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Abstract 

Background:  Climate variability influences the population dynamics of the Aedes aegypti mosquito that transmits 
the viruses that cause dengue, chikungunya and Zika. In recent years these diseases have grown considerably. 
Dengue is now the fastest-growing mosquito-transmitted disease worldwide, putting 40 per cent of the global 
population at risk. With no effective antiviral treatments or vaccines widely available, controlling mosquito population 
remains one of the most effective ways to prevent epidemics. This paper analyses the temporal and spatial dynamics 
of dengue in Mexico during 2000–2020 and that of chikungunya and Zika since they first appeared in the country in 
2014 and 2015, respectively. This study aims to evaluate how seasonal climatological variability affects the potential 
risk of transmission of these mosquito-borne diseases. Mexico is among the world’s most endemic countries in terms 
of dengue. Given its high incidence of other mosquito-borne diseases and its size and wide range of climates, it is a 
good case study.

Methods:  We estimate the recently proposed mosquito-borne viral suitability index P, which measures the transmis‑
sion potential of mosquito-borne pathogens. This index mathematically models how humidity, temperature and 
precipitation affect the number of new infections generated by a single infected adult female mosquito in a host 
population. We estimate this suitability index across all Mexico, at small-area level, on a daily basis during 2000–2020.

Results:  We find that the index P predicted risk transmission is strongly correlated with the areas and seasons with a 
high incidence of dengue within the country. This correlation is also high enough for chikungunya and Zika in Mexico. 
We also show the index P is sensitive to seasonal climatological variability, including extreme weather shocks.

Conclusions:  The paper shows the dynamics of dengue, chikungunya and Zika in Mexico are strongly associated 
with seasonal climatological variability and the index P. This potential risk of transmission index, therefore, is a valuable 
tool for surveillance for mosquito-borne diseases, particularly in settings with varied climates and limited entomologi‑
cal capacity.
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Introduction
Climate change and extreme weather events have 
imposed a significant threat to the growth and spread 
of climate-related diseases [1]. A clear example of this 
threat is mosquito-borne diseases which remain among 
the most important global health challenges [2]. For 
thousands of years, humans have cohabited with the 
Anopheles mosquitoes responsible for transmitting the 
parasite that causes malaria, and the Aedes mosquito, 
carrier of many arboviral diseases including dengue, 
and newly emerged viruses such as chikungunya and 
Zika. Because the Aedes mosquitoes live near and 
prefer to feed on the blood of humans, they are more 
likely to spread diseases, dengue being the most com-
mon. Approximately 2.5–4 billion people, 40–60% of 
the world’s population, live in areas at risk of dengue 
[3]. Some studies estimate that the number of dengue 
cases increased from nearly 23 million in 1990 to 105 
million in 2017. Other studies suggest that these figures 
are conservative, and the real number of current infec-
tions is up to 390 million [4]. About one in four people 
infected with dengue get sick. Dengue symptoms are 
flu-like. The illness might progress to dengue haemor-
rhagic fever that manifests with vomiting, diarrhoea, 
and uncontrolled bleeding that might lead to system 
failure and can be fatal. During 1990–2017, the num-
ber of annual deaths caused by dengue increased from 
nearly 17,000 to 40,467 [5].

The rapid expansion of dengue in recent years and 
other mosquito-borne diseases has been attributed to 
various complex interactions of social, economic and 
ecological factors, but remain strongly influenced by 
climatic conditions such as changes in rainfall, humid-
ity and temperature [4]. Warmer temperatures and 
humidity improve the chances of larval development, 
adult mosquito emergence rate, lifespan and increase 
the chances of virus transmission. More rainfall boosts 
the number of breeding sites, whilst less rainfall can 
also increase mosquito population dynamics if peo-
ple store water in containers, which serve as mosquito 
breeding sites [1].

Over the last 50 years, dengue has undergone a geo-
graphic expansion and increased the number of infec-
tions in Latin America. This disease has remained the 
region’s most important arthropod-borne viral infec-
tion due to accelerated urban population growth and 
climate change [6–8]. Mexico is a clear example of the 
expansion of dengue, where the disease has become 

one of the most severe public health threats amid the 
ongoing COVID-19 pandemic. In the country, the inci-
dence rate of uncomplicated dengue cases per 100,000 
population increased from 1.72 in 2000 to 14.12 in 
2011, with all ages affected but peaks in the age range 
of 10–20 [9]. By 2014, Mexico was the fourth most 
endemic country worldwide in confirmed dengue cases, 
behind Indonesia, Vietnam and Brazil [10, 11]. Chikun-
gunya and Zika are also locally transmitted in Latin 
America, mainly by the bite of infected  Aedes aegypti 
[12]. The first local transmission of chikungunya in the 
region was detected in 2013, the same year as Zika is 
suspected to have arrived on the continent according 
to phylogeographic analysis [13]. These diseases are of 
the same family and share a vector with dengue. Thus, 
changes in mosquito population that favour dengue 
might also favour chikungunya and Zika [14]. Yet, the 
outbreak dynamics of these diseases do not need to 
conform to the same seasonal pattern [15]. Although 
chikungunya and Zika rarely cause death their symp-
toms can be debilitating, including fever, joint and mus-
cle pain. Crucially, if Zika is transmitted to pregnant 
women the virus can be passed to the foetus with irre-
versible health consequences including microcephaly 
[16].

The health risks are complex because there are no 
treatments for either of the three arboviruses discussed 
here. There are no approved vaccines for Zika and chi-
kungunya yet.  Although there is a vaccine to prevent 
dengue, licensed in December 2015, it has been approved 
in just 20 countries for people aged 9–45 that have prior 
laboratory-confirmed dengue infection [17]. Thus, the 
only long-term protective strategy is to control the mos-
quito population and have adequate surveillance tools 
to identify areas and periods at risk of mosquito-borne 
pathogens transmission. The local risks of transmission 
depend on a complex interplay between changes in local 
climatic conditions [18], population movements [19, 20], 
households’ socio-economic characteristics [11], popula-
tion density [21], and various other factors that increase 
opportunities for mosquitoes to breed [22, 23]. However, 
many developing countries lack the capacity to collect 
such a wide range of entomological, epidemiological, 
socio-economic data systematically across the whole ter-
ritory. Releasing regular data on the incidence of these 
diseases helps to monitor risks. However trends of inci-
dence of arboviral diseases do not necessarily highlight 
accurately where future outbreaks might emerge nor 
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whether the trends of chikungunya or Zika will follow 
the same trends of dengue [15]. Thus, there is a need for 
better surveillance tools with the capacity to promptly 
measure the risk of transmission of mosquito-borne 
pathogens.

In this paper we contribute to the literature in three 
ways. Our first contribution is to estimate the recently 
proposed mosquito-borne viral suitability index, known 
as index P, for Mexico during 2000–2020. Index P esti-
mates the likely average number of new infections gener-
ated by a single adult female mosquito on a susceptible 
host population [17]. We argue that the index P can com-
plement existing surveillance systems to promptly pre-
dict the amplitude of mosquito-borne viral transmission 
risk. A key advantage of the index P is that its estima-
tion depends only on local humidity, temperature and 
precipitation data, all of which are readily available for 
most settings, at a small-area level and on a daily basis. 
We present the index P on a daily basis to illustrate how 
sensitive the index is to climatic fluctuations. We present 
this analysis during 2000–2020 for three in-depth case 
studies: Acapulco, Cancún and Mexico City. On the one 
hand, Acapulco and Cancún are coastal cities that have 
markedly different climate seasonal patterns, are exposed 
to frequent hurricanes, and high levels of population 
mobility. As expected, the index P reveals markedly dif-
ferent seasonal patterns of mosquito-borne disease risk 
transmission for these cities. On the other hand, Mexico 
City, the second most populated city in Latin America, 
has always experienced very low levels of mosquito-
borne diseases given its climate and high altitude which 
reduces the vector potential as it is harder for mosquitoes 
to breed. As expected, the index P for this case predicts a 
low risk of transmission [24].

Our second contribution is to estimate the index P 
for the entire Mexican territory during 2000–2020 and 
present detailed graphical analysis of when the index P 
peaks regionally, focusing on 2010–2020. Although there 
are several alternative mosquito-borne viral suitability 
indices, these indices depend on information not always 
available or measured regularly such as on deforestation, 
human mobility [18, 19], urbanisation [20], mosquito 
population, number of female mosquitoes per human 
[21, 22] and water management practices [10]. Our analy-
sis helps us to illustrate the feasibility of the estimation 
of the index P for a country as vast as Mexico over a pro-
longed period.

The index P has been estimated for a handful of other 
contexts and shown to correlate well with a few mos-
quito-borne diseases during limited period analyses. 
For instance, that is the case for Brazil for dengue dur-
ing 2007–2012 [17], Israel for West Nile virus during 
2016–2018 [23], and the Dominican Republic for dengue, 

chikungunya and Zika during 2012–2018 [13]. Our third 
contribution is to estimate the correlation between the 
index P and dengue across all 2469 municipalities in 
Mexico during 2010–2020, and with chikungunya and 
Zika since they first were reported in the country in 
2014 and 2015, respectively. Mexico has a high degree 
of climate diversity, coastal areas exposed to frequent 
hurricanes, a high level of domestic and international 
population movements, and high levels of inequality and 
poverty. To provide a view of such diversity, we also pre-
sent nine case studies across Mexico, in the north (Ciu-
dad Mante, Mexicali, Monterrey), centre (Mexico City), 
southeast (Campeche, Tuxtla Gutiérrez), and coasts 
(Acapulco, Cancún, Coatzacoalcos). Overall, our analysis 
contributes to understanding the strength of correlation 
between the index P and mosquito-borne diseases, and 
the value of the index P for entomological surveillance 
and disease prevention.

Setting
Over the last two decades, Mexico witnessed a sharp 
increase in severe and non-severe dengue incidence rates. 
The overall dengue rate per 100,000 population increased 
from 1.89 in 2000 to 64.07 in 2020, experiencing clear ups 
and downs and sharp peaks in 2007, 2009, 2013, 2015 and 
2019 (Fig. 1). In contrast, chikungunya and Zika reached 
the highest incidence a year after their introduction into 
the country in 2014 and 2015, respectively, and ever since 
have rapidly declined (Fig. 2).

Spatially, dengue also rapidly spread in the country. 
In 2000, dengue affected about a dozen Mexican states. 
By 2020, at least one case of dengue had been reported 
across all 32 Mexican states, albeit the highest incidence 
concentrated on the Yucatán Peninsula, the Gulf, and the 
Pacific Coasts (Fig.  3). The closer to the coastlines, the 
incidence of severe dengue intensified (Fig. 4). Zika fol-
lowed a very similar spatial distribution to that of dengue, 
clustered in coastal areas (Fig. 5). Chikungunya similarly 
was found along the coasts, but more sparsely clustered 
and particularly along the Pacific and the Yucatán Penin-
sula (Fig. 6).

Method and data
Climate‑driven mosquito‑borne viral suitability index P
To identify the areas and seasons most at risk of mos-
quito-borne disease transmission, Obolski et  al. [18] 
derive a suitability index, called index P, by modelling the 
transmission potential of a pathogen. The mathematical 
derivation of such transmission potential is summarised 
in two key components: the basic (R0) and effective (Re) 
reproduction numbers. R0 represents the sum of the 
reproductive potential transmission of each adult female 
mosquito,  P(u,t), over the number of female mosquitoes 
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Fig. 1  Annual dengue incidence rates during 2000–2020

Fig. 2  Annual chikungunya and Zika incidence rates during 2014–2020
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per human,  M, among the susceptible host popula-
tion (Eq.  1). Re also represents reproductive potential 
but considers the presence of immune hosts hampering 
transmission, with  Sh, Sv standing for the proportion of 
susceptible humans and mosquitoes (Eq. 2). The overall 
potential mosquito-borne transmission is summarised in 
index P, as shown in Eq. (3).

(1)

R0(u,t) =

M∑

n=1

a
v2
(u)φ

v→h

(t) φh→vγ v

(t)γ
h

µv

(u,t)(σ
h + µh)(γ h + µh)(γ v

(t) + µv

(u,t))

= MP(u,t)

(2)Re(u,t) = R0(u,t)ShSv

(3)P(u,t) =
a
v2
(u)φ

v→h

(t) φh→vγ v

(t)γ
h

µv

(u,t)(σ
h + µh)(γ h + µh)(γ v

(t) + µv

(u,t))

The estimation of R0 depends on defining priors for all 
the eight parameters. Four of these parameters are cli-
mate independent. These are the human life span 1/μh; 
the transmission probability from an infected human to 
mosquito per bite  φh→v ; the human infectious period 
1/σh; and the human incubation period 1/γh. The other 
four parameters are climate dependent: the life span 
of adult mosquitoes 1/µv

(u,t) , the extrinsic incubation 
period 1/γ v

t  , the daily biting rate av(u) and the probability 
of transmission from an infected mosquito to human per 
bite φv→h

(t)  . All these climate-dependent parameters are 
dependent on humidity (u) and temperature (t) and have 
been previously determined in experimental laboratory 
studies [18]. The climate-dependent parameters can also 
be extended to include the role of precipitation, as done 
in this paper. In this case, precipitation replaces humidity 
in the effects over egg hatching success.

Fig. 3  Distribution of dengue in Mexico in 2000, 2010, 2015 and 2020



Page 6 of 23Carreto et al. International Journal of Health Geographics           (2022) 21:15 

R0, Re of a mosquito-borne virus have seasonal oscil-
lations dependent on changes in climate conditions and 
other parameters such as the number of adult female 
mosquitoes per human (M). Obolski et al. [18] explain it 
is rare to have accurate estimations of M for regions or 
mosquito species of interest. However, theoretically, the 
potential for outbreaks is determined by the epidemic 
thresholds of R0 > 1 or Re > 1. Thus, if at least one female 
mosquito exists per human (M >  = 1) and P(u,t) > 1, then 
R0 = MP(u,t) > 1 and epidemic growth is possible.

The index P, shown in Eq.  (3), is derived by fitting a 
dynamic model within a Bayesian Markov chain Monte 
Carlo framework, assuming only one main human host. 
In this Bayesian model, the index P is estimated by defin-
ing eight priors in the expression of P(u,t) which establish 
the relationship between meteorological variables, mos-
quitoes, and host parameters such as viral incubation 
periods, adult mosquito lifespan, and mosquito bite rate. 
All these priors have been estimated in the literature. 
Table 3 in the Appendix lists the systematic studies that 

Obolski et  al. [18] sourced to determine these param-
eters along the distribution of parameters used as priors. 
Here, we use the same eight priors that Obolski et al. [18] 
used to estimate the index P for Brazil.The four climate 
dependent parameters used in Eq.  (3) have been deter-
mined in experimental laboratory studies and estimates 
of entomological data under various climate conditions 
[24–30]. The other climate independent parameters such 
as human incubation period and human infections that 
Obolski et  al. [18] used were established based on sys-
tematic reviews of Latin American studies [27, 31, 32]. 
We did not change the parameter of human-life expec-
tancy as this parameter, set for Brazil in the MVSE R 
package, is very similar to the one in Mexico. However, 
we did perform sensitivity analysis, and like other recent 
studies, concluded that the index P is robust to a range of 
priors [15]. In the Results section we discuss this sensitiv-
ity analysis.

The index P is a summary statistic that measures the 
transmission potential of an adult female mosquito. To 

Fig. 4  Distribution of severe and non-severe dengue in Mexico during 2000–2020
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put it simply, the index P is the likely average number of 
new infections generated by a single infected adult female 
in a susceptible host population. Thus, a key advantage, 
and difference from other suitability indices not simply 
based on vectorial capacity [21, 33], is that the numerical 
scale of the index P has a direct biological interpretation. 
Moreover, in absolute value, the index P is informative 
for the timing and amplitude of potential transmission 
when assessed locally in time or between regions [18].

Estimating the suitability index P for Mexico
Another advantage of the index P is that it can be esti-
mated using readily available climate data and the freely 
available Mosquito-borne Viral Suitability Estima-
tor (MVSE) R-package. We use the latest release of the 
MVSE R-package, version v1.01r. Detailed technical 
features of this R-package can be found in Obolski et al. 
[18]. These authors estimated their index P for Brazil 
using an earlier MVSE R-package version (v0.33). In this 
paper, we use the most recent version of their R-package, 
version v1.01r, which, unlike previous versions, adds pre-
cipitation as one of the key components to estimate the 
index P. This package also allows the user to set the val-
ues of the priors depending of the host–pathogen system 

analysed.1  We used the default priors that Obolski et al. 
[18] used, but as discussed in the Results section our 
results remain robust to using other priors.

Data
To estimate the index P for Mexico, we use daily data 
of temperature, relative humidity, and precipitation 
obtained from the 188 automatic meteorological sta-
tions of the National Meteorological Service of Mexico 
for 2000–2020. These stations take measurements of 
the meteorological variables automatically using electri-
cal and mechanical devices that are later sent via satellite 
and collected by the personnel of the Meteorological Ser-
vice. The stations are distributed across the country and 
the data they collect do not correspond to municipality 
administrative boundaries. However, the data available 
from these automatic statics allowed us to interpolate cli-
matic data for all the 2469 municipalities in the country.

Fig. 5  Distribution of Zika in Mexico during 2015–2020

1  The R-package also informs users about the acceptance rate to assess 
whether the Bayesian inference reached convergence of the estimated Markov 
Chain Monte Carlo (MCMC) chain. For our case, the mean acceptance rate is 
28.65% for the index P estimations across all the 188 automatic weather sta-
tions analysed during 2000–2020. In over 85.1% of the automatic stations, the 
acceptance rate reached the ideal 23% threshold or higher, suggesting that our 
study has a high acceptance rate of convergence.
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Automatic meteorological stations are less densely 
distributed than alternative non-automatic meteorologi-
cal stations and observatories. Nonetheless, automatic 
stations still offer excellent coverage of the country’s 
weather conditions at a small-area level. Moreover, the 
automatic stations are the only ones that measure the 
relative humidity on the surface, which is one of the key 
data required to estimate the index P. The relative humid-
ity is captured even in different time intervals daily, 
which is ideal for the daily estimate of the index P in this 
study. Automatic stations also offer much wider data 
availability suitable for daily analysis than other databases 
that provide perhaps a broader spatial resolution but 
with limited-time series. WorldClim for instance does 
not have direct data on humidity, it only offers saturation 
vapour pressure information which could be used to infer 
the levels of relative humidity. Nonetheless this potential 
inference and wider spatial resolution could increase the 
measurement error and potential degree of uncertainty 
to the index P daily estimates.

In the next section, we illustrate the dynamics of the 
index P for three relevant cities daily during the period 
2000–2020. This daily analysis allows us to assess 
the index’s sensitivity to seasonal changes in climate 

conditions. Then, we provide a much broader picture 
of the distribution of the index P across all the Mexican 
territory by focusing on seasonal changes of the index 
P over time. In Additional file  1: Table  S1, we present 
the monthly index P for each automatic meteorologi-
cal station, aggregated at state level, in the country dur-
ing 2000–2020. Our analysis is performed over a regular 
grid of Mexico, in which each pixel represents an area of 
approximately 50km2. This mesh results from the Inverse 
Distance Weighted (IDW) interpolation as calculated by 
the QGis package commonly used to interpolate climatic 
data. IDW determines cell values using a linear weighted 
combination of sample points, where the weight is a 
function of the inverse distance raised to a mathematical 
power. Points closer to each other are given more weights 
as they are assumed to be more similar and more influ-
ential than those at a greater distance [34]. As power we 
set the default parameter in the QGis package, which 
is equal to two. The magnitude of this parameter is in 
practice not very important for our results because the 
robustness of interpolation depends more on the density 
of the data and the resolution of the geographic area ana-
lysed, in our case for the whole country. There are other 

Fig. 6  Distribution of chikungunya in Mexico during 2014–2020
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methods, such as Kriging, but these are more suitable to 
interpolate other types of data.

Results
Index P dynamics in three case studies
Before we present the trends of the index P and mos-
quito-borne diseases for the entire country, we pause to 
analyse in more detail three cities: Acapulco, Cancún 
and Mexico City. We focus on these three cities because 
they have important differences in climatic conditions, 
geographical location, arbovirus incidence and are sub-
ject to distinct and very high degrees of human migra-
tion patterns. These differences make these cities ideal 
for assessing the robustness of the index P in estimating 
transmission risks on a daily basis during 2000–2020.2

Acapulco, on the east Pacific coast, has a tropical wet 
and dry climate characterised by high temperatures with 
minimal variation and variable levels of precipitation 
[35]. Cancún has a tropical savanna climate on the Yuca-
tán Peninsula [36]. Both these cities are among the most 
important domestic and international tourism centres in 
the country, and have high dengue incidence, albeit with 
peaks in different seasons. Mexico City, the capital and 
most populated city in the country, has a subhumid mild 
climate. This city is a particularly interesting case to ana-
lyse because its high elevation, 2240 m above sea level, is 
above the elevation ceiling that typically allows the Aedes 
mosquitoes to proliferate [37]. Nonetheless, climate 
warming could over time place high-elevation cities at 
increased risk of dengue transmission; and in the Ameri-
cas the Aedes have been found in other similar high-alti-
tude areas of 2200 m [38].

For each of our three case studies, Fig.  7 displays the 
daily climate patterns (temperature, humidity, and pre-
cipitation), the distribution of the entomological priors 
and the estimated index P.3 Following the literature, we 
assume the entomological priors of the mosquito lifes-
pan and incubation period to be the same across all the 
three cases [18]. As expected, Acapulco and Cancún have 
consistently higher indices P than Mexico City’s (with 
averages of 1.35, 1.32 and 0.54, respectively). These indi-
ces P predict that if there was one female mosquito per 
human, Acapulco and Cancún would be more susceptible 

to outbreaks of mosquito-borne diseases than Mexico 
City, where the index is less than one for most of the year. 
Acapulco and Cancún present higher levels of humidity 
and temperature and are subject to more irregular trends 
in all climate conditions than Mexico City. These patterns 
suggest that the daily index P for Acapulco and Cancún 
have more irregularities in their seasonal patterns. In 
contrast, Mexico City displays a more stable seasonal pat-
tern during 2000–2020. These risks of transmission are 
well in line with the epidemiological profiles of each city. 
Acapulco, Cancún and Mexico City have a markedly dif-
ferent incidence of dengue per 100,000 inhabitants, with 
an average of 12.06, 8.98, and 0.015 respectively during 
2000–2020. In fact, Acapulco has one of the most severe 
and persistent dengue-incidence profiles in the coun-
try, whilst Cancún has in recent years increased from 
medium to high levels of dengue [39]. Mexico City’s low 
index P also corresponds with its low incidence of den-
gue, chikungunya and Zika, typical of local climate con-
ditions of high-altitude areas, which are not conducive to 
the endemic presence of Aedes mosquitoes.

The timing of when the index P reaches its maxi-
mum can be used to determine the timing of the high-
est mosquito-borne disease transmission potential. For 
visual simplification, Fig.  8 shows the month for which 
the index P reached its peak across all the simulations 
for the years, 2000, 2005, 2010, 2015 and 2019. Over this 
sub-period analysed, the index P in Mexico City tended 
to peak in June, reflecting very marked seasonal behav-
iour. For Acapulco and Cancún, their indices P tended to 
reach their maximums in June and October, respectively. 
Nonetheless, the timing of when the index P peaked dis-
played a high degree of variance.

Another key feature of the MVSE R-package is that 
it offers a visual representation of the sensitivity of the 
estimated index P to changes in climate conditions. Fig-
ure 9 depicts the humidity and temperature on the x- and 
y-axis, respectively, for all the combinations in the cli-
mate data. The different colours in Fig. 9 represent differ-
ent values of the index P. The dots that form a ring shape 
within the figure represent the average values of the cli-
mate data for each month. The floating circles with num-
bers ranging from one to twelve indicate what month the 
average values refer to. Figure 9 shows that suitability in 
Mexico City follows a clear and gradual trend along the 
months in a year, while Cancún presents abrupt changes 
reflecting lower stationarity. The lower stationarity hin-
ders the identification of the month of highest transmis-
sion risk. Acapulco behaves somewhere in between the 
other two case studies.

As mentioned earlier, the estimation of the index P 
relies on defining priors for eight parameters. To assess 
how robust the index P is to these priors, we performed 

2  Some automatic meteorological stations break down from time to time, dur-
ing which it is not possible to estimate weather data for a few days during the 
year. For instance, for Mexico City, there are missing weather data from 2016–
05-27 to 2016–11-28; for Acapulco from 2006–02-12 to 2006–09-21 and from 
2007–07-12 to 2009–10-02; and for Cancún from 2005–10-22 to 2007–01-16 
and from 2010–09-23 to 2011–12-18.
3  The index P depicted in Fig.  7 is estimated using 1,000 simulations for 
each day during 2000–2020. To generate each of these simulations the 
MVSE R package uses Eq.  (3) which relies on eight parameters as priors. 
Then, for every year, we determine in which day the index P peaked for each 
of the simulations.
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Fig. 7  Climate, entomological priors, index P and 95% confidence intervals for Mexico City, Acapulco, and Cancún 2000–2020
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sensitivity analysis. We changed the value of some of our 
initial priors, taken from Obolski et al. [18] for the prior 
of human incubation period (from mean = 5.8, sd = 1, 
to mean = 5.0, sd = 1), or the mosquito life expectancy 
(from mean = 12, sd = 2, to mean = 14, sd = 3), or both 
these priors simultaneously. We changed the value of 

these priors as there is also support in the literature for 
these parameters which have been used recently in the 
estimation of the index P for the Dominican Republic 
[15]. In our sensitivity analysis we found no statistically 
significant differences with respect to the set of priors 
we used originally, as shown in Fig. 13 in the Appendix. 

Fig. 7  continued

Fig. 8  Peak distribution of the index P
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This figure shows the value of index P using our original 
priors and the value of the index P when changing the 
human incubation period (left-hand side panel), or the 
mosquito life expectancy (middle panel), or both these 
parameters simultaneously (right-hand side panel).  Figa. 
13 also shows the resulting 95% confidence intervals for 
the estimated indices P. In most cases, the only notice-
able change, is a slight increase in the upper confidence 
interval, particularly when we change the mosquito life 
expectancy parameter.

Index P spatiotemporal characterisation across Mexico
In this section, we provide a broader picture of the dis-
tribution of the index P across all the Mexican territory. 
As mentioned earlier, automatic meteorological stations 
offer the key advantage of measuring on the ground 
local climate conditions daily. Our choice of using these 
automatic measurements comes at a cost. Unfortu-
nately, not all regions in the country had an automatic 

Fig. 9  Each point represents a humidity-temperature combination recorded in the climate data used as input for the index estimation. 
Temperature is measured in degrees Celsius. The white dots over the black link mark the mean for each month, while the floating circles indicate 
which month it refers to
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meteorological station nearby during 2000–2010.4 
Nonetheless, the number of automatic stations sharply 
increased after 2010, achieving good national coverage 
during 2010–2020. For this reason, in this section and 
the next one, we restrict our analysis to 2010–2020. In 
Additional file 1: Table S1, we present the index P for all 
available automatic meteorological stations, aggregated 
at state level, during 2000–2020.

Figure  10a, shows the average index P across all the 
Mexican territory during 2010–2020. This figure depicts 
the values of the index P by quintiles. As mentioned ear-
lier, the risk of transmission increases when the index 
P takes a value greater than one, and the risk decreases 
when the index P takes the value of less than one. The 
regions with the highest index P (index > 1.16, shown in 
red) are in the southeast (Tabasco and the Yucatán pen-
insula), the Pacific coast, and in some northern states 
(Sonora, Chihuahua and Coahuila). The intermediate val-
ues of the index P (index between 0.98 and 1.16, shown 
in yellow and orange) are located in the Tehuantepec 
Isthmus and in some northern states. The index P with 
its lowest value (index < 0.98, blue and green), hence with 
the lowest transmission potential, is found in the centre 
of the country and the peninsula of Baja California.

The month where the index P reaches its maximum 
value is shown in Fig.  10b. It stands out that the maxi-
mum peak per month does not always occur in the same 
regions, as it is mainly influenced by temperature vari-
ability. The index P peaks in July in the centre and cen-
tre east. For most of the rest of the country, the index 
P reaches its maximum value in August or September, 
where the transition from summer to autumn begins.

Figure  11 shows the monthly average of the index P 
during 2010–2020 for selected months. During Janu-
ary, the southeast, Tehuantepec Isthmus and the coasts 
of Michoacán and Guerrero stand out with the highest 
transmission potential. In May, the highest transmission 
potential occurs in the northeast region. In July, the high-
est transmission risk shifts to the northwest of the coun-
try, standing out the states of Sonora and Chihuahua. In 
September, the highest transmission risk is for northeast 
states, particularly Coahuila, Nuevo León, and Tamauli-
pas, as well as Yucatán in the southeast.

Correlation between the index P and mosquito‑borne 
diseases in Mexico
In addition to practicality, good suitability indices must 
also be correlated to the phenomenon they intend to 
measure. Thus, next we assess the degree of correlation 
between dengue, chikungunya and Zika incidence and 
the index P for all the 2469 municipalities in Mexico and 
for nine selected cities during 2010–2020. These nine cit-
ies have been selected to provide a granular view across 
the territory, given their varying levels of arboviral infec-
tions and differences in socio-economic characteris-
tics. These cities are in the north of the country (Ciudad 
Mante, Mexicali, and Monterrey), centre (Mexico City), 
southeast (Campeche and Tuxtla Gutiérrez), and various 
coasts (Acapulco, Cancún, and Coatzacoalcos). The geo-
graphical location of these nine cities is shown in Fig. 10. 
For each of these nine cities we estimate the Pearson cor-
relation between the index P and dengue, Zika and chi-
kungunya during 2010–2020. Like Obolski et  al. [18], 
for each city, we estimate its Pearson correlation coeffi-
cient between the average index P for each month dur-
ing 2010–2020 and its monthly average incidence of each 
arboviral disease (measured in natural logarithm) during 
2010–2020.

Figure 12 depicts for each of the nine cities its monthly 
average index P, its monthly incidence of dengue (meas-
ured in logarithm) during 2010–2020, as well as the 
Pearson correlation between these variables. This corre-
lation index is positive and ranges between 0.25 (Cancún) 
and 0.86 (Campeche). The correlation is much higher 
for southern and coastal cities that tend to have a high 
incidence of dengue, with the exception of Cancún per-
haps due its very high flow of international and domestic 
tourism. The correlation is lower for northern cities that 
typically have low levels of dengue (Mexicali and Monter-
rey). These results suggest there might be other relevant 
factors, such as population mobility, density and socio-
economic characteristics that explain the low incidence 
of dengue in some cities, which the index P does not con-
sider. Nonetheless, overall the correlation between the 
index P and dengue are similar to the results obtained by 
Obolski et al. [18] for several cities in Brazil.

To analyse further the transmission risk potential pre-
dicted by the index P, Figs. 14 and 15, in the Appendix, 
show the correlation between the index P and chikun-
gunya and Zika for the nine selected cities since they 
appeared in the country in 2014 and 2015 respectively. 
The incidence of both diseases has rapidly declined and 
is more clustered in specific regions. However, in the 
cities where there is chikungunya or Zika or both, and 
where it is possible to estimate the correlation with the 
index P, the correlation is relatively strong. For chiungu-
nya the correlation ranges from -0.44 (Ciudad Mante) to 

4  Some automatic meteorological stations sometimes did not report climate 
data for a few hours or days, presumably due to breakdowns. Thus, for the 
national analysis, we include automatic meteorological stations with: i) no 
more than 30% of missing values in a month (otherwise that month was dis-
carded) and; ii) with valid months (according to condition i) for a whole year 
(otherwise, that year was excluded). This approach yields all the 188 automatic 
meteorological stations available. As a robustness check, we used other crite-
ria to clean the weather data, and deal with missing values which yield nearly 
identical indices P, to the ones presented here.
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Fig. 10  Spatial–temporal characterisation of the index P in Mexico per pixel, during 2010–2020



Page 15 of 23Carreto et al. International Journal of Health Geographics           (2022) 21:15 	

0.86 (Tuxtla Gutiérrez). For Zika the correlation with the 
index P ranges from 0.01 (Monterrey) to 0.92 (Mexico 
City).

There is substantial variability in the presence of Zika 
and chikungunya across the nine cities as these diseases 
are not widespread but concentrated in certain parts of 
the country only. This partly explains why the correla-
tion coefficient between the index P and the rate of Zika 
and chikungunya shows wider range than the correlation 
between the index P and dengue. Moreover, the sporadic 
and scant incidence of Zika and chikungunya provides us 
with insufficient power to detect a statistically significant 
correlation between the index P and these arboviruses for 
each of these nine case studies.

To provide a more global view, Table  1 presents the 
Pearson correlation between the index P, dengue, Zika 
and chikungunya for two different scenarios: one consid-
ering all the nine cities together, and another considering 
all the 2469 municipalities in the Mexican territory dur-
ing 2010–2020. We find that the correlation between the 

index P and dengue is 0.46 when considering together the 
data from the nine case studies. This correlation is sta-
tistically significant, and higher than when estimating the 
correlation for all the 2469 municipalities in the country 
(0.29) as the selected nine case studies tend to have high 
incidence of dengue (with the exception of Mexico City).

Table  1 also shows that the correlation between the 
index P and dengue for all the 2469 municipalities in 
the country (0.29) is of similar magnitude to that of Zika 
(0.23) and chikungunya (0.25). All these correlations 
between the index P, dengue, Zika and chikungunya are 
statistically significant, and sufficiently powered with 
large number of observations, when considering the data 
across all the municipalities in the country.

The nine selected cities in Mexico are: Acapulco, 
Campeche, Cancún, Ciudad Mante, Coatzacoalcos, 
Mexicali, Mexico City, Monterrey, and Tuxtla Gutiér-
rez. The number of observations is the number of areas 
considered multiplied by twelve (as the correlation con-
siders the average rate of mosquito-borne disease for 

Fig. 11  Mean of index P during 2010–2020 in January, May, July and September



Page 16 of 23Carreto et al. International Journal of Health Geographics           (2022) 21:15 

each of the 12 months over the period 2010–2020). Some 
areas do not report mosquito-borne diseases for some 

months. For these missing cases the number of observa-
tions is reduced, as it is particularly the case for Zika and 
Chikungunya.

Hurricane Manuel and index P
Our analysis suggests that the index P offers valuable 
information on the potential dynamics of mosquito-
borne risk transmission during a given year or for a 
long-time series. Another possible application of the 
index P could be to assess changes in transmission 
potential due to sudden weather shocks such as hurri-
canes. Adult mosquitoes do not generally survive dur-
ing the high wind speed associated with hurricanes. 
However, a disease outbreak of dengue, Zika, and 
chikungunya might follow as hurricanes might cause 

Fig. 12  Correlation of index P and dengue incidence for selected nine cities. Monthly averages of the index P are shown in blue and average 
incidence is shown in the dotted pink line. Shaded areas correspond to the 95% confidence intervals of the index. Pearson’s correlation is shown in 
each subplot

Table 1  Correlation between Index P, dengue, Zika and 
chikungunya incidence for case study and all municipalities in 
the country 2010–2020

Dengue Zika Chikungunya

Nine 
selected 
cities in 
Mexico

Correlation coefficient 0.46 0.20 0.01

P-value 0.00 0.34 0.96

Number of observa‑
tions

103 78 73

All 2,469 
municipali‑
ties in the 
country

Correlation coefficient 0.29 0.23 0.25

P-value 0.00 0.00 0.00

Number of observa‑
tions

12,411 3542 3381
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significant property damage  and increase precipita-
tion that makes it more likely for mosquitoes to breed 
[40–42]. To assess to what extent hurricanes affect the 
index P, Table 2 shows the changes in monthly average 
index P, temperature (Celsius), monthly average humid-
ity (a percentage that ranges between 0 and 100), and 
the monthly average precipitation (in millimetres), 
associated with Hurricane Manuel that affected Mexico 
in September 2013. Manuel was the first eastern North 
Pacific tropical cyclone to make landfall in mainland 
Mexico, redevelop over water, and then become a hur-
ricane. Manuel brought heavy rains and floods to large 
parts of the Pacific coast, resulting in 123 deaths and 4.2 
billion US dollars in damage, with the biggest impacts 
in Guerrero [43]. Over 30,000  homes were damaged 
in that state alone, and 46  rivers overflowed. Table  2 
shows the sharp increase in rainfall that Acapulco in 
Guerrero experienced during September 2013.5 The 
index P, as a result, increased during September 2013. 
This increase in the index P also coincided with the rise 
of dengue incidence in Acapulco during that month. 
This evidence suggests that the index P reasonably 
predicts how climate changes can lead to changes in 
potential transmission. It is worth noting that the index 
P seems to be more sensitive to changes in temperature 
and humidity. For instance, in September 2012, Aca-
pulco did not experience a hurricane in the previous 
year. Nonetheless, there were statistically significant 
higher levels of humidity and temperature reflected in 
a higher index P and higher dengue incidence than the 
ones experienced in September 2013 where Hurricane 
Manuel affected Guerrero.

Our evidence suggests that the index P is a good tool 
to assess increased risk of transmission which could alert 
policymakers which months, seasons, and areas could 
be at increased risk of mosquito-borne diseases due to 

changes in climatic factors. However, some cities and 
months can have higher correlation between the index 
P and incidence of arbovirus disease that will not nec-
essarily be expected in other periods or space. That is, 
although increases in the index P suggest a rise in the risk 
of mosquito-borne transmission, such an increase in risk 
of transmission is not necessarily linear. In Table  2, for 
instance, the index P increased from 2.23 to 2.24, that is 
0.82%, between September and October of 2012. During 
that period the incidence of dengue increased by 79.4%. 
A year later, when hurricane Manuel hit Guerrero, the 
index P increased from 1.84 to 1.95 between September 
and October of 2013. This increase of 5.74% in the index 
P was reflected in a substantial increase in the incidence 
of dengue of 186.8%. The rise in dengue was not as high 
as the one we would have expected had the index P and 
risk transmission followed a linear relationship. There are 
many reasons for this finding. As mentioned earlier, the 
incidence of mosquito-borne diseases depends on more 
factors not considered in the index P such as popula-
tion mobility, opportunities for the mosquito population 
to breed, deforestation, etc. Still, the index P provides a 
good tool to assess increased risk of mosquito-borne dis-
ease transmission.

Discussion
Even though transmitted by the same vector, we showed 
that dengue, chikungunya and Zika can follow different 
spatial outbreak dynamics. Among all these diseases, 
dengue is the most widely spread in the country and its 
epidemiological spectrum remains a mix of epidemic, 
endemic, and hyperendemic areas. Over half of den-
gue cases are concentrated in about 65 municipalities 
in coastal, particularly by the Gulf, tropical areas and 
the Yucatán peninsula, all of which are important tour-
ism and trade centres [9]. The annual economic impact 
of dengue in Mexico is estimated to be 130 million US 
dollars. Roughly 30% of these costs are in terms of direct 
medical costs and remaining in terms of patients’ eco-
nomic costs [44]. Thus, it is paramount that timely sur-
veillance tools are designed to help health authorities and 

Table 2  Climate conditions, Index P and dengue incidence in Acapulco during July-November 2012 and 2013

Month Temperature 
Celsius

% 
Humidity

Rain 
Millimetres

Index P Dengue 
incidence

Temperature 
Celsius

% 
Humidity

Rain 
Millimetres

Index P Dengue 
incidence

Year 2012 Year 2013

July 28.64 91.67 0.01 2.07 10.92 27.05 90.19 0.05 1.62 8.99

August 27.91 94.21 0.05 2.18 35.36 27.03 89.64 0.05 1.65 9.85

September 27.90 94.94 0.04 2.23 35.49 25.97 95.98 0.23 1.84 9.36

October 27.91 95.80 0.03 2.24 63.65 26.66 95.06 0.08 1.95 26.84

November 26.38 89.71 0.01 1.52 37.72 26.43 95.36 0.00 1.91 8.62

5  The MVSE R package estimates the index P using climatic variables. This 
package applies a smoothing filter to these variables and standardises humid-
ity and precipitation for numerical stability. We carried out this filter and 
standardisation using the same MVSE R package. In Table 2, we present all the 
climate variables without such a filter or standardisation, in raw units, merely 
to help appreciate the levels of these climatic variables in these two periods.
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scholars determine the seasons and areas most at risk of 
mosquito-borne diseases.

We also showed that the index P provides a reliable 
tool to estimate the transmission potential of mosquito-
borne diseases. That is, the index P reveals quite well 
which areas are most at risk of transmission and crucially 
when. The index P also provides important insights into 
transmission during a wide range of climatic patterns and 
following extreme weather shocks including hurricanes. 
Although there are various alternative mosquito-borne 
potential transmission indices (such as water-associ-
ated diseases, and R0 mosquito-borne pathogens [11, 
45]) these earlier indices rely on the complex interplay 
between social, economic, viral and entomological fac-
tors that are difficult to parameterise or model regularly 
and across broad regions [18]. It is rarely the case to have 
optimal mosquito populations or epidemiological data 
across the country and over time. Instead, the index P has 
the main advantage of relying exclusively on local humid-
ity, temperature, and precipitation data, and a few vectors 
and human prior parameters already established in scien-
tific literature. We showed that this analysis can be done 
with climate data that is usually readily available daily 
and of fine spatial scale. Timely information like this is 
vital to detect the highest viral transmission potential in 
each location and potential public health interventions to 
slow down the transmission of mosquito-borne viruses.

We acknowledge that our analysis has some limita-
tions. Because of the simplicity of the index P, our study 
has not considered other potential important factors 
that could affect the transmission potential of mosquito-
borne viruses such as existing public interventions to 
control mosquito population, socio-economic charac-
teristics of the population, quality of housing conditions, 
among others. This limitation might explain why the 
index P has a lower correlation with mosquito-borne dis-
eases in the north than in the south of the country. The 
north compared to the south is significantly wealthier, 
with better housing conditions, and subjected to distinct 
migration patterns. Thus, although the index P can be an 
important tool to promptly anticipate risks of transmis-
sion, effective surveillance systems are required to col-
lect other vital epidemiological, ecological, entomological 
information. Still, the index P can serve as a baseline for 
the extent to which the climate alone contributes to risk 

of transmission. This is a powerful tool that can be used 
in future studies to measure the impact of interventions 
that seek to reduce mosquito population.

Future studies could also estimate the index P for 
much longer time periods than ours. This type of analy-
sis could help assess to what extent climate change alone 
has affected the transmission risk of mosquito-borne 
diseases. Other studies could also use the index P and 
estimate for more recent periods how climatic variables 
alone affected the risks of transmission before and after 
population movement restrictions were implemented to 
contain the COVID-19 pandemic.

Conclusions
Over the last fifty years, arboviral diseases have dra-
matically spread, in particular dengue which increased 
30-fold and remains the most important and fastest-
growing mosquito-borne viral disease worldwide. Mos-
quito-borne diseases can be reduced by adopting better 
surveillance tools for outbreak prediction, detection, 
and prompt controlling of mosquito populations. In this 
paper, we put into practice the recently proposed mos-
quito-borne viral suitability index P. This index estimates 
the transmission potential of mosquito-borne diseases 
such as dengue, chikungunya and Zika, identifying the 
areas and seasons most at risk.

Our analysis offered two important insights. First, our 
analysis revealed the index P to be strongly correlated 
with the incidence of dengue, its peaks during the year 
and spatial distribution within the country. Second, this 
correlation was also high enough for chikungunya and 
Zika to serve as an additional surveillance tool for these 
diseases in as vast a country as Mexico. Thus, our analysis 
suggests the index P can serve as an additional tool for 
surveillance systems in the country and in settings that 
have limited entomological information, epidemiologi-
cal capacity, and exposed to rapidly changing climatic 
conditions. It is only with detailed analysis like this that 
policymakers and researchers can unravel the extent to 
which changing climate conditions affect the spread of 
mosquito-borne diseases and act promptly.

Appendix
See Table 3, Figs. 13, 14 and 15
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Table 3  Prior distribution used to estimate index P

Source: Obolski et al. [18]

Parameter Notation Mean Stdev Reference studies 
taken by Obolski et al. 
[11]

adult mosquito life-span 1

/
µv
(u,t)

12 days 2 [24]; [26]

mosquito incubation period 1

/
γ v
(t)

7 days 2 [27]; [28]; [29]

mosquito biting rate a
v
(u) 0.25/day 0.01 [30]; [25]

human life-span 1/μh 71 years 3 –

human incubation period 1/γh 5.8 days 1 [31]; [27]; [32]

human infections period 1/σh 5.9 days 1 [31]; [27]; [32]

human to mosquito probability of transmis‑
sion

φh⇒v 0.5 0.01 –

Fig. 13  The blue solid line shows the average monthly index P and its 95% confidence interval (upper and lower thresholds) during 2010–2020 
when using the same priors as Obolski et al. [18]. The pink dashed line shows these estimates changing two parameters to the values used by 
Petrone et al. [15]. The left-hand side panel shows the estimation when changing the Human Incubation Period (HIP) parameter. The middle panel 
shows the estimations when changing the Mosquito Life Expectancy (MLE) parameter. The right-hand side parameter shows the estimation when 
changing both these parameters simultaneously
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Fig. 14  Correlation between index P and chikungunya. Monthly averages of index P are shown in blue, and the average incidence of chikungunya 
is shown in pink. Shaded areas correspond to the 95% confidence intervals for the index. For each city, the index averages are computed for any 
year between 2010 and 2020 for which climate data is available. The geographical localisation of these cities is shown in Fig. 10. Pearson’s correlation 
is shown in each subplot
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Fig. 15  Correlation between index P and Zika. Monthly averages of index P are shown in blue, and the average incidence of Zika is shown in pink. 
Shaded areas correspond to the 95% confidence intervals for the index. For each city, the index averages are computed for any year between 2010 
and 2020 for which climate data is available. The geographical localisation of these cities is shown in Fig. 10. Pearson’s correlation is shown in each 
subplot
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MVSE: Mosquito-borne viral suitability estimator; IDW: Inverse distance 
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