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Abstract: Methotrexate (MTX) is an effective chemotherapeutic agent against a wide range of tumors
and autoimmune diseases; however, hepatotoxicity limits its clinical use. Oxidative stress and inflam-
mation have been implicated in the pathogenesis of MTX-induced hepatotoxicity. Paeonol is a natural
phenolic compound reported for its antioxidant and anti-inflammatory properties. The current study
aimed to investigate the protective effect of paeonol against MTX-induced hepatotoxicity in rats
and various mechanisms that underlie this postulated effect. Paeonol was administered orally in a
dose of 100 mg/kg, alone or along with MTX, for 10 days. Hepatotoxicity was induced via a single
intraperitoneal dose of MTX (20 mg/kg) on day 5 of the experiment. Concomitant administration of
paeonol with MTX significantly ameliorated distorted hepatic function and histological structure,
restored hepatic oxidative stress parameters (MDA, NO, and SOD), and combated inflammatory
response (iNOS and TNF-α). Additionally, paeonol enhanced cell proliferation and survival, evi-
denced by upregulating the proliferating cell nuclear antigen (PCNA) and suppressing apoptosis and
the disposition of collagen fibers in rat livers treated with MTX. Importantly, paeonol upregulated
the drug efflux transporters, namely P-glycoprotein (P-gp) and the multidrug resistance-associated
protein 2 (Mrp-2) in MTX-treated rats. In conclusion, paeonol offered a potent protective effect
against MTX-induced hepatotoxicity through suppressing oxidative stress, inflammation, fibrosis,
and apoptosis pathways, along with P-gp and Mrp-2 upregulation.

Keywords: methotrexate; hepatotoxicity; paeonol; oxidative stress; inflammation; P-gp; Mrp-2

1. Introduction

Methotrexate (MTX) is a widely used chemotherapeutic agent for treating various
malignant tumors and autoimmune diseases [1,2]. Unfortunately, MTX use is usually
accompanied by multi-organ damage, of which hepatotoxicity is the most prominent [3].
Liver injury progresses into fibrosis, and cirrhosis is reported in up to 50% of patients with
relatively high doses of MTX [4,5]. Although the mechanism of MTX-induced hepato-
toxicity is not yet fully understood, MTX induces hepatotoxicity by triggering oxidative,
inflammatory, fibrotic, and apoptotic signaling [6]. MTX-induced intracellular reactive
oxygen species trigger pro-inflammatory signals such as the expression of the inducible
nitric oxide synthase (iNOS) and the release of tumor necrosis factor-α (TNF-α) [7,8].
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MTX-elicited persistent inflammation usually evokes hepatic fibrosis via the synthesis
of the extracellular matrix and hepatic fibrogenesis [9,10]. Furthermore, prolonged intracel-
lular accumulation of MTX predisposes hepatic cell death and fibrosis via depleting hepatic
folate levels, interfering with DNA synthesis in hepatocytes, and stimulating collagen
synthesis [3,5]. Importantly, many protein transporters govern the MTX hepatic uptake and
subsequently modulate MTX hepatic accumulation and toxicity [11]. Cellular protection
against xenobiotics involves the efflux of such harmful molecules via transmembrane trans-
porters, including P-glycoprotein (P-gp), and the multidrug resistance-associated protein 2
(Mrp-2), which facilitate their excretion and suppress their cellular uptake [12]. Therefore,
modulations of these transporters could be a potential target for an effective cytoprotective
mechanism against cellular injury mediated by MTX hepatic accumulation.

Paeonol is a natural phenolic compound that has been shown to have significant
antioxidant and anti-inflammatory properties [13,14], along with reported potent protective
effects in various disease models [13,15,16]. Paeonol, among other various natural products,
has displayed multiple drug resistance (MDR) regulations via a mechanism related to the
modulation of drug efflux transporters [17,18]. Various reports have recommended the use
of MDR-targeted natural products as an adjuvant therapy with chemotherapeutic agents to
reduce chemotherapy-induced toxicities. However, no previous study has evaluated the
role of paeonol as an MTX-adjuvant therapy in reducing the potential hepatotoxicity effect.
Therefore, this study was designed to investigate the hepatoprotective effects of paeonol in
the MTX-induced hepatotoxicity model, and to uncover the mechanisms underlying such
protection, focusing on the role of drug efflux transporters, namely P-gp and Mrp-2 in this
postulated protective effect.

2. Results
2.1. Effect on Liver Function and Hepatic Oxidative Status

The administration of MTX significantly increased serum levels of alanine transami-
nase (ALT) and aspartate transaminase (AST) compared with the control group, in which
it was prevented in paeonol-pretreated rats (Figure 1). Treating the rats with paeonol
alone showed that the values of the hepatic functions and oxidative stress parameters
are comparable to those of the control group. However, hepatic malondialdehyde (MDA)
and NO levels were significantly increased alongside a reduced superoxide dismutase
(SOD) activity in the MTX group compared with the control group, which was completely
mitigated by paeonol treatment before the MTX challenge (Figure 2).
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Figure 1. The effect of paeonol on the serum (a) alanine transaminase (ALT) and (b) aspartate
transaminase (AST) in methotrexate (MTX)-induced hepatotoxicity in rats. Data are represented as
mean ± SEM (n = 6). Letters a,b Denote significant differences from the normal control and the MTX
groups, respectively, at p < 0.05.
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Figure 3. Photomicrographs showing the effect of paeonol on rat liver tissues stained with H&E in 
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Figure 2. The effect of paeonol on hepatic (a) lipid peroxide malondialdehyde (MDA), (b) nitric oxide
(NO), and (c) superoxide dismutase (SOD) in MTX-induced hepatotoxicity in rats. Data represent the
mean ± SEM of 6 observations. Letters a,b Denote significant differences from the normal control
and the MTX groups, respectively, at p < 0.05.

2.2. Effect on Histopathology Examination

The MTX significantly distorted the liver architecture and increased the numbers of
inflammatory and apoptotic cells and the degenerative area of hepatic cells compared to
the control group. The paeonol pretreatment preserved the normal liver structure with
a significant decrease in cellular inflammation, apoptosis, and degeneration in the MTX-
challenged rats. It is worth noting that the hepatic structure of the liver tissues of the rat
group treated only with paeonol was similar to that of the control group (Figures 3 and 4).
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Figure 3. Photomicrographs showing the effect of paeonol on rat liver tissues stained with H&E
in methotrexate (MTX)-induced hepatotoxicity (×100 and ×400). The tissue of the control group
(a1) showed typical morphological features of hepatic cells with normal lobular architecture and
normal central veins (CV). Similarly, the liver tissues of the paeonol group (b1) showed a normal
hepatic structure. The liver tissues of both the control and paeonol groups (a2,b2) showed central veins
(CV) which appeared to be lined by flat endothelial cells (double arrows), surrounded by cords of
polygonal hepatocytes with granular cytoplasm and central, rounded, vesicular nuclei (blue arrows).
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Some cells appeared to be binucleated (green arrows). The blood sinusoids (S) are lined by Kupffer
cells (yellow arrows). Additionally, the investigated liver tissues of the two groups showed branches
of portal veins (PV) and bile ductules (BD) seen at a portal area (squares) (a3,b3). The liver tissues of
the MTX-treated rats showed a disturbed lobular architecture with dilated central veins (CV) and
blood sinusoids (S), and the cells have darkly stained nuclei with deeply stained cytoplasm (blue
arrow) (c1,c2). Moreover, the liver tissues of the MTX-treated rats showed dilated bile ductules
(BD) and a dilated portal vein (PV) surrounded by cellular infiltrations (circle) (c3). The microscopic
examination of the liver tissues of the paeonol + MTX group showed a normal lobular architecture
with apparently normal central veins (CV), except for a focal congested blood sinusoid (S) (d1). In
the same group, the hepatocytes appeared to be polygonal with acidophilic cytoplasm and vesicular
nuclei (blue arrow) (d2). Furthermore, the liver tissues of the paeonol + MTX group showed some
binucleated cells (green arrow) and a few darkly stained nuclei with deeply stained cytoplasm (d2).
In the same group, the portal vein (PV) and bile ductules (BD) have a normal appearance (d3).
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Figure 4. The effect of paeonol on the severity of histopathological lesions, (a) inflammatory cells,
(b) apoptotic cells, and (c) degenerative area, in methotrexate (MTX)-induced hepatotoxicity in rats.
Data are represented as mean ± SEM (n = 6). Letters a,b Denote significant differences from the
normal control and the MTX groups, respectively, at p < 0.05.

Masson’s trichrome stain in Figure 5 demonstrates the normal distribution of collagen
fibers around central veins, and fine threads of collagen fibers were detected around the
hepatic portal vein of control and paeonol groups. However, the untreated MTX group
showed increased collagen fiber deposition between the hepatocytes and pericentral and
periportal zones. The liver tissues of the paeonol + MTX group displayed a significant
regression in the collagen fiber deposition in such areas (Figure 5).
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trichrome in methotrexate (MTX)-induced hepatotoxicity (×400). The liver tissues of the control
(a1,a2) and paeonol (b1,b2) groups show a minimal amount of blue-stained collagen (arrows), espe-
cially around the central veins (CV) and portal area (squares). On the contrary, the liver tissues of
the MTX-treated rats show an apparent increase in blue-stained collagen deposits (arrows) around
the central veins (CV) and the portal area (square), with the appearance of collagen fibers running
between and surrounding the hepatocytes (arrowhead) (c1,c2). In contrast, the liver tissues of the
paeonol + MTX group show a minimal amount of collagen fibers (arrows) around the central veins
(CV) and portal area (square) (d1,d2). A semi-quantitative analysis of the collagen fibers (e) summa-
rizes the results of six experiments as mean ± SEM. Letters a,b Denote significant differences from
the normal control and the MTX groups, respectively, at p < 0.05.

2.3. Effect on Immunohistochemistry and ELISA

The hepatic protein expression of proliferating cell nuclear antigen (PCNA) was
significantly increased (p < 0.05) in rats that received MTX in comparison with the control
group (Figure 6). On the contrary, the hepatic expressions of P-gp and Mrp-2 measured
in the MTX-challenged group showed significant downregulations (p < 0.05) compared
with the control group. The hepatic expression of the previous markers was comparable in
both control and paeonol groups. However, treatment with paeonol significantly increased
(p < 0.05) PCNA, P-gp, and Mrp-2 expressions in the MTX-challenged rats compared to the
non-treated MTX rats (Figures 6–8). Additionally, we assessed the protein expression levels
of iNOS and TNF-α (Figures 9 and 10). The normal and control paeonol-treated hepatic
tissues revealed negative iNOS and TNF-α immunohistochemical staining. The MTX-
intoxicated group showed a significantly higher cytoplasmic expression for both parameters
in the rat hepatocytes than in the control group, which was lowered considerably by paeonol
treatment. Regarding hepatic PCNA, P-gp, and TNF-α, the same results were obtained
using PCNA, P-gp, and TNF-α ELISA kits, respectively (Figures 6f, 7f and 10f).
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clear expression (c1,c2). The liver tissues of the paeonol + MTX group show more numerous PCNA-
positive nuclei in the same cells (d1,d2). A semi-quantitative analysis of PCNA positive cells (e). 
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a,b Denote significant differences from the normal control and the MTX groups, respectively, at p ˂ 
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Figure 6. The immunohistochemical examination of hepatic proliferating cell nuclear antigen (PCNA)
expression in methotrexate (MTX)-induced hepatotoxicity (×400). The liver tissues of the control
(a1,a2) and paeonol (b1,b2) groups show hepatocytes (black arrows) and Kupffer cells (yellow arrows)
with PCNA-positive nuclei. Notice the positive endothelial cells lining the central veins (CV) (blue
arrows) and portal tracts (PT) (green arrows). The liver tissues of the MTX-treated rats show apparent
numerous PCNA-positive nuclei in hepatocytes (black arrow), Kupffer cells (yellow arrow), and
endothelial cells lining the CV (blue arrow) and the PT (green arrow) with intense nuclear expression
(c1,c2). The liver tissues of the paeonol + MTX group show more numerous PCNA-positive nuclei
in the same cells (d1,d2). A semi-quantitative analysis of PCNA positive cells (e). Hepatic PCNA
level using PCNA ELISA kit (f). Data are represented as mean ± SEM (n = 6). Letters a,b Denote
significant differences from the normal control and the MTX groups, respectively, at p < 0.05.
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Figure 7. The immunohistochemical examination of hepatic P-glycoprotein (P-gp) expression in
methotrexate (MTX)-induced hepatotoxicity (×400). The liver tissues of the control (a1,a2) and
paeonol (b1,b2) groups show nuclear P-gp expression (arrows) in hepatocytes surrounding the
central veins (CV) and portal areas (PT). The liver tissues of the MTX-treated rats show few nuclear
P-gp expressions (arrows) (c1,c2). On the contrary, the liver tissues of the paeonol + MTX group
show many nuclear P-gp expressions (arrows) in hepatocytes surrounding the CV and PT (d1,d2). A
semi-quantitative analysis of P-gp positive cells (e). Hepatic P-gp level using P-gp ELISA kit (f). Data
are represented as mean ± SEM (n = 6). Letters a,b Denote significant differences from the normal
control and the MTX groups, respectively, at p < 0.05.
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Figure 8. The immunohistochemical examination of hepatic multidrug resistance-associated protein
2 (Mrp-2) expression in methotrexate (MTX)-induced hepatotoxicity (×400). The liver tissues of
the control (a) and paeonol (b) groups show cytoplasmic (black arrows) and nuclear (red arrows)
Mrp-2 expression in the portal tract cells, mainly in the cells of bile ductules. The liver tissues of the
MTX-treated rats show little cytoplasmic (black arrow) and nuclear (red arrow) Mrp-2 expression in
the previously mentioned cells (c). In contrast, the liver tissues of the paeonol + MTX group show
marked cytoplasmic (black arrow) and nuclear (red arrow) Mrp-2 expression in the portal tract cells,
mainly in the cells of bile ductules (d). A semi-quantitative analysis of Mrp-2 positive cells (e). Data
are represented as mean ± SEM (n = 6). Letters a,b Denote significant differences from the normal
control and the MTX groups, respectively, at p < 0.05.
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The real-time polymerase chain reaction (PCR) experiments indicated that MTX sig-

nificantly increased hepatic Bcl-2-associated X protein (Bax) mRNA. At the same time, it 
decreased the expression of B-cell lymphoma 2 (Bcl-2) compared with the control group. 

Figure 9. The immunohistochemical examination of hepatic inducible nitric oxide synthase (iNOS)
expression in methotrexate (MTX)-induced hepatotoxicity (×400). The liver tissues of the control (a)
and paeonol (b) groups show hepatocytes with faint cytoplasmic iNOS expression (yellow arrows).
The liver tissues of the MTX-treated rats show hepatocytes with intense cytoplasmic iNOS expression
(yellow arrow) (c1). Expression is also noticed in the portal area (square) (c2). In contrast, the liver
tissues of the paeonol + MTX group show hepatocytes with little iNOS expression (yellow arrow)
(d1). Little expression is also noticed in the portal area (square) (d2). A semi-quantitative analysis of
iNOS positive cells (e). Data are represented as mean ± SEM (n = 6). Letters a,b Denote significant
differences from the normal control and the MTX groups, respectively, at p < 0.05.
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Figure 10. The immunohistochemical examination of hepatic tumor necrosis factor-α (TNF-α) ex-
pression in methotrexate (MTX)-induced hepatotoxicity (×1000). The liver tissues of the control (a)
and paeonol (b) groups show Kupffer cells with TNF-α cytoplasmic expression (arrows). The liver
tissues of the MTX-treated rats show many Kupffer cells with TNF-α cytoplasmic expression (arrows)
(c). In contrast, the liver tissues of the paeonol + MTX group show few Kupffer cells with TNF-α
cytoplasmic expression (arrow) (d). A semi-quantitative analysis of TNF-α positive cells (e). Hepatic
TNF-α level using TNF-α ELISA kit (f). Data are represented as mean ± SEM (n = 6). Letters a,b
Denote significant differences from the normal control and the MTX groups, respectively, at p < 0.05.

2.4. Effect on Hepatic Apoptosis

The real-time polymerase chain reaction (PCR) experiments indicated that MTX signifi-
cantly increased hepatic Bcl-2-associated X protein (Bax) mRNA. At the same time, it decreased
the expression of B-cell lymphoma 2 (Bcl-2) compared with the control group. Treating the rats



Pharmaceuticals 2022, 15, 1296 9 of 14

with paeonol before MTX administration significantly reduced the upregulated Bax mRNA
expression and increased Bcl-2 mRNA expression. Treatment with paeonol alone showed a
similar effect in the control group for Bax and Bcl-2 mRNA expressions (Figure 11).
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3. Discussion

Hepatotoxicity is a significant adverse effect of MTX, limiting its clinical use. Thus,
approaches for using potential adjuvant therapies with hepatoprotective activities are
widely adopted during cancer chemotherapy [17]. We demonstrated that paeonol, an
antioxidant flavonoid derivative, protected against MTX-induced hepatotoxicity. In line
with previous reports [13,19], the current results indicate that challenging the rats with
MTX instigated hepatic histopathological damage and elevated the serum levels of liver
function enzymes. However, pretreatment with paeonol prevented the MTX-induced
liver damage, as shown by its ameliorating effect on serum liver function enzymes and
the prevention of all histological alterations. Accumulating evidence suggests that the
MTX-induced cytotoxicity and tissue damage involves oxidative stress and the activation
of reactive oxygen species-mediated signaling [20,21]. Our results support the studies
showing an imbalance in the oxidative status in vivo in response to MTX treatment. We
reported a significant suppression in hepatic SOD activities alongside increased MDA
levels, a marker of lipid peroxidation, and NO levels in the liver tissues following an
MTX challenge. When NO reacts with superoxide radicals, they generate the deleterious
peroxynitrite that damages DNA; thus, it contributes to the induction of apoptosis [22].
Studies have shown that MTX induces apoptosis via activating the mitochondrial intrinsic
apoptotic pathway [23]. This mechanism is confirmed by the results of the current study
showing upregulation of the pro-apoptotic gene expression Bax in the liver tissues of
MTX-treated rats. The present findings depict that the MTX-induced apoptotic changes
involved the activation of the intrinsic pathway by regulating the Bcl-2 family of proteins,
consistent with the observed upregulation of Bax gene expression.

Fascinatingly, the pretreatment of rats with daily paeonol attenuated the MTX-induced
liver toxicity, with the potent mitigation of hepatic oxidative stress induced by the MTX
treatment, as evident by the suppression of lipid peroxidation and the NO hepatic content
along with the resorting of the SOD activity. Several previous studies have reported similar
antioxidant effects of paeonol in different tissues, such as the kidney, heart, stomach, and
testis [13,14,16,24,25]. Given its efficacy in diminishing oxidative stress, paeonol prevents
the hepatocyte death triggered by MTX. The results of the current study show that paeonol
pretreatment suppressed the pro-apoptosis Bax and upregulated Bcl-2, which has been
attributed to its direct antioxidative properties [13,14].

PCNA is essential in cell cycle regulation and DNA repair and replication [26]. PCNA
expression has been used as a potential marker for the proliferative activity of the tissues,
and it could be used as a biomarker for the diagnosis and prognosis of different malignant
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tumors [27,28]. In the current study, PCNA expression levels in the liver tissues of MTX-
treated rats showed a significant increase compared to controls. These results may be
attributed to the stimulation of hepatocyte proliferation as a compensatory reaction in
response to the tissue damage caused by MTX administration [29]. Direct inhibition of
DNA replication is usually associated with MTX therapy, and this may explain the MTX-
induced depletion in PCNA expression observed by other studies [30–32]. The variability in
MTX treatment regimens could be a reasonable cause for these contradictory observations
of the MTX effect on PCNA expression. Alternatively, the current results show that paeonol
pretreatment in MTX-challenged rats revealed strongly positive PCNA staining reactivity
of the hepatocyte nuclei, indicating improved cell renewal. The upregulation of PCNA
contributes to cell proliferation and survival via promoting cell cycle progression and the
reduction of apoptosis [33]. Previous studies have associated the protective effect of paeonol
against the harmful effects of MTX with suppression of the reactive oxygen species, DNA
fragmentation, and apoptosis [13,24]; thereby, explaining the ability of paeonol to reverse
tissue damage and initiate cell proliferation to promote the healing of damaged tissues.

MTX, like other chemotherapeutic agents, may provoke systemic inflammation via
the induction of intracellular reactive oxygen species, which activates a pro-inflammatory
response involving iNOS and TNF-α upregulation [7,8], which is in line with our current
findings. Furthermore, the present study shows an increase in collagen deposition in the
hepatic tissue of MTX-treated rats, which predominantly induces hepatic fibrosis. The MTX-
induced hepatic inflammatory response has been linked to hepatic stellate cell activation
and extracellular matrix synthesis, which further accelerates fibrosis [34]. Attenuating
hepatic inflammatory markers by paeonol treatment could explain the downregulation of
collagen disposition reported in the liver tissues of the paeonol + MTX rat group. Previous
studies [13,14] have shown that the anti-inflammatory properties of paeonol involved the
modulation of iNOS and TNF-α, which is in accord with the present results. Of note, many
studies have demonstrated that the upregulation of TNF-α is related to cell apoptosis via
the regulation of the expression of the proapoptotic and antiapoptotic factors of the Bcl-2
protein family [35,36]. Therefore, in the current study, the inhibition of hepatic TNF-α
levels that was associated with the paeonol treatment might trigger the antiapoptotic effect
of paeonol.

P-gp and Mrp-2 are efflux transporters that decrease the intracellular accumulation of
a drug or a toxicant in several organs, including the liver [12,37]. The current results show
that MTX significantly reduced the hepatic expression of P-gp and Mrp-2, which agrees
with previous studies [37,38]. Therefore, the paeonol-induced increase in the expression of
P-gp and Mrp-2 proteins provides a plausible explanation for its hepatoprotective effects
against MTX-induced injury by increasing its efflux. In agreement with the current results,
our previous study [25] emphasized the upregulation of P-gp in the testis as a protective
effect of paeonol against MTX-induced injury. Therefore, it could be concluded that paeonol-
induced upregulation of efflux transporters in the liver offers a beneficial effect against
MTX hepatotoxicity.

4. Materials and Methods
4.1. Chemicals

The paeonol was obtained from Sigma-Aldrich (St. Louis, MO, USA), and the MTX
was obtained from Minapharm Pharmaceuticals (Cairo, Egypt). Kits for determining serum
ALT and AST were purchased from Biodiagnostic (Giza, Egypt). In addition, the PCNA
antibody was procured from Novus Biologicals (Centennial, CO, USA), the iNOS antibody
was from Thermo Fisher Scientific (Waltham, MA, USA), the TNF-α antibody was from
ABclonal (Woburn, MA, USA), while the P-gp and Mrp-2 antibodies were from Santa
Cruz Biotechnology (Dallas, TX, USA). The other chemicals were purchased from local
commercial sources and were of analytical grade.
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4.2. Experimental Design

Twenty-four male Wistar rats (180–210 g) were purchased from the National Research
Center (Giza, Egypt) and kept under standard laboratory conditions (23–25 ◦C, 55 ± 5%
relative humidity, and 12 h light/dark cycle). The rats had free access to standard laboratory
animal chow and tap water. After acclimatization for one week, the animals were randomly
divided into four groups (n = 6). The first group (control) received only the vehicle. The
second group (Paeonol) received a daily dose of paeonol (100 mg/kg, orally), freshly
prepared in a 1% aqueous solution of carboxymethyl cellulose, for ten days [13,39]. The
third group comprised the MTX-induced hepatotoxicity group (MTX), in which the rats
received a single i.p. injection of MTX (20 mg/kg) on day 5 of the experiment [40]. Finally,
the rats in the fourth group (Paeonol + MTX) received oral daily paeonol (100 mg/kg) for ten
days and a single i.p. dose of MTX (20 mg/kg) on the fifth day of the experiment (Table 1).

Table 1. Timeline schedule of the treatment regimen. MTX: methotrexate.

Group Treatment Regimen
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

Control Vehicle
1 mL, p.o.

Vehicle
1 mL, p.o.

Vehicle
1 mL, p.o.

Vehicle
1 mL, p.o.

Vehicle
1 mL, p.o.

Vehicle
1 mL, p.o.

Vehicle
1 mL, p.o.

Vehicle
1 mL, p.o.

Vehicle
1 mL, p.o.

Vehicle
1 mL, p.o.

Paeonol 100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

MTX 20 mg/kg,
i.p.

Paeonol
+ MTX

100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.
+ 20 mg/kg,
i.p.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

100 mg/kg,
p.o.

4.3. Sample Preparation

At the end of the experiment, rats were euthanized to collect blood and liver samples.
Serum was collected and stored at−80 ◦C after blood clotting and centrifugation at 5000 rpm
for 15 min. Pieces of the liver were rapidly excised, rinsed in cold saline, then perfused
thoroughly with cold saline, fixed in 10% formalin, and processed for histology and im-
munohistochemistry. The rest of the liver was immediately frozen in liquid nitrogen and
kept at −80 ◦C for further analysis. Tissue homogenates were prepared (10% w/v) in ice-
cold phosphate buffer (0.01 M, pH 7.4), centrifuged (3000 rpm, 20 min), and the supernatant
was collected for further assays.

4.4. Biochemical Analysis
4.4.1. Determination of Liver Function Tests

Serum activities of ALT and AST were measured via commercially available kits
according to the provided instructions.

4.4.2. Determination of Hepatic Oxidative Stress Biomarkers

Hepatic tissue levels of MDA (nmol/g) were measured as a marker of oxidative stress.
MDA, a major degradation product of lipid peroxides, reacts with thiobarbituric acid
producing a pink chromogen that is measured spectrophotometrically at 535 nm [41]. As
an indicator of nitrosative stress, NO was measured following the Griess reaction after
nitrate reduction to nitrite and expressed in nmol/g. The intensity of the developed color
was measured at 540 nm in a spectrophotometer [42]. Finally, the activity of hepatic SOD
(U/g tissue) was determined colorimetrically at 420 nm based on its ability to inhibit the
autoxidation of pyrogallol [43].

4.5. Histological Evaluation

The hepatic tissues were dehydrated after fixation overnight in formalin using an
ascending alcohol gradient. Tissues were cleared in xylene, rapidly embedded in paraffin,
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and 5-µm-thick sections were processed for hematoxylin–eosin or Masson trichrome stain-
ing. The stained sections were examined by light microscopy (Olympus CX23LEDRFS1,
Olympus, Tokyo, Japan) to detect histopathological changes and collagen deposition.

4.6. Immunohistochemical Examination

After deparaffinization and rehydration, the endogenous tissue peroxidase was blocked
by hydrogen peroxide (3%, 5 min). Sections were incubated overnight with the primary
antibodies against PCNA, iNOS, TNFα, P-gp, and Mrp-2. After washing in PBS for 5 min,
biotinylated secondary antibodies were added for 30 min and washed with PBS for 3–5
min. Then, streptavidin-conjugated peroxidase was added for 35 min. The action of per-
oxidase on 3,3-diaminobenzidine (added for 5 min) produced a brown-colored product,
which is proportional to the amount of original protein in the sample. Sections were
countered-stained with hematoxylin [44].

4.7. ELISA Analysis

The hepatic levels of PCNA, P-gp, and TNFα were measured using the PCNA
(FineTest, Wuhan, Hubei, China), P-gp (US Biological, Salem, MA, USA), and TNF-α
(Sigma-Aldrich) ELISA kits according to the provided instructions.

4.8. Morphometric Analysis

For all stained sections, three non-overlapping fields of six different rats in each group
were analyzed using the image analyzer Leica QwinV.3 software (Leica Microsystems,
Wetzlar, Germany) for calculating: (a) the mean area percent of the blue-stained collagen
fibers in Masson’s trichrome stained sections, and the iNOS immunostained cells and (b) the
mean number of PCNA, P-gp, Mrp-2, and TNF-α immunostained cells, and inflammatory
cells (neutrophils, lymphocytes, and eosinophils), apoptotic cells (cells with deeply stained
cytoplasm and small dense eccentric nuclei), and degenerated areas (containing vacuolated
cells) in liver tissues as mentioned previously [45].

4.9. Real-Time PCR Determination of Hepatic Bax and Bcl-2

Extraction of the total RNA from the liver tissues was carried out using the RiboZol
Reagent (AMRESCO, Solon, OH, USA) following the given instructions. UV spectrophotom-
etry at 260 nm determined the total RNA quality and yield. The SensiFASTTM SYBR® Hi-
ROX One-Step Kit (Meridian Bioscience, Memphis, TN, USA) was used to prepare the real-
time PCR reaction mixture (25 µL) containing 50 ng of template RNA from each sample and
70 nM of specific primers. The reaction was monitored in the Applied Biosystems 7500 Fast
Real-Time PCR System (Foster City, CA, USA). The forward and reverse primers were: 5′-
AGAGGCAGCGGCAGTGAT-3′ and 3′-GTATGAGTGCCATCCAGAGCAG-5′ for Bax [46],
5′-CTTTGTGGAACTGTACGGCCCCAGCATGCG-3′ and 5′-ACAGCCTGCAGCTTTGTTT
CATGGTACATC-3′ for Bcl-2 [47], and 5′-GTCGGTGTGAACGGATTTG-3′ and 3′-CTTGCC
GTGGGTAGAGTCAT-5′ for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [13].
Data were analyzed relative to GAPDH to calculate the relative gene expression of Bax and
Bcl-2 [48].

4.10. Statistical Analysis

The experimental results (mean ± SEM) were analyzed by GraphPad Prism software
(Version 8.1) (GraphPad Software Inc., San Diego, CA, USA) using a one-way analysis
of variance (ANOVA) followed by Tukey–Kramer for comparing the means of different
groups. The differences between any two means were significant if p < 0.05.
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