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Abstract: Viruses are dependent on host factors in order to efficiently establish an infection and
replicate. Targeting the interactions of such host factors provides an attractive strategy to develop
novel antivirals. Syntenin is a protein known to regulate the architecture of cellular membranes by
its involvement in protein trafficking and has previously been shown to be important for human
papilloma virus (HPV) infection. Here, we show that a highly potent and metabolically stable peptide
inhibitor that binds to the PDZ1 domain of syntenin inhibits severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection by blocking the endosomal entry of the virus. Furthermore,
we found that the inhibitor also hampered chikungunya infection and strongly reduced flavivirus
infection, which is completely dependent on receptor-mediated endocytosis for their entry. In
conclusion, we have identified a novel broad spectrum antiviral inhibitor that efficiently targets a
broad range of RNA viruses.

Keywords: SARS-CoV-2; CHIKV; flavivirus; syntenin; peptide inhibitor

1. Introduction

Viruses are obligate intracellular parasites that depend on interactions with host
proteins and employ the cellular machinery of the host for all stages of the viral life
cycle, from viral entry to exit. SARS-CoV-2 is, for example, known to enter host cells by
two different mechanisms (I): endosomal entry in the absence of transmembrane serine
protease 2 (TMPRSS2) or (II) direct fusion at the plasma membrane in the presence of
TMPRSS2 [1]. Among the host proteins exploited by pathogenic viruses are members of
the PSD95/DLG/ZO-1 (PDZ) protein domain family [2,3]. PDZ domains typically interact
with their peptide-binding partners through short sequences found at the C-terminus
of target proteins. PDZ mediated interactions are crucial for several cellular processes,
including the clustering of transmembrane proteins and trafficking. For example, the PDZ
domain-containing, protein-sorting nexin 27 (SNX27) is involved in the retrograde transport
from endosome to plasma membrane [4] and binds among other ligands to the C-terminal
TxF-COO- motif (x indicates any amino acid) of the angiotensin-converting enzyme 2
(ACE2) [5], which SARS-CoV-2 virus particles use a receptor to enter cells. Recently, it was
shown that SNX27 directs the trafficking of the complex between ACE2 and SARS-CoV-2
virus and prevents its lysosome/late endosome entry [6].

Here, we focus on the PDZ-containing protein syntenin. Syntenin is involved in
clustering and trafficking of transmembrane receptors [7], such as the heparan sulfate
proteoglycans syndecan1–4 [8] and the tetraspanin CD63 [9], as well in the biogenesis of
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exosomes [10]. Among the syntenin ligands, syndecans have been proposed to facilitate
SARS-CoV-2 cell attachment [11] and viral uptake [12,13]. Syntenin has also been shown to
bind to the C-terminal PDZ-binding motif of the envelope (E) protein of SARS-CoV [14].
Although truncation of the PDZ binding motif of the SARS-CoV E protein did not affect the
viral growth in a murine infection model, the mutated virus caused less lung damage and
mortality than the wild-type virus. The E protein of SARS-CoV and SARS-CoV-2 are further
recognized by a set of other PDZ proteins, including MPP5 (also called INADL) [15,16]. In
addition to its role in assembly, budding and virulence, the E protein serves an important
role during SARS-CoV-2 entry, as the E protein fuses with the endosomal or plasma
membrane in order to release the viral RNA into the cytoplasm [17,18]. The SARS-CoV-2
ORF3a also has a PDZ-binding motif, shown to bind to other PDZ proteins [19]. During
infection, ORF3a acts as a viral pathogenicity factor by inducing cytokine storm and also
regulate apoptosis [20,21]. In addition to the reported PDZ-binding motifs, there is a
putative motif in the C-terminal region of the short intrinsically disordered NSP11 (full
sequence SADAQSFLNGFAV-COOH). NSP11 becomes the N-terminus of NSP12 in the
ribosomal frameshift of ORF1b. However, the function of NSP11 is not fully understood [22].
Thus, several lines of evidence implicate potential roles of syntenin in SARS-CoV-2 infection
and suggest that inhibiting syntenin could be a valid antiviral strategy.

We recently described KSL-128114, a highly potent and metabolically stable cell-
penetrating peptide inhibitor that bind to the first (PDZ1) of two PDZ domains of syn-
tenin [23]. We reasoned that the KSL-128114 inhibitor could potentially be used to affect
syntenin’s role in receptor trafficking, as well as potential interactions between syntenin and
the SARS-CoV-2 proteins, which could affect viral infection. Here, we first explored to what
extent the PDZ1-2 tandem of syntenin binds to the known and putative PDZ-binding motifs
of SARS-CoV-2 proteins. We then demonstrated an antiviral effect of the PDZ inhibitor
KSL-128114 to the blockage of SARS-CoV-2 entry, but not membrane fusion dependent
entry. Furthermore, we found that KSL-128114 inhibited chikungunya virus (CHIKV) and
several flaviviruses, which are dependent on endosomal entry [24]. Thus, we demonstrated
that the syntenin inhibitor KSL-128114 can be used as a broad spectrum inhibitor of viral
infection.

2. Materials and Methods
2.1. Expression and Purification of Proteins

E. coli BL21(DE3) gold bacteria (Agilent Technology) containing pETM33 plasmids
encoding the 6-His-GST fusion proteins (human Syntenin PDZ1-2 (amino acids 111-213),
MPP5 PDZ (amino acids 238–336) and SNX27 PDZ (amino acids 740–141); synthetic genes
obtained from GeneScript)) were grown in 4 L 2xYT (16 mg/mL peptone, 10 mg/mL
yeast extract, 5 mg/mL NaCl) at 37 ◦C in a rotary shaker (200 rotations per minute). For
each protein, expression was induced with 1 mM isopropyl β-D-1-thiogalactopyranoside
(IPTG) and was allowed to proceed for 16 h at 18 ◦C. Bacteria were harvested for 10 min
at 4500 g. The bacterial pellet was resuspended in lysis buffer (7.5 mL PBS supplemented
with 1% Triton, 10 µg/mL DNaseI, EDTA-free Protease Inhibitor Cocktail (Roche)) and was
incubated for 1 h on ice. The suspension was sonicated to destroy remaining DNA and
support the lysis, and the cell debris was pelleted by centrifugation (1 h, 16,000 g). Proteins
were batch purified from the supernatant using Ni Sepharose® Excel (Cytiva) using the
manufacturer’s recommended buffers. The supernatant was mixed with the matrix and
unbound fraction was washed out with wash buffer (20 mM NaPi, 0.5 M NaCl, 30 mM
imidazole, pH 7.4). The bound protein was cleaved with His-tagged 3C protease (in 20 mM
NaPi, 0.5 M NaCl, pH 7.4) at 4 ◦C for 16 h. The proteolytically released PDZ domains were
obtained from the matrix by addition of buffer. The protein size and purity were confirmed
through SDS-PAGE. Purified proteins were dialyzed into 50 mM potassium phosphate
buffer, pH 7.5, for 16 h.
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2.2. Peptide Synthesis

KSL-128114 was synthesized using standard Fmoc-based SPPS on a Prelude X, induction
heating-assisted, peptide synthesizer (Gyros Protein Technologies, Tucson, AZ, USA) with 10 mL
glass reaction vessel using preloaded Wang-resins (100–200 mesh). Reagents were prepared as
solutions in DMF: Fmoc-protected aa (0.2 M), O-(1H-6-chlorobenzotriazole-1-yl)-1,1,3,3- tetram-
ethyluronium hexafluorophosphate (HCTU, 0.4 M) and N,N-diisopropylethylamine (DIPEA)
(0.8 M). Sequence elongation was achieved using the following protocol: deprotection
(2 × 2 min, rt, 350 rpm shaking) and coupling (2 × 5 min, 50 ◦C, 350 rpm shaking). Amino
acids were double coupled using amino acid/HCTU/DIPEA (ratio 1:1:2) in 5-fold excess
over the resin loading to ensure efficient peptide elongation.

N-terminal labeling of KSL-128114 with 5-(and-6)-carboxytetramethylrhodamine
(TAMRA, Anaspec Inc.) was performed on resin, by coupling TAMRA for 16 h at rt,
using a mixture in NMP of TAMRA: (benzotriazol-1-yloxy) tripyrrolidinophosphonium
hexafluorophosphate (PyBOP):DIPEA (1.5:1.5:3). To avoid photobleaching of the fluo-
rophore, the reaction vessel was covered and the coupling finalized with extensive resin
washes with DMF and DCM.

2.3. Peptide Cleavage and Purification

The synthesized peptides were cleaved from the resin using a mixture of 90% TFA,
2.5% H2O, 2.5% TIPS, 2.5% 1,2-ethanedithiol (EDT) and 2.5% thioanisole. After cleavage, the
peptides were precipitated with ice-cold diethyl ether and centrifuged at 2500× g for 10 min
at 4 ◦C. The resulting peptide precipitate was redissolved in 50:50:0.1 (H2O:MeCN:TFA)
and lyophilized. Purification of all peptides were performed with a preparative reverse
phase high performance liquid chromatography (RP-HPLC) system (Waters) equipped
with a reverse phase C18 column (Zorbax, 300 SB-C18, 21.2 × 250 mm) and using a linear
gradient with a binary buffer system of H2O:MeCN:TFA (A, 95:5:0.1; B, 5:95:0.1) (flow
rate 20 mL/min). The collected fractions were characterized by LC-MS. The purity of the
fractions was determined at 214 nm on RP-UPLC.

2.4. Fluorescence Polarization

Affinity measurements were carried out using fluorescence polarization in an iD5
multi detection plate reader (Molecular Devices) using Corning assay 96 well half area
black flat-bottom non-binding surface plates (Corning, USA #3993). The settings were
485 nm excitation and 535 nm for emission at a reading height of 1.76 mm and total volume
of 50 µL. Peptides were obtained from GeneCust (France) at >95% purity. Unlabeled pep-
tides were dissolved in 50 mM potassium phosphate, pH 7.5. Fluorescein isothiocyanate
(FITC)-labeled peptides were dissolved in dimethyl sulfoxide (DMSO). Protein for satu-
ration experiments, or peptides for the displacement experiments, were arrayed in serial
dilution in 50 mM potassium phosphate, pH 7.5 in 25 µL, followed by addition of 25 µL
of a master mix. In case of saturation-binding experiments, the master mix contained
2 mM DTT and 10 nM FITC-labeled peptide in 50 mM potassium phosphate, pH 7.5. For
competition experiments, the master mix was supplemented with the protein of interest at
a concentration of 4 times the KD value.

2.5. Cells and Viruses

VeroE6 cells were cultured in DMEM (Sigma), containing 5% fetal bovine serum (FBS),
100 U/mL of penicillin and 100 µg/mL streptomycin (Gibco). VeroB4 cells were grown in
medium 199/EBSS (Hyclone), supplemented with 10% FBS (Hyclone), 100 U/mL of peni-
cillin and 100 µg/mL streptomycin (Gibco). Calu-3 and HEK293T hACE2 cells were grown
in DMEM (Sigma), supplemented with 10% FBS (Hyclone), 100 U/mL of penicillin and
100 µg/mL streptomycin (Gibco). The patient isolate SARS-CoV-2/01/human/2020/SWE
accession no/GeneBank no MT093571.1 was provided by the Public Health Agency of
Sweden. The virus was passaged 4 times in VeroE6. Tick-borne encephalitis virus (TBEV)
(Torö-2003, infectious clone 2 passages in VeroB4 cells [25], West Nile virus (WNV) (iso-
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lated in 2003 in Israel WNV_0304h_ISR00, passage number 5) and dengue virus (DENV)-2
(PNG/New Guinea C). WNV and DENV were kind gifts from Dr. S. Vene (Public Health
Agency of Sweden, Stockholm, Sweden). CHIKV (CHIKV LR2006OPY1) was a kind gift
of Magnus Evander (Umeå University, Umeå, Sweden). DENV, WNV, TBEV and CHIKV
were grown and titrated in VeroB4 cells.

2.6. Viral Infections

VeroE6 and Calu-3 cells were infected with SARS-CoV-2 (MOI: 0.05) and VeroB4
cells were infected with either DENV, WNV, TBEV (MOI: 0.1) or CHIKV (MOI: 0.05) for
1 h at 37 ◦C and 5% CO2. Then, inoculum was removed and replaced with medium
containing either the indicated amount of KSL-128114, Chloroquine (Sigma, C6628) or
DMSO. After 16 h (SARS-CoV-2 and CHIKV) or 24 h (DENV, WNV and TBEV) of infection,
cells were fixed in 4% formaldehyde for 30 min, permeabilized in PBS, 0.5% trition-X-
100 and 20 mM glycine. Virus was detected using primary monoclonal rabbit antibodies
directed against SARS-CoV-2 nucleocapsid (Sino Biological Inc., 40143-R001), or monoclonal
mouse antibodies directed against Flavivirus E protein (HB112 ATCC), or monoclonal
mouse antibodies directed against TBEV E [26] and conjugated secondary antibodies anti-
rabbit Alexa555 (1:500, Thermo Fisher Scientific). Nuclei were counterstained with DAPI.
Number of infected cells were quantified using a TROPHOS plate RUNNER HD. The
infection was normalized to the number of nuclei and presented as % infection, compared
to DMSO control. For binding and entry assays, cells were first pre-treated using 30 µM
KSL-128114 for 2 h, and then infected with MOI:1 using ice-cold medium, containing either
30 µM KSL-128114 or DMSO at 4 ◦C. To analyze binding, inoculum was removed after
1 h of infection and cells were washed 3 times with PBS and then lysed. To analyze entry
of virions into cells, inoculum was removed after 1 h of infection and replaced with fresh
medium. Cells were then incubated for another 2 h at 37 ◦C and 5% CO2 before being
washed with PBS-EDTA, trypsinized for 10 min, washed 3 times in PBS, and then lysed.
Viral burdens were measured using qPCR.

2.7. Time of Addition Assay

VeroE6 cells were treated with 30 µM KSL-128114 according to the following setup,
(I, “−2”): cells were treated with 30 µM KSL-128114 for 2 h at 37 ◦C and 5% CO2, then
medium containing peptide was removed and cell were infected with SARS-CoV-2 (MOI:
0.05) for 1 h 37 ◦C and 5% CO2, then inoculum was replaced with fresh medium, containing
30 µM KSL-128114 and cells were incubated at 37 ◦C and 5% CO2. (II, “1”): Cells were
infected with SARS-CoV-2 (MOI:0.05) for 1 h at 37 ◦C and 5% CO2, then inoculum was
replaced with fresh medium, containing 30 µM KSL-128114 and incubated at 37 ◦C and
5% CO2. (III, “3”) Cells were infected with SARS-CoV-2 (MOI:0.05) for 1 h at 37 ◦C and 5%
CO2, then inoculum was replaced with fresh medium, after 2 h medium was replaced with
fresh medium, containing 30 µM KSL-128114, and cells were incubated at 37 ◦C and 5%
CO2. After 16 h of infection, cells were fixed using 4% formaldehyde and permeabilized
in 0.5% triton-X 100, 20 mM glycine in PBS. Infected cells were detected using primary
monoclonal rabbit antibodies directed against SARS-CoV-2 nucleocapsid (Sino Biological
Inc., 40143-R001) and conjugated secondary antibodies anti-rabbit Alexa555 (1:500, Thermo
Fisher Scientific). Nuclei were counterstained with DAPI.

2.8. Cell Viability Assay and qPCR

Cellular viability was measured using Cell Titer Glo (Promega), according to the
manufacturer’s instructions. Luminescence was measured on a TECAN infinite F200PRO
plate reader. Viral RNA from supernatants were isolated from 100 µL supernatant using the
QIAamp Viral RNA Mini Kit (Qiagen) and viral RNA from cell lysate was extracted using
the Nucleospin RNA plus mini kit (Macherey-Nagel), according to the manufacturer’s
instructions. Ten microliters of RNA were used to synthesize cDNA using High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems) according to the manufacturer’s
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instructions. GAPDH transcripts were detected by RT2 qPCR Primer Assay (Qiagen, Cat#
330001 PPQ00249A) and the qPCRBIO SyGreen Mix Hi-ROX kit (PCRBIOSYSTEMS); viral
transcripts were detected using the qPCRBIO Probe Mix Hi-ROX kit (PCRBIOSYSTEMS)
and the indicated primers and probes (Table 1). For strand specific qPCR the random
primers of High Capacity cDNA Reverse Transcription Kit were replaced with either the
forward or reverse SARS-CoV-2 primer. The qPCR was run on a StepOnePlus fast real-time
PCR system (Applied Biosystems).

Table 1. Primers and probes used to detect viral RNA.

Target Sequence Reference

SARS-CoV-2 forward primer GTCATGTGTGGCGGTTCACT [27]
SARS-CoV-2 reverse primer CAACACTATTAGCATAAGCAGTTGT [27]

SARS-CoV-2 probe
FAM-

CAGGTGGAACCTCATCAGGAGATGC-
BHQ

[27]

TBEV forward primer GGGCGGTTCTTGTTCTCC [28]
TBEV reverse primer ACACATCACCTCCTTGTCAGACT [28]

TBEV probe FAM-TGAGCCACCATCACCCAGACACA-
BHQ [28]

WNV forward primer TCAGCGATCTCTCCACCAAAG [29]
WNV reverse primer GGGTCAGCACGTTTGTCATTG [29]

WNV probe FAM-TGCCCGACCATGGGAGAAGCTC-
BHQ [29]

DENV forward primer ATTAGAGAGCAGATCTCTG [30]
DENV reverse primer TGACACGCGGTTTC [30]

DENV probe FAM-TCAATATGCTGAAACGCG-BHQ [30]
CHIKV forward primer AAAGGGCAAACTCAGCTTCAC [31]
CHIKV reverse primer GCCTGGGCTCATCGTTATTC [31]

CHIKV probe
FAM-

CGCTGTGATACAGTGGTTTCGTGTG-
TAMRA

[31]

2.9. Immunofluorescence Stainings

HEK293T hACE2 and VeroE6 cells were treated with 30 µM KSL-128114 or DMSO
for 6 h, and then fixed in 4% formaldehyde. Cells were then either permeabilized in 0.5%
Triton X-100 or left unpermeabilized. Then, cellular expression of ACE2 or syndecan-1
were detected by rabbit monoclonal antibodies (ACE2, Novus bio, NBP2-67692, 1:500,
Syndecan-1, abcam, ab128936 2 µg/mL) and secondary donkey anti-rabbit Alexa Fluor 488
(1:2000, Thermo Fisher Scientific). Cellular fluorescence was measured using a TROPHOS
plate RUNNER HD.

3. Results
3.1. Syntenin Binds with Low Affinity to the SARS-CoV-2 E Protein and the SARS-CoV-2 NSP11

We obtained synthetic FITC-labeled peptides, corresponding to the C-termini of the
E protein, ORF3 and NSP11, respectively, from SARS-CoV-2 (Figure 1A). These peptides
were used to determine the affinities for recombinantly expressed and purified syntenin
PDZ1-PDZ2, SNX27 PDZ and MPP5 PDZ. The affinity determinations (Figure 1B) revealed
that syntenin PDZ1-2 binds with the highest affinities to the putative PDZ-binding motif
found at the C-terminus of NSP114393-4405 (KD = 133 ± 25 µM) and with lower affinity to
the peptide from the E protein (KD not determinable). The affinities are low but comparable
to endogenous syntenin interactions [23]. The interaction with oligomeric E protein may
be enhanced by avidity effects in a cellular setting [32]. MPP5 PDZ, that was added as a
control, bound, as previously reported, preferentially to the E protein (KD = 400 ± 55 µM).
In contrast, SNX27 bound all three peptides with low affinity (KD > 400 µM).
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Figure 1. PDZ-binding motifs in SARS-CoV-2 proteins. (A) Amino acid sequences of the known
(E66-77 and ORF3A266-275) and putative (NSP114393-4405, numbering according to polyprotein). (B) FP-
based affinity determinations of syntenin PDZ1-2 (left), MPP5 PDZ (middle) and SNX27 PDZ (right)
and FITC-labeled peptides derived from the C-termini of SARS-CoV-2 E, ORF3 and NSP11, respec-
tively. The KD values of syntenin PDZ1-2-binding NSP11 (133 ± 25 µM) and MPP5-binding E
(400 ± 40 µM) could be calculated. Other interactions were occurring with apparently lower affinity.

3.2. KSL-128114 Inhibits Viral Infection

Having confirmed that syntenin can interact with NSP11, and to a lesser extent with
E (Figure 1B), we aimed to explore the consequences on viral infection and replication by
inhibiting the interactions with syntenin using the cell-penetrating peptide-based inhibitor
KSL-128114. We, therefore, determined the level of SARS-CoV-2 infection as a function
of inhibitor concentration in VeroE6 cells and found that KSL-128114 efficiently inhibited
viral infection (EC50 = 20 µM) with zero or minor effects on cell viability. By treating the
cells with 30 µM inhibitor, we found that both viral infection and release of new viral
particles were reduced (Figure 2B,C). To gain more insight into the antiviral mechanism
of the inhibitor, we performed an experiment, where the time of addition of inhibitor was
investigated. We evaluated the effect of adding the inhibitor 2 h before and 1 or 3 h after
infection (Figure 2D). Although treatment prior to infection had a striking effect on the
infection level, post-infection treatment had no effect, suggesting that the inhibitor blocks
the early steps of viral infection, taking place prior to any interactions between syntenin
and viral proteins.
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Figure 2. KSL-128114 inhibits SARS-CoV-2 infection. (A) Dose–response curve of KSL-128114. VeroE6
cells were treated with KSL-128114 and were infected with SARS-CoV-2 for 16 h. Inhibition of viral
infection was quantified using a TROPHOS plate RUNNER HD, and toxicity of KSL-128114 was
monitored using Cell Titer Glo (Promega) (N = 9). (B,C) Cells were treated with 30 µM KSL-128114
and infected with SARS-CoV-2 for 16 h. Number of infected cells were quantified using a TROPHOS
plate RUNNER HD (N = 18) and viral RNA in the supernatants was detected using qPCR (N = 6). (D)
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Time of addition dependence of KSL-128114 inhibition. VeroE6 cells were treated 2 h before, or 1 or 3
h post-SARS-CoV-2 infection. Infection was quantified using a TROPHOS plate RUNNER HD (N = 6).
All experiments were performed in at least two independent experiments. Statistical significance
was calculated by unpaired t test using GraphPad Prism. Asterisks indicate statistical significance,
* p < 0.05, **** p < 0.0001.

3.3. KSL-128114 Blocks SARS-CoV-2 Entry into Cells

Intriguingly, the observed antiviral effect of the syntenin inhibitor could not be caused
by blocking the interactions between the intracellular PDZ proteins and the viral PDZ-
binding motifs, as these interactions would occur at a later stage during infection. The
results instead suggested that the inhibitor blocks important endogenous interactions
needed early in the viral life cycle, for example between ACE2 and PDZ proteins involved
in ACE2 endocytosis and recycling. We reasoned that the inhibitor could bind off-target
to the PDZ domain of SNX27. It was recently found through a genome-wide CRISPR
screen that knock out of SNX27 and other components of the retromer complex involved
in the recycle of the receptors back to the plasma membrane inhibits viral replication [33].
We tested if the inhibitor could bind to SNX27 and found that it bound with 15-fold
lower affinity to SNX27 in comparison to the target syntenin (KD = 0.3 ± 0.18 µM for
syntenin; KD = 5.0 ± 0.2 µM for SNX27, Figure 3A), making it unlikely that this would be
the main way to explain the antiviral effect. We further reasoned that syntenin PDZ1-2
could potentially bind to ACE2 C-terminus and be directly involved in its trafficking.
However, syntenin did not bind to ACE2 in our FP-based affinity measurement (Figure 3B),
and treatment of HEK293T hACE2 cells with the syntenin inhibitor did not alter the cell
surface expression of ACE2 (Figure 3C). However, we found that the inhibitor increased
the total amount of ACE2 expression; the most likely explanation is related to off-target
effects of the inhibitor on a panel of other PDZ domains [5,23]. Instead, we found that
inhibitor treatment led to a lower expression level of the known syntenin cargo syndecan-1
on the surface of VeroE6 cells (Figure 3D). Consistent with previously reported data, the
results indicated that the inhibitor confers a block of the syntenin-dependent endocytic
trafficking [23].

Next, we examined if the inhibitor affects binding of the virus to the host cell or
the viral entry into cells by treating the cells with the inhibitor 2 h before infection and
measuring viral RNA with real time qPCR after 1 h on ice (binding) or after 2 h infection
(entry). We detected no change in SARS-CoV-2 binding to cells in the presence of the
inhibitor (Figure 3E). Finally, we investigated if the inhibitor affected the entry of virus
into cells. To this end, we removed virus particles that were bound to the cells but had
not entered by trypsination and measured the levels of positive and negative stranded
ssRNA separately. Whereas the presence of positive strand ssRNA is an indicator for the
viral genome, the negative strand will only be detected if the viral genome has entered the
cytoplasm, initiated protein translation and started to replicate. We found that the levels of
both positive- and negative-stranded ssRNA were reduced (Figure 3F), thus, indicating
inhibition of viral entry.

TMPRSS2 is largely absent in VeroE6 cells forcing the virus to enter by the endosomal
pathway. In contrast, the lung epithelial cell line Calu-3 expresses TMPRSS2. We hypoth-
esized that if KSL-128114 specifically targets the endosomal pathway then the inhibitory
effect of KSL-128114 on SARS-CoV-2 infection would be reduced in Calu-3 cells. Consistent
with the hypothesis, KSL-128114 had no inhibitory or toxic effect on SARS-CoV-2 infec-
tion in Calu-3 cells (Figure 3G,H). Similar findings have been shown with the inhibitor
chloroquine, which prevents the acidification of the endosomes. Chloroquine has been
shown to inhibit SARS-CoV-2 infection in the absence of TMPRSS2 but have less effect on
infection in the presence of TMPRSS2 [34]. To further investigate the role of TMPRSS2 in
Calu-3 cells, we treated infected Calu-3 and VeroE6 cells with chloroquine and monitored
the infection (Figure 3I) and viability (Figure 3J). We found that viral infection was strongly
inhibited by blocking endosomal entry with chloroquine in VeroE6, lacking TMPRSS2
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expression. However, in Calu-3 cells the TMPRSS2 expression rendered the cells resistant
to chloroquine treatment. The results with the syntenin inhibitor, thus, follow the same line
as the results with chloroquine treatment. Taken together, we showed that the syntenin
inhibitor, KSL-128114, is a novel endosomal entry inhibitor of SARS-CoV-2 infection.
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Figure 3. KSL-128114 inhibits SARS-CoV-2 entry of cells. (A) FP-based affinity measurement of
5(6)-carboxytetramethylrhodamine (TAMRA) labeled KSL-128114 binding to syntenin PDZ1-2 or
SNX27 PDZ. There was a more than 15-fold difference in affinity for the proteins for the inhibitor.
(B) FP-based affinity measurement of FITC-labeled ACE2 peptide (aa start-end) to syntenin and
SNX27 PDZ domains. Note that syntenin PDZ1-2 do not bind ACE2. (C) Detection of ACE2; cells
were permeabilized in order to detect ACE2 on the cellular surface, as well as inside the cell “total”, or
cells were not permeabilized in order to detect ACE2 on the cellular surface “PM” (plasma membrane).
ACE2 in HEK293 hACE2 cells in the presence of 30 µM KSL-128114 (white bars) or DMSO (black
bars) (N = 6). (D) Detection of total syndecan-1 and plasma membrane bound syndecan-1 in VeroE6
cells in the presence of 30 µM KSL-128114 or DMSO (N = 6). (E) Binding assay: VeroE6 cells were
infected (MOI: 1) for 1 h at 4 ◦C, cells were washed and lysed and viral RNA was measured by qPCR
(N = 6). (F) Entry assay: Cells were infected for 1 h (MOI: 1), washed and incubated for 2 h at 37 ◦C.
Bound but not entered virus was removed by trypsin and cells were lysed, and strand-specific viral
RNA was detected by qPCR (N = 6). (G) Antiviral assay Calu-3 cells, cells were treated with 30 µM
KSL-128114 and infected with SARS-CoV-2 for 16 h, number of infected cells were quantified using a
TROPHOS plate RUNNER HD (N = 9). (H) Viability of uninfected, KSL-128114 treated Calu-3 cells,
cellular viability was measured using Cell Titer Glo (N = 9). (I) VeroE6 and Calu-3 cells were treated
with the indicated concentration of chloroquine and number of infected cells were quantified using a
TROPHOS plate RUNNER HD (N = 6). (J) Viability of uninfected cells, VeroE6 and Calu-3 cells were
treated with the indicated concentration of chloroquine and viability was measured using Cell Titer
Glo (N = 6). All experiments were performed in at least two independent experiments. Statistical
significance was calculated by unpaired t test using GraphPad Prism. Asterisks indicate statistical
significance, * p < 0.05, *** p < 0.001.

3.4. The Syntenin Inhibitor Can Be Used as a Broad Spectrum Antiviral Agent

Many enveloped viruses utilize the endosomal trafficking for their uptake. We rea-
soned that syntenin might be assisting the post-endocytic step of the uptake of other viruses
as well and that the inhibitor, thus, could be applicable to a broader panel of viruses. We,
therefore, tested the effect of the syntenin inhibitor on infection by a set of enveloped
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ssRNA viruses, namely a panel of flaviviruses (dengue virus (DENV), West Nile virus
(WNV) and tick-born encephalitis virus (TBEV)) and an alphavirus (CHIKV). Consistent
with the hypothesis, we found that treatment with KSL-128114 strongly inhibited viral
infection of both flaviviruses and alphavirus (Figure 4A,C) and the release of progeny virus
(Figure 4B,D). Thus, KSL-128114 is a novel pan-viral entry inhibitor that acts by blocking
the endosomal entry pathway.
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Figure 4. KSL-128114 inhibits flaviviruses and alphavirus. (A,B) Cells were treated with 30 µM
KSL-128114 and infected with DENV, WNV and TBEV for 24 h (MOI: 0.1), number of infected cells
were quantified using a TROPHOS plate RUNNER HD and viral RNA in the supernatants was
detected using qPCR. (C,D) Cells were treated with 30 µM KSL-128114 and infected with CHIKV for
16 h (MOI: 0.05), number of infected cells were quantified using a TROPHOS plate RUNNER HD
and viral RNA in the supernatants was detected using qPCR. Experiments were performed twice in
5 replicates (N = 10). Statistical significance was calculated by unpaired t test using GraphPad Prism.
Asterisks indicate statistical significance, ** p < 0.01, **** p < 0.0001.

4. Discussion

As obligate intracellular parasites viruses need to hijack cellular proteins in order
to establish an infection and carry out their life cycle. Syntenin is a protein involved in
the trafficking of proteins, including proteins important for SARS-CoV-2 attachment and
uptake [11–13], which makes it an interesting target for antiviral therapies. KSL-128114 is a
highly potent cell-penetrating peptide inhibitor of syntenin and might disrupt syntenin’s
interaction with viral proteins and/or host factors targeted by viruses. To investigate the
potential of KSL-128114 as an antiviral we treated cells with the peptide inhibitor [23] and
found it to inhibit SARS-CoV-2 infection, as well as the infection of several RNA viruses.

On closer investigation, we found that KSL-128114 did not block the binding of the
SARS-CoV-2 virus to the VeroE6 cells, but rather the post-endocytic entry of the virus
to the cytoplasm. The inhibitor appears to specifically block SARS-CoV-2 entry by the
endosomal pathway, as it was highly effective on VeroE6 cells that lack TMPRSS2 but failed
to inhibit infection of Calu-3 cells that expresses TMPRSS2, which enables SARS-CoV-2 to
fuse at the plasma membrane [35]. In that sense, KSL-128114 showed similar inhibition
patterns as chloroquine, which strongly inhibited SARS-CoV-2 infection in VeroE6 cells
but not in Calu-3 cells. Chloroquine acts by increasing the pH within the endosomes, and
thus inhibits viruses that depend on low pH for their entry [36]. Previous studies have
indeed showed similar findings, that chloroquine inhibited SARS-CoV-2 in VeroE6 but not
in Calu-3 cells [34,37], indicating that the entry mechanism in VeroE6 cells are dependent
on the endosomal pathway. The KSL-128114 inhibitor has previously been shown to have a
negative effect on syntenin-dependent endosomal budding through binding to syntenin
PDZ1 and has been shown to block an interaction between syntenin and RAB5 [23], a key
factor in regulating early endocytosis [38,39]. The impairment of the PDZ1-binding pocket
has further previously been shown to lead the co-accumulation of syntenin and syndecan
in a recycling compartment [8]. As syndecans have been implicated in facilitating SARS-
CoV-2 viral uptake [12,13], it is plausible that inhibited syntenin-dependent trafficking of
syndecans blocked the virus from endosomal escape.
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However, syntenin is involved in trafficking of many other transmembrane proteins,
including the tetraspanin CD63, and the exact mechanism of the inhibition of endosomal
escape, thus, remains unclear. Notably, the CD63-syntenin complex has been found to be
involved in post-endocytic trafficking of human papillomavirus (HPV). In this case, the
internalized viral particles are transported to multivesicular endosomes, where acidification
and disassembly occur in a CD63-syntenin-Alix dependent process [40]. Syntenin has also
been shown to interact with other tetraspanins, such as CD9 and CD81 [9], and CD9 has
been shown to facilitate the entry of the closely related coronavirus, Middle East Respiratory
Syndrome coronavirus (MERS-CoV) [41]. We found that the inhibitor could reduce CHIKV
infection, and CD9 is also implicated in efficient CHIKV entry and infection [42,43]. In
addition, there are links between tetraspanins and virus-mediated vesicular trafficking
of enveloped viruses, including flaviviruses [44]. Furthermore, KSL128114 was shown to
disrupt the interaction between Rab5 and syntenin [23], and Rab5 is needed for DENV and
WNV entry in to cells [45], which may suggest an interesting mechanism for KSL-128114
inhibition of viral entry.

Finally, we confirmed that syntenin can interact with low affinity with the E protein
of SARS-CoV-2, a protein that is involved in membrane fusion at the endosomal mem-
brane [17]. If the interaction between syntenin and the E protein is needed to facilitate viral
entry, the inhibitor could also contribute to the inhibition of viral entry by disrupting this
interaction.

Whether KSL-128114 blocks trafficking of syndecans, CD63, other syntenin cargos or
direct interactions between syntenin and with viral proteins to confer the antiviral effect
remain to be elucidated and may vary from virus to virus. Nevertheless, our results clearly
demonstrates that the treatment of cells with a syntenin inhibitor can be used to inhibit
infection of a broad range of enveloped RNA viruses, most likely by blocking the entry
through the endosomal pathway, which might suggest a path towards the development of
novel antiviral therapeutics.

5. Conclusions

In this study, we demonstrate the importance of syntenin for infection of a wide-range
of different RNA viruses. By treating cells with a highly potent and metabolically stable
peptide inhibitor of syntenin, we could inhibit the infection of several viruses, such as SARS-
CoV-2, CHIKV, DENV, WNV and TBEV. We found that the inhibitor was acting on the very
early stages of viral infection, most likely the entry step. Interestingly, the inhibitor could
only inhibit viral infection on cells and viruses, utilizing the endosomal entry pathway, and
failed to inhibit SARS-CoV-2 entry via the plasma membrane. This indicates that syntenin
is needed for receptor-mediated endocytosis. Taken together, we found that a peptide
inhibitor of syntenin can be used as broad spectrum viral entry inhibitor.
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