelligence
approaches are increasingly applied in different subject areas of
toxicology, including neurotoxicity (Aschner et al., 2022), cardio-
vascular toxicology (Glass et al., 2022), nanotoxicology (Ji et al.,
2022; Singh et al., 2020), toxicokinetics (Bhhatarai et al., 2019;
Chou and Lin, forthcoming), dermal toxicity (Hu et al., 2022), car-
cinogenesis (Li et al., 2021), etc. This contemporary review aims
to analyze this emerging area of applying machine learning and
artificial intelligence approaches to study toxicology research
questions and provide an overview of the current state of the
science in this area. The progress and challenges on how to in-
tegrate machine learning and artificial intelligence approaches
with traditional toxicology approaches, such as PBPK modeling,
quantitative structure-activity relationship (QSAR) modeling,
adverse outcome pathway (AOP) analysis, toxicogenomics, and
high-content image-based screening data, will be summarized,
followed by our future perspectives. The timeline of the applica-
tions of machine learning, artificial intelligence, PBPK, and
QSAR modeling approaches in the fields of pharmacology and
toxicology is presented in Figure 1.

PHYSIOLOGICALLY BASED
PHARMACOKINETIC MODELS

PBPK modeling is a computational simulation process that
describes the ADME of a xenobiotic and its metabolite(s) in the
body based on interrelationships among key anatomical, physi-
ological, biochemical, and physicochemical determinants using
mathematical equations (Fisher et al., 2020). PBPK models are an
important tool in human health risk assessment, especially in
dose-response analysis, exposure assessment, in vitro to in vivo
extrapolation (IVIVE), and interspecies extrapolation of toxicity
and dosimetry data. In the field of toxicology, a number of PBPK
models for different chemicals have been developed, and many
of them have been used to support chemical risk assessment
(Fisher et al., 2020; Reddy et al., 2005; Tan et al., 2018). To build a
PBPK model, a traditional approach is to experimentally mea-
sure relevant parameters, such as tissue:plasma partition coef-
ficients and metabolic rates, and then estimate values of
parameters that do not have experimental values by fitting to
in vivo pharmacokinetic dataset(s). This process is labor-
intensive, time-consuming, expensive, and unethical from

animal welfare perspective as the in vivo pharmacokinetic data-
sets have to be collected from animals in vivo. Also, this tradi-
tional approach cannot keep up with increasing demand of
PBPK models for thousands of chemicals whose risks remain to
be evaluated.

Machine learning approaches have been applied to predict
PBPK parameters based on compounds’ physicochemical prop-
erties to generate PBPK models for a large number of com-
pounds efficiently. A list of presentative recent PBPK studies
using machine learning approaches is provided in an accompa-
nying manuscript (Chou and Lin, forthcoming). For example,
Kamiya et al. (2021) developed an in silico model based on a gra-
dient boosting framework (LightGBM) machine learning ap-
proach to predict 3 key PBPK parameters, including absorption
rate constant, volume of distribution, and hepatic intrinsic
clearance based on around 14–26 physicochemical properties of
246 compounds. The results showed that PBPK-predicted con-
centration values of the 246 compounds in plasma, liver, and
kidney of rats using the in silico estimated parameter values
were well correlated with those based on traditionally deter-
mined parameter values with a correlation coefficient of
r� 0.83. Another research group tested multiple machine learn-
ing algorithms (eg, lasso regression, support vector machine,
random forest, and neural network multiple layer perceptron)
to determine the optimal model for the prediction of 2 essential
toxicokinetic parameters: fraction of the chemical unbound in
plasma and intrinsic clearance, based on structural properties
from a dataset of 1487 environmental chemicals; the final mod-
els (based on support vector machine and random forest) can be
used to predict these toxicokinetic parameters for other chemi-
cals of which experimental data are not available (Pradeep et al.,
2020). These studies demonstrate that it is feasible to use ma-
chine learning approaches to estimate PBPK parameters based
on compounds’ physicochemical properties and then to develop
a generic PBPK model for a large number of compounds to facili-
tate dosimetry estimation for risk assessment and ranking.

Machine learning approaches can support the development
of PBPK models. In turn, a PBPK model can be used to generate a
large amount of simulated data to be analyzed with machine
learning approaches to obtain new insight. A recent study
reported a generic PBPK model for nanoparticles in tumor-
bearing mice (Cheng et al., 2020). This model was trained with
376 datasets for different types of nanoparticles. The final
model was used to predict the delivery efficiency of different
nanoparticles to tumors based on 4 dose metrics, including tu-
mor delivery efficiency estimated at 24 h, 168 h, and the last
sampling time point, as well as the maximum delivery effi-
ciency. Various machine learning and deep learning algorithms
(briefly described in Table 1), such as linear regression, k-near-
est neighbors, random forest, bagged model, stochastic gradient
boosting, support vector machine, and deep neural network
were used to analyze the data to determine the best model that
can predict tumor delivery efficiency of a nanoparticle based on
its physicochemical properties, including Zeta potential, hydro-
dynamic diameter, shape, targeting strategy, core material, and
type of nanoparticles (Lin et al., 2022). The results showed that
the deep neural network model adequately predicted the deliv-
ery efficiency of different nanoparticles to different tumors and
it outperformed all other machine learning methods. This strat-
egy of using machine learning methods to analyze a large
amount of PBPK-simulated data can well be applied to small
molecular environmental chemicals. It is anticipated that this
approach will greatly expedite the application of PBPK in
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combination with machine learning for a large-scale chemical
screening, risk ranking and prioritization.

Traditionally, PBPK models are described with ordinary dif-
ferential equations (ODEs) and solved with ODE solvers; and
population pharmacokinetic (PopPK) models are developed us-
ing a nonlinear mixed effects (NLME) approach. Recent
advancements in machine learning and artificial intelligence
have led to significant progress in applying these approaches to
pharmacometrics or toxicometrics. A deep learning approach
based on neural ordinary differential equations (neural-ODE)
(Chen et al., 2018) was created for automated construction of
pharmacokinetic models directly based on clinical data (Lu
et al., 2021a,b). The performance of the neural-ODE model was
compared with other machine learning approaches (ie, the
lightGBM and long short-term memory [LSTM] neural network)
and the traditional NLME modeling. The results showed that
the neural-ODE, lightBGM, and NLME models had similar pre-
diction performance when the training data and testing data
were from the same treatment regimens, but the neural-ODE
outperformed other algorithms when applying to new dosing
regimens. It is anticipated that this deep learning-based neural-
ODE approach may also be applied to PBPK models to facilitate
its applications in both pharmacology and toxicology.

QUANTITATIVE STRUCTURE-ACTIVITY
RELATIONSHIP MODELS

QSAR is a computational modeling and simulation method for
studying relationships between structural properties of chemi-
cals and biological activities. The biological activities include

ADME properties, as well as toxicity of chemical substances.
QSAR approaches have been extensively applied in the areas of
drug discovery and development, as well as toxicology.
Emerging machine learning and artificial intelligence
approaches are now commonly employed to build robust QSAR
models to predict bioactivities of a large number of chemicals.
Table 2 lists representative recent studies that used machine
learning and artificial intelligence approaches to train QSAR
models. These models are an ideal too to perform read-across
in toxicology (ie, to predict the bioactivities of new chemicals
based on structurally related or similar analogues without doing
additional in vitro or in vivo experimentation).

Development of a QSAR model typically involves 4 main
steps: (1) collecting a training dataset (ie, chemicals with
experimentally-derived physical and/or biological properties),
(2) encoding chemicals with molecular descriptors (ie, the fea-
tures of each molecule), (3) training the model to predict chemi-
cal properties based on their molecular descriptors using
mathematical algorithms (from simple multiple linear regres-
sion to state-of-the-art machine learning algorithms), and (4)
evaluating the model performance using a validation dataset
(Cheng and Ng, 2019; OECD, 2014).

Per- and polyfluorinated alkyl substances (PFAS) are a large
chemical family with >5000 members that are widely used in
industrial and consumer products. PFAS are ubiquitous envi-
ronmental contaminants and represent a major global public
health issue. Due to a large number of PFAS, it is difficult and
impractical to evaluate the toxicity of each of them individually
using in vitro and/or in vivo assays. To address this challenge, a
machine learning-based QSAR model was built and successfully

Table 1. A List of Machine Learning Methods Commonly Used in Toxicological Research

Method Brief Description

Supervised linear methods
Multiple linear regression Use multiple explanatory variables to predict the outcome of a response variable with a multivari-

ate linear equation
Naı̈ve Bayes classifier Based on Bayes’ theorem with strong assumptions of conditional independence among molecular

descriptors (ie, explanatory variables)
Supervised nonlinear methods

k-nearest neighbors Classify a test chemical by looking for the training chemicals with the nearest distance to it
Support vector machine Map molecular descriptor vectors into a higher dimensional feature space to build a maximal mar-

gin hyperplane to distinguish active (toxic) from inactive (nontoxic) chemicals
Decision trees Each model is a series of rules organized in the format of a tree containing a single root node and

any number of internal nodes and several leaf nodes. The path from the root to a leaf stands for
a sequence of classification rules predicting a toxicity endpoint for a given chemical

Ensemble learning Combine several base models into a more predictive one. Popular types of ensemble modeling in-
clude bagging, random spaces, boosting, and stacking.

Random forest Combine the bagging with the random spaces approaches in application to decision trees base
models

Artificial neural networks
Backpropagation neural networks All neurons are divided into 3 layers, with information flowing from the first layer of input neu-

rons to the second layer of hidden neurons, and then to the third layer of output neurons
Bayesian-regularized neural networks Apply Bayesian methods to perform regularization so that the model complexity is balanced

against the accuracy of reproducing training data
Associative neural networks Apply ensemble learning to backpropagation neural networks
Deep neural networks Artificial neural networks with multiple hidden layers (also called deep learning)

Unsupervised methods
Principle component analysis Reduce the dimensionality of the data to only the first few principal components while preserving

as much of the data’s variation as possible
Kohonen’s self-organizing maps Map molecules from the original descriptor space onto a 2D grid of neurons. Similar molecules

will be mapped to the same closely located neurons in the grid

This table is based on the book chapter by Baskin (2018). Please refer to Baskin (2018) for detailed description about each of the listed machine learning algorithms.
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classified bioactivity for 3486 PFAS (Cheng and Ng, 2019). The
authors constructed a PFAS-specific database that contains bio-
activity information on 1010 PFAS for 26 assays to serve as the
training dataset. These bioassays were all binary classification
assays (active or inactive), and involved different target recep-
tors or enzymes, such neuropeptide S receptor, CYP2C9, alde-
hyde dehydrogenase 1. Five different machine learning models
(ie, logistic regression, random forest, multitask neural network,
graph convolutional model, and weave model) were evaluated
on different assays, and the best model was selected for each
assay. The models were evaluated with a dataset from
Organisation for Economic Co-operation and Development
(OECD) containing bioactivity information on 3486 PFAS. The
results showed that the average of the area under the curve
(AUC) of the receiver operating characteristic (ROC) curve for
each bioassay was >0.9. This study provides a valuable model
to classify bioactivity of a large number of PFAS based on chemi-
cal structures.

In 2014, the National Center for Advancing Translational
Sciences (NCATS) launched Tox21 Data Challenge to develop
and compare different computational models for toxicity pre-
diction based on chemical structure data. The goal was that
some of the robust machine learning-based models could be
used as decision-making tools for governmental agencies in de-
termining which chemicals may be of great potential concern to
human health. The challenge organizers provided a training set
consisting of 11 764 chemicals, a leaderboard set consisting of
296 chemicals, both with structural and bioassay data, as well
as a test set consisting of 647 chemicals with only structural
data. The bioassay data included 12 toxic endpoints, mainly re-
lated to nuclear receptor effects, such as activation of the estro-
gen receptor, and stress response effects, such as the heat
shock response effect. More than 10 research teams from all

over the world participated in the challenge. Mayr et al. (2016)
developed a DeepTox pipeline that embedded with different
machine learning models (Table 1), mainly deep learning model,
and also with complementary models, such as support vector
machines, random forests, and elastic nets. The results showed
that the DeepTox pipeline had a consistent high performance
compared with all competing methods from other research
teams, and won a total of 9 of the 15 challenges and did not
rank lower than fifth place in any of the subchallenges. It is also
worth to note that within DeepTox pipeline, the deep learning
model had a superior performance than other complementary
methods for toxicity prediction in 10 out of 15 evaluation test
sets.

Similar to NCATS’ Tox21 Data Challenge, recently the U.S.
Interagency Coordinating Committee on the Validation of
Alternative Methods (ICCVAM) Acute Toxicity Workgroup orga-
nized an international collaboration to develop machine
learning-based in silico models to predict acute oral toxicity (eg,
LD50) based on a database for 11 992 chemicals (Mansouri et al.,
2021). Thirty-five research groups submitted 139 predictive
models. The final consensus models were submitted to regula-
tory agencies for evaluation of its utility and applicability to po-
tentially replace in vivo rat acute oral toxicity studies. The final
consensus models and the prediction results are publicly avail-
able (Mansouri et al., 2021).

Carcinogenicity testing plays an important role in identify-
ing carcinogens in drug development and environmental chem-
ical risk assessment. Traditionally, the carcinogenic potency is
evaluated with a 2-year carcinogenicity study in rodents, but
this process is very time-consuming and resource-intensive.
There has been a great need to develop alternative approaches
for reliable and efficient assessment of carcinogenicity. Multiple
QSAR models have been developed to assess carcinogenicity for

Figure 1. A timeline of the applications of machine learning (ML), artificial intelligence (AL), physiologically based pharmacokinetic (PBPK), and quantitative structure-

activity relationship (QSAR) modeling approaches in the fields of pharmacology and toxicology. This figure was created based on Figure 3 in Zhu (2020), Figure 1 in Lin

and Fisher (2020), and Figure 1 in Singh et al. (2020). Please refer to these references for the original references for the milestones listed in this figure.
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particular chemical classes (eg, aromatic amines, polycyclic aro-
matic hydrocarbon) in rats (Wang et al., 2020; Zhang et al., 2017).
However, chemical carcinogenicity assessment is required to be
conducted in at least 2 rodent species. Recently, Li et al. (2021)
developed a DeepCarc model to predict carcinogenicity for small
molecules using deep learning-based model-level representa-
tions. The DeepCarc model was developed with a dataset of 692
chemicals and evaluated with a test set consisting of 171 chemi-
cals. The data were obtained from the National Center for
Toxicological Research liver cancer database and involved both
rats and mice. The authors also compared performance of the
DeepCarc model with other deep learning models that were
based on molecule-level representations, including Text
Convolutional neural network from DeepChem, Convolutional
Neural Network Fingerprint, Edge Attention-based Multi-rela-
tional Graph Convolutional Networks, and Chemistry Chainer-
Neural Fingerprint. The results showed that model predictions
from DeepCarc had an accuracy of 0.754, a sensitivity of 0.910,
and a specificity of 0.467 in the test dataset. Also, DeepCarc had
a superior performance in accuracy and sensitivity than the
molecular-based deep learning models. This DeepCarc model
provides an early screening nonanimal-based tool to assess po-
tential carcinogenicity of new chemicals and is useful for priori-
tizing chemicals on their potential carcinogenic risk.

In carcinogenicity assessment using computational models,
one common issue is insufficient coverage of mechanisms and

chemicals in the applicability domain of individual models. To
address this challenge, a machine learning-based weight-of-evi-
dence model was developed to prioritize chemical carcinogenesis
by integrating results from multiple computational methods with
complementary mechanisms, including structural alert models,
QSAR models, in silico toxicogenomics models into a weight-of-
evidence score (Wang et al., 2022). The model was developed
based on a training dataset with 597 chemicals and a test dataset
with 198 chemicals from the International Agency for Research
on Center (IARC) chemical list. A random forest algorithm was
used to develop the weight-of-evidence classifiers. The results
showed that the machine learning-based weight-of-evidence
model had 8% and 19.7% improvement compared with the best
single method in the area under the receiver operating character-
istic curve (AUROC) value and chemical coverage, respectively.
The weight-of-evidence model was then applied to assess the
weight-of-evidence scores of 1623 food contact chemicals and pri-
oritize these chemicals based on the weight-of-evidence scores.
The model identified 44 chemicals to be of high carcinogenicity
concern based on a predefined weight-of-evidence threshold of
0.7. Among these 44 chemicals, 34 had carcinogenic data in public
databases (either IARC or ECHA). A high ratio of chemicals with
consistent results between model predictions and known carci-
nogenic potential from public databases suggest the effectiveness
of the developed machine learning-based weight-of-evidence
model for prioritizing chemicals of high carcinogenicity concern.

Table 2. Representative Studies Integrating Machine Learning Approaches With Quantitative Structure-Activity Relationship Modeling

Best Machine learning Method Training Dataset Endpoint Reference

Deep learning (ie, DeepTox) 11 764 chemicals from Tox21 12 bioassays Mayr et al. (2016)
Ensemble extreme gradient

boosting
1003 chemicals Carcinogenicity Zhang et al. (2017)

Random forest Over 866 000 chemical proper-
ties/hazards

Acute oral and dermal toxicity,
eye and skin irritation, muta-
genicity, and skin sensitization

Luechtefeld et al. (2018)

Ensemble support vector
machine

400 chemicals Aquatic acute toxicity Ai et al. (2019)

Multitask neural networks and
graph convolutional networks

1012 PFAS Bioactivity on 26 bioassays Cheng and Ng (2019)

Extra trees Over 1000 chemicals from differ-
ent databases

Various toxicities Pu et al. (2019)

Ensemble model 7385 chemicals Acute toxicity in rats Russo et al. (2019)
Support vector machine 482 chemicals Acute toxicity in fathead

minnow
Chen et al. (2020)

Deep learning (ie, CapsCarcino) 1003 chemicals from CPDB Carcinogenicity Wang et al. (2020)
Kernel-weighted local polyno-

mial approach
Hundreds of chemicals depend-

ing on the species
Acute aquatic toxicity Gajewicz-Skretna et al. (2021)

Meta ensembling of multitask
deep learning models (ie,
QuantitativeTox)

Hundreds to thousands of com-
pounds depending on the
endpoint

LD50 and LC50 Karim et al. (2021)

Deep learning-based model-level
representations (ie, DeepCarc)

692 chemicals Carcinogenicity Li et al. (2021)

Extra trees Over 18 600 drug-bacteria
interactions

Gut bacterial growth McCoubrey et al. (2021)

Support vector machine 676 pesticides Acute contact toxicity on honey
bees

Xu et al. (2021)

A consensus model based on 4
algorithms

1244 chemicals Prenatal developmental toxicity Ciallella et al. (2022)

Deep learning 31 chemicals with known or sus-
pected clinical skin toxicity

Skin toxicity Hu et al. (2022)

Random forest 1476 food contact chemicals Carcinogenicity Wang et al. (2022)

CPDB, Carcinogenic Potency Database. LC50 and LD50 refer to the compound concentrations that kill half the members of the tested animal population, respectively.
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ADVERSE OUTCOME PATHWAY ANALYSIS

An AOP is a conceptual construct that describes existing knowl-
edge on the connection between a direct molecular initiating
event and an adverse outcome at a biological level of organiza-
tion that is relevant to human health risk assessment (Ankley
et al., 2010). A typical AOP includes a molecular initiating event
(eg, interaction between a chemical and a specific biomolecule
at the molecular level), key events that characterize the progres-
sion of toxicity after the molecular initiating event, and adverse
outcomes that may occur at individual or population levels. In
the past 10 years, a number of AOPs have been characterized
and summarized in the AOP Knowledge Base and/or AOP Wiki
(OECD, 2022).

To determine whether xenobiotics are involved in an AOP,
an efficient approach is to perform high-throughput screening
(HTS) assays that are designed to measure key events of AOPs.
One of the most prominent HTS initiatives in toxicology is U.S.
Environmental Protection Agency (EPA)’s Toxicity Forecaster
(ToxCast) program, which later progressed to become Tox21
program among multiple agencies, including U.S. EPA, Food and
Drug Administration (FDA), NCATS, and National Toxicology
Program (NTP). Tox21 program has screened thousands of
chemicals in over 70 high-throughput assays covering more
than 125 important biological processes in the body and gener-
ating >120 million data points (Tox21, 2020). Among all studied
AOPs, one of the most commonly studied AOPs is related to nu-
clear estrogen receptor a and b (Ciallella et al., 2021; Huang et al.,
2014; Lin and Lin, 2020). Estrogen receptors play important roles
in many biological functions, such as cell differentiation, fertil-
ity, and morphogenesis. Multiple xenobiotics have been shown
to bind to and active estrogen receptors, with the potential to
result in endocrine disruption and adverse effects on reproduc-
tive organs.

Note that traditional approaches to evaluate endocrine dis-
ruptors that activate estrogenic signaling requires labor- and
resource-intensive in vitro or in vivo experiments. In a recent
study, Ciallella et al. (2021) developed a knowledge-based deep
neural network model to analyze publicly available HTS data to
identify compounds with nuclear estrogen receptor a and b

binding potentials. In this model, the input layer of the network
contained information on 1024 functional connectivity chemi-
cal fingerprints plus 3 known ERa/ERb toxicophores (ie, steroid
and diethylstilbestrol scaffolds and the phenol group). The out-
put layer of the network was the target activity, which was
in vivo rodent uterotrophic bioactivity. There were 5 hidden
layers that connected the input and the output layers. The 5
hidden layers were organized and ordered using an AOP frame-
work, with each layer represented a higher level of biological or-
ganization than the last. The 5 layers included 57 neurons in
total, each of which represented one in vitro high-throughput
assay included in the training dataset. After training, the result-
ing model successfully predicted critical relationships among
ERa/ERb target bioassays based on chemical fingerprints. The
model used an AOP framework to mimic the signaling pathway
initiated by ERa and was able to identify compounds that mimic
endogenous estrogens. This virtual pathway model, starting
from a compound’s chemistry initiating ERa activation and end-
ing with rodent uterotrophic bioactivity, can efficiently priori-
tize new estrogen mimetics. This artificial intelligence-based
model provides a promising strategy to integrate AOP and high-
throughput data to characterize hazards and prioritize potential
toxic compounds for further risk assessment.

Although traditional descriptive or qualitative AOP is useful
in chemical risk assessment, it does not provide quantitative
relationships from chemical exposure to effect timing and mag-
nitude. When there are sufficient data on quantitative relation-
ships between chemical exposure and key events (or molecular
initiating events or adverse outcomes), a mathematical model
may be developed to connect chemical exposure to key events
in a quantitative AOP (qAOP). For example, Zgheib et al. (2019)
used 3 approaches to build qAOP models to quantitatively de-
scribe a simplified oxidative stress induced chronic kidney dis-
ease AOP based on in vitro data from human proximal tubule
(RPTEC/TERT1) cells treated with potassium bromate. These 3
approaches included: empirical dose-response modeling,
Bayesian network calibration, and systems biology modeling.
The authors concluded that the Bayesian network approach
was more precise than the dose-response models and simpler
than the systems biology models. In light of the potential regu-
latory applications of qAOP in chemical risk assessment, an in-
creasing number of qAOP models have been proposed as
computational toxicity predictive tools. Readers are referred to
these recent review articles (Perkins et al., 2019; Sinitsyn et al.,
2022; Spinu et al., 2020) on the detailed methodology of qAOP de-
velopment and applications.

Among all key events of an AOP, the molecular initiating
event links a chemical’s structural properties to an interaction
at a biological target, thus providing an opportunity to build
QSAR models to predict a chemical’s molecular initiating event
based on its structural properties (Allen et al., 2014). In a series
of studies, Allen et al. developed a tool to predict a chemical’s
molecular initiating event based on 2D structural alerts of the
chemical (Allen et al., 2016, 2018). This tool was developed based
on data from ChEMBL that contains more than a million anno-
tated compounds with over 12 million bioactivities covering
more than 10 000 biological targets. The final tool contained
4810 different structural alerts for 39 pharmacologically impor-
tant targets. The performance of the final model’s predictions of
molecular initiating events was strong, with 82% sensitivity,
93% specificity, and 93% overall quality (Allen et al., 2018).

TOXICOGENOMICS

Toxicogenomics is a subdiscipline of toxicology that applies ge-
nomic technologies (eg, gene expression profiling, proteomics,
metabolomics, and related methods) to study adverse effects of
chemicals or xenobiotic substances at the gene and/or protein
levels within particular cells or tissue(s) of an organism.
Toxicogenomics has emerged to be an important tool in the
identification of potential molecular mechanisms of toxicity at
the gene, protein, or metabolite level in cells or tissues of organ-
isms in response to exposure to environmental chemicals, as
well as serving as biomarkers for predictive toxicology. Recent
advance in computational technologies has enable integration
of toxicogenomics with computational models (eg, machine
learning and PBPK models) to correlate molecular endpoints de-
rived from toxicogenomics data with in vivo regulatory-relevant
phenotypic toxicity or toxicokinetic endpoints (Chen et al.,
2022a; Liu et al., 2019).

In a recent study, researchers collected in vitro assay-derived
time-series toxicogenomic data on the expression of a library of
38 key proteins (covering all known recognized DNA damage re-
pair pathways) after exposure to a wide concentration range of
20 selected genotoxicity-positive and genotoxicity-negative
chemicals (Rahman et al., 2022). Machine learning-based feature
selection method (ie, maximum relevance and minimum
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redundancy [MRMR]) and classification method (support vector
machine [SVM]) was employed to identify an optimal number of
biomarkers with minimum redundancy for prediction of pheno-
typic toxicity endpoints (in vivo carcinogenicity and Ames geno-
toxicity) in rats. The authors found that a small number of
properly selected molecular biomarker-ensemble involved in
conserved DNA damage and repair pathways among eukaryotes
were able to predict both in vivo carcinogenicity and Ames geno-
toxicity endpoints with good accuracies (�70% for both end-
points with the top 5 biomarkers). The identified top 5
biomarkers are associated with known DNA damage and repair
pathways. For example, the identified top 5 biomarkers for the
in vivo carcinogenicity prediction were mainly related to double
strand break repair and DNA recombination. This study pro-
vides a proof-of-concept that machine learning methods can be
applied to analyze toxicogenomic data to bridge molecular level
biomarker data to regulatory-relevant in vivo phenotypic and
toxicity endpoints.

Toxicogenomics data could be derived from in vitro or in vivo
assays. Although in vivo toxicogenomics data are desirable, it is
impractical and unethical to collect toxicogenomics data for
thousands of chemicals from animal assays on different dose
groups and treatment durations. A recent study applied a deep
generative adversarial network (GAN) approach to develop an
artificial intelligence-based Tox-GAN framework that is capable
of generating in vivo gene activities and expression profiles in
rats for multiple doses and treatment durations based on chem-
ical structures (Chen et al., 2022b). This model was trained with
data from a large-scale publicly available toxicogenomics data-
base that contains transcriptomic data derived from in vivo and
in vivo exposure to 170 compounds at multiple dose levels and
time points (Igarashi et al., 2015). The Tox-GAN-derived toxico-
genomics data had >87% agreement in Gene Ontology com-
pared with the experimentally derived gene expression data.
This framework serves as a promising alternative tool to gener-
ate high-quality in vivo toxicogenomic data without animal
experimentation.

HIGH-CONTENT IMAGE-BASED SCREENING
DATA

Artificial intelligence-based methods have been applied to
study mechanisms of toxicity, such as oxidative stress and DNA
damage. Oxidative stress is a common mechanism of different
toxic effects induced by various environmental stressors (eg,
heavy metals, ionizing radiations, antiblastic drugs) (Pizzino
et al., 2017). Generation of reactive oxygen species, such as hy-
drogen peroxide, hydroxyl radical, superoxide anion and singlet
oxygen is one of the common causes of DNA damage. There are
different types of DNA modifications (eg, single-strand breaks,
double-strand breaks, bulky adduct formation), and different
assays to evaluate the severity of DNA damage. One of the com-
monly used assays is the comet assay that can evaluate the
level of DNA fragmentation, which corresponds to the amount
of damaged DNA. Although comet assay has been extensively
applied for several decades, one shortcoming of this assay is
lack of automation. In this regard, recent studies have applied
artificial intelligence methods to evaluate DNA damage based
on segmented comet assay images. For example, in a study by
Atila et al. (2020), the researchers developed a convolutional
neural network (CNN) model based on comet assay image data
(the original data contained 796 images and the augmented
data consisted of 9995 images). The CNN model architecture

included an input layer, an output layer, and 9 hidden layers in
between. The model was able to classify comet images into 4
classes (healthy, poorly defective, defective, and very defective)
with an overall accuracy rate of 96.1%.

BIG DATA IN TOXICOLOGY AND
TOXICOLOGICAL DATABASES

The term “big data” can be defined as datasets, structured or
unstructured, that include a large variety of types of data and
are generated in a high speed with a volume that is so large that
they usually require high-performance computers and ad-
vanced computational approaches to analyze (Ciallella and Zhu,
2019). In the field of toxicology, examples of big data include
high throughput/high content screening data (eg, ToxCast/
Tox21 data), data generated with omics technologies and gene
arrays (eg, transcriptomics, metabolomics, proteomics, and
microbiome), toxicity data in large public databases (eg,
Table 3), and epidemiological data, as well as environmental
monitoring or human biomonitoring data (eg, the National
Health and Nutrition Examination Survey [NHANES]). One of
the prerequisites in the application of artificial intelligence
approaches to study biomedical problems is the requirement of
big data (ie, the dataset should be large enough to enable to de-
velop a reliable model without overfitting). The availability of
various types of big data sources in toxicology makes it possible
to apply artificial intelligence approaches to predictive
toxicology.

Combining machine learning approaches and toxicological
big data enables development of read-across structure activity
relationship (RASAR) that may outperform animal test repro-
ducibility (Luechtefeld et al., 2018). Based on a big database con-
taining more than 866,000 chemical properties/hazards, 2
RASAR models (ie, simple RASAR and data fusion RASAR) were
trained with an unsupervised learning step and a supervised
learning step. The simple RASAR model combined an unsuper-
vised aggregation function based on k-nearest neighbor algo-
rithm to generate a 2D vector for each chemical, and then a
supervised learning step based on logistic regression was ap-
plied to the vectors generated by the unsupervised learning
step. The data fusion RASAR extended the simple RASAR by
building similarity-based features for every chemical and prop-
erties and created large feature vectors, which were then ap-
plied to train a random forest as the supervised learning model.
The results showed that the simple RASAR model achieved a
sensitivity of >80% with specificities of 51%–69% on the animal
reproducibility test results, and the data fusion RASAR further
improved the sensitivity to the 80%–95% range. Note that in
general the probability that an animal test based on OECD
guidelines that would achieve the same result in a repeat test is
around 78%–96% (Luechtefeld et al., 2018). These results suggest
that big data and machine learning-based advanced QSAR or
RASAR models may achieve similar or even outperform animal
test reproducibility (Luechtefeld et al., 2018).

Machine learning methods have also been used to study ad-
verse effects of chemicals on gut microbiome. Based on a data-
set consisting of the effects of 1197 drugs on the in vitro growth
of 40 representative strains of gut bacteria, McCoubrey et al.
(2021) develop a machine learning model to predict whether the
drugs impair the growth of the 40 gut bacterial strains based on
chemical structural features. A total of 13 different machine
learning models were tried, including extra trees, random for-
est, k-nearest neighbors, multilayer perceptron, decision trees,
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support vector machines, stochastic gradient descent, percep-
tron, passive aggressive classification, gradient boosting, etc.
The results showed that the extra trees model had the best per-
formance based on all evaluation metrics (AUROC: 0.850, recall:
0.595; precision: 0.785; f1: 0.666), followed by the random forest
model. This model can be used by pharmaceutical companies
or regulatory agencies to predict whether a new drug may im-
pact gut microbiome of patients.

As toxicology enters the big data era, more and more
toxicology-related databases are available to perform a large-
scale computational data to obtain new toxicology findings us-
ing machine learning and artificial intelligence approaches.
Some representative databases are listed in Table 3. Most of

these databases store physicochemical and toxicological data
on small molecular environmental chemicals, and studies on
how to analyze data from these databases with machine learn-
ing and artificial approaches are published. It is worth to high-
light that nanomaterials are emerging environmental toxicants,
and big databases on nanomaterial toxicological properties
have begun to be developed. Yan et al. recently constructed a
web-based nanomaterial database through big data curation
and modeling friendly nanostructure annotations (Yan et al.,
2020). This database contains 705 unique nanomaterials cover-
ing 11 material types with 6 physicochemical properties and/or
bioactivities for each nanomaterial, resulting in >10 endpoints
in the database. Note that the nanostructure annotation

Table 3. A List of Databases Relevant to Computational Toxicology

Database Data Sizea Data Type Reference

ACToR Over 800 000 compounds and 500
000 assays

In vitro and in vivo toxicity Judson et al. (2008)

Biosolids list 726 chemical pollutants Concentration data in biosolids Richman et al. (2022)
CEBS Over 11 000 compounds and 8000

studies
Gene expression data Lea et al. (2017)

ChEMBL 1.1 million bioassays, 1.8 million
compounds, over 15 million
activities

Literature data on binding, func-
tion, and toxicity of drugs and
drug-like chemicals

Gaulton et al. (2012)

Connectivity map Around 1300 compounds and
7000 genes

Gene expression data Subramanian et al. (2017)

CTD Over 14 000 compounds, 42 000
genes, 6000 diseases

Relationships among com-
pounds, genes, and diseases

Davis et al. (2021)

DrugMatrix Around 600 drug molecules and
10 000 genes

Gene expression data Ganter et al. (2005)

GEO Over 4300 subdata sets Microarray, next-generation se-
quencing, and other forms of
high-throughput functional
genomics data

Barrett et al. (2013)

eNanoMapper Over 700 types of nanomaterials Diverse data types on nanomate-
rial physicochemical proper-
ties and safety

Jeliazkova et al. (2015)

MoleculeNet Over 700 000 compounds Quantum mechanics, physical
chemistry, biophysics, and
physiology

Wu et al. (2018)

Open TG-GATEs 170 compounds Gene expression data and
metadata

Igarashi et al. (2015)

PubChem Over 111 million compounds,
1.39 million bioassays, and 293
million bioactivity data points

Toxicology, genomics, pharma-
cology, and literature data

Kim et al. (2021)

Pubvinas 11 types of nanomaterials with
705 unique nanomaterials

Up to 6 physicochemical proper-
ties and/or bioactivities

Yan et al. (2020)

REACH 21,405 unique substances with
information from 89,905
dossiers

Data submitted in European
Union chemical legislation

Luechtefeld et al. (2016)

RepDose 364 compounds investigated in
1017 studies, resulting in 6,002
specific effects

Repeat-dose study data in dogs,
mice, and rats

Bitsch et al. (2006)

SEURAT Over 5500 cosmetic-type com-
pounds in the current COSMOS
database web portal

Animal toxicity data Vinken et al. (2012)

ToxicoDB 231 chemicals Toxicogenomic data Nair et al. (2020)
ToxNET Over 50 000 environmental

chemicals from 16 resources
In vitro and in vivo toxicity data Fonger et al. (2000)

aOn the basis of live web counts or most recent literature publications as of March 2022. ACToR, Aggregated Computational Toxicology Resource; CTD, Comparative

Toxicogenomics Database; CEBS, Chemical Effects in Biological Systems; GEO, Gene Expression Omnibus; Open TG-GATEs, a large-scale toxicogenomic database;

REACH, Registration, Evaluation, Authorization, and Restriction of Chemicals; SEURAT, Safety Evaluation Ultimately Replacing Animal Testing; ToxNET, Toxicology

Data Network. This table was adapted from Ciallella and Zhu (2019) with permission from the publisher.
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contains 2142 nanodescriptors for all nanomaterials that are
available for download from the web portal for subsequent ma-
chine learning research purposes. In the Europe, eNanoMapper
has been created as a computational infrastructure for toxico-
logical data storage, sharing, analysis, and management, as
well as the creation of computational toxicological models for
nanomaterials (Jeliazkova et al., 2021). This database was
designed based on the FAIR (findable, accessible, interoperable
and reusable) guiding principles. It includes a wide variety of
data types, including physicochemical, (eco)toxicological and
exposure-related parameters in line with current regulatory
requirements for the safety assessment of nanomaterials, as
well as information derived from nonstandardized new ap-
proach methodologies, such as omics data. This database con-
tains millions of data points from thousands of studies. This
large database provides an ideal data source to apply machine
learning approaches to build robust computational nanotoxicol-
ogy models.

CHALLENGES AND FUTURE PERSPECTIVES

Machine learning and artificial intelligence approaches and the
availability of many large toxicological databases present a
great opportunity to advance the science of toxicology, espe-
cially in the paradigm shift from traditional animal-based risk
assessment framework to the 21st century risk assessment
framework that is primarily based on in vitro high throughput
assays coupled with in silico modeling for IVIVE. This opportu-
nity also comes along with multiple challenges.

First, with the advance of computer and mathematical sci-
ences, there are more and more machine learning algorithms
available to analyze toxicological data. Different algorithms
have different requirements on the data size and types (eg, con-
tinuous vs categorical). Some algorithms may work better for
certain data types, but others may not. Toxicology is an inter-
disciplinary science and has a variety of data types. There is no
consensus on which machine learning algorithm that works the
best for a certain data type or dataset. In order to develop the
best machine learning model, usually researchers have to try
different machine learning algorithms and compare their per-
formances (Cheng and Ng, 2019; Lin et al., 2022; McCoubrey et al.,
2021; Wang et al., 2020). Once the best machine learning model
is identified, it can then be used for model predictions and sub-
sequent analyses.

Second, machine learning and artificial intelligence algo-
rithms are commonly viewed as black boxes that are lack of
mechanistical explainablity (Guha, 2008; Sjöberg et al., 1995),
which brings a certain challenge to application of machine
learning models in toxicology. In order to overcome this limita-
tion and make interpretable predictions, knowledge-based ma-
chine learning approaches should be developed. For example,
with the use of the AOP structure and a set of in vitro HTS bioas-
says, a knowledge-based deep neural network model allows for
a mechanism-based prediction of a chemical’s estrogen recep-
tor binding potential over traditional black-box models, which
represents a significant advancement in computational toxicol-
ogy (Ciallella et al., 2021). However, more interpretable machine
learning models with supporting mechanistic data remain to be
developed.

Third, traditional machine learning approaches are limited
in extracting critical features and are thus difficult to predict
with a high accuracy. As more high-throughput data become
available, these data often involve a large number of chemicals
with multiple fingerprint descriptors. Considering each of the

descriptors might lead to overfitting in many machine learning
models and thus hindering the performance on model valida-
tion, but these limitations could be overcome by more advanced
deep neural network models. With the efforts to control overfit-
ting by automatically feature selection algorithms, the deep
neural networks approach presents more effective predictability
than traditional machine learning methods. In our recent study
(Lin et al., 2022), the deep learning model outperformed all tradi-
tional machine learning methods in the prediction of delivery
efficiency of nanomedicines in tumor-bearing mice. With ad-
vancement in deep learning models, they have a multitude of
benefits that have been shown to improve predictive power in
the application in different areas of toxicology and pharmacol-
ogy, including toxicogenomics (O’Donovan et al., 2020) and HTS
data (Pham et al., 2021).

Fourth, current machine learning-based computational toxi-
cology models are mostly based on bioactivity classification, ie,
yes or no for bioactivity/toxicity, which cannot predict the in-
tensity of toxic effect, dose-response relationship, or time-
dependence (Table 2). There are only some models based on
quantitative endpoints (eg, median lethal dose [LD50]) (Feinstein
et al., 2021; Gadaleta et al., 2019; Karim et al., 2021). A fundamen-
tal tenet in the field of toxicology is “the dose makes the poi-
son.” In modern toxicology, toxicity varies depending on
multiple factors, including exposure dose, time, target cell, spe-
cies, and in vitro versus in vivo. More advanced machine learning
models that can predict relative toxicity of environmental
chemicals quantitatively based on different variables (eg, dose,
time, and species) remain to be developed.

Fifth, although big data enable to develop robust machine
learning models, there comes a risk of being overwhelmed by
the flood of data, confounding by low quality data, and losing
sight of the objective of the hazard or risk assessment to be un-
dertaken (Richarz, 2019). With the increasing volume and gen-
eration speed of data, it is important to develop adequate
infrastructure to store, share, analyze, evaluate, and manage
data. It is recommended that data be generated following stan-
dard test guidelines, such as those recommended by OECD.
Before choosing data to develop machine learning models,
data quality, completeness, reliability, and relevance should be
rigorously checked and if possible, modelers should choose
high-quality, complete, reliable, and relevant data to develop
machine learning models.

Sixth, although many machine learning studies have either
developed novel computational models to predict toxicity or
provide important insights in toxicology, these models are lim-
ited to some mathematical equations or computer codes that
often do not share with the readers. This is, in part, because
these computer codes are “intimidating” to nonmodelers. This
limits the reproducibility of existing machine learning studies
in toxicology. This issue is similar to many earlier PBPK model-
ing studies in which researchers did not share the model code.
However, in the field of PBPK modeling, this issue is mostly re-
solved as now more and more PBPK modelers realize the impor-
tance of sharing model code and actually publish their model
codes. Likewise, in the field of machine learning and artificial
intelligence in toxicology, it is recommended that the entire
machine learning codes that were used to train and test the
model be published as part of the manuscript to facilitate repro-
ducibility of study findings and to enable other researchers to
develop better models based on published models.

Finally, although the studies discussed in this article show
promising applications of machine learning and artificial intelli-
gence approaches in different areas of toxicology, many of the
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cited applications are still relatively new and have not been ac-
tually used in industry or governmental agencies to support
public health decision-making. Similar to other areas of bio-
medical sciences, it will take time for new methodology and
applications to be standardized, validated, and then eventually
adopted by the industry and regulatory agencies. Note that ma-
chine learning and artificial intelligence-based software prod-
ucts have been accepted as a medical device by U.S. FDA (FDA,
2021) and artificial intelligence approaches have started to be
used in different stages of drug discovery and development pro-
cesses (Paul et al., 2021). It is anticipated that machine learning
and artificial intelligence approaches will be increasingly ap-
plied in chemical toxicity and risk assessment by the industry
and regulatory agencies in the future.
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