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Abstract

Gene-environment and nutrition-environment studies often involve testing of high-dimensional 

interactions between two sets of variables, each having potentially complex nonlinear main effects 

on an outcome. Construction of a valid and powerful hypothesis test for such an interaction 

is challenging, due to the difficulty in constructing an efficient and unbiased estimator for the 

complex, nonlinear main effects. In this work we address this problem by proposing a Cross-

validated Ensemble of Kernels (CVEK) that learns the space of appropriate functions for the main 

effects using a cross-validated ensemble approach. With a carefully chosen library of base kernels, 

CVEK flexibly estimates the form of the main-effect functions from the data, and encourages 

test power by guarding against over-fitting under the alternative. The method is motivated by a 

study on the interaction between metal exposures in utero and maternal nutrition on children’s 

neurodevelopment in rural Bangladesh. The proposed tests identified evidence of an interaction 

between minerals and vitamins intake and arsenic and manganese exposures. Results suggest that 

the detrimental effects of these metals are most pronounced at low intake levels of the nutrients, 

suggesting nutritional interventions in pregnant women could mitigate the adverse impacts of in 
utero metal exposures on children’s neurodevelopment.
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1 Introduction

Investigation of the interplay between multiple lifestyle, biological, and environmental 

factors contributing to disease risk is a major goal in public health. Classic gene-

environment and nutrition-environment studies focus primarily on the interaction between 

discrete factors (31; 8), or between discrete factors and the linear effect of a few continuous 

measurements (e.g. (28)). In recent years, however, recognizing the fact that populations are 

exposed to combinations of continuously-measured chemical and non-chemical factors that 

potentially have a nonlinear effect on outcome, there has been increasing interest in the best 

ways to statistically quantify the complex interplay of these continuous, nonlinear effects on 

health.

In this work we analyze data from a birth cohort study on the interaction between 

in utero exposure to a metal mixture and maternal nutrition intake during pregnancy 

on children’s neurodevelopment in rural Bangladesh (13; 21). Bangladesh has been 

experiencing unparalleled levels of arsenic (As) other toxic metal poisoning through 

contaminated groundwater (33). Bangladesh also has rates of undernutrition that are among 

the highest in the world (42). A recent study (43) assessed the relationships between 

the arsenic (As), manganese (Mn), and lead (Pb) metal pollution mixture and infant 

neurodevelopment in Bangladesh, and has detected nonlinear, inverted-U shaped exposure–

response relationships that differ among population subgroups. Its findings suggested a role 

of additional cultural/behavioral factors in affecting the impact of this metal mixture on 

children’s health. One possible factor impacting these environmental effects is maternal 

nutrition during pregnancy. At vulnerable stages of fetal development, mother’s overall 

nutrition intake may exacerbate adverse effects of chemical stressors. Specific nutrients may 

modify chemical effects because of their influence on the metabolism of the chemicals, on 

epigenetic programming in response to the chemicals, or through other mechanisms that 

vary by metal or by outcome. To answer this question, a companion nutritional study (26) 

was conducted to collect data on mother’s nutrition intake during pregnancy, measuring the 

level of nutrition intake of 27 nutrients grouped in five nutrition categories (macronutrient, 

minerals, (pro-)vitamin As, vitamin Bs, and other vitamins), thereby providing an unique 

opportunity for researchers to quantitatively investigate the effect modification between 

nutrition intake during pregnancy and in utero metal exposures on infant development.

The Bangladesh study posed two challenges that are common in many modern data science 

applications: (1) high dimensionality of the interaction, as the interaction term contains 

second- and higher-order interactions between 27 nutrients and 3 metal exposures, and 

(2) the nonlinearity of the underlying exposure-response relationship, whose mathematical 

properties are unknown a priori. In such a scenario, linear-model based methods are known 

to suffer from misspecification of the main effects model for nutrients (that include nutrient-
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nutrient interactions) and metals (including metal-metal interactions) even under the null 

of no nutrient-metal interactions, leading to inflated Type I error and reduced test power 

(40; 8; 46). To boost efficiency and incorporate nonlinearities in the exposure-response 

relationship, a recent line of research has focused on constructing interaction tests based 

on kernel machine regression (KMR) (36; 34). Building on the success of previous kernel 

testing literature (29; 47), these tests model the main-effect and interaction-effect functions 

as elements in reproducing kernel Hilbert spaces (RKHS) generated by pre-specified kernel 

functions, and build the hypothesis test by re-parametrizing the kernel machine regression as 

a linear mixed model (29). In this framework, the interaction term is an additional random 

effect term controlled by an univariate garrote parameter, on which one can construct a 

variance-component score test (27) for a test of the null hypothesis of no interaction. 

Successful applications of such tests include targeted gene effect identification in genetic 

pathway analysis (30), gene–gene interaction detection in genome-wide association study 

(24), and also in gene-environment interaction studies with discrete factor such as gender (4) 

and risk indicators of cardiovascular disease (12).

Applications of interaction tests involving sets of multiple continuous measurements with 

nonlinear effects, however, remain rare. The key challenge impeding the success of 

interaction tests in continuous settings lies in designing a proper kernel function for the 

multi-dimensional, nonlinear main-effect functions of unknown form. The kernel functions 

for the main effect terms need to generate a RKHS that is rich enough to contain the main-

effect functions under the null, while at the same time be sufficiently structured to maintain 

power for detecting interactions. Earlier work (29; 30) approached this problem by selecting 

the kernel from an assumed parametric family (e.g. the Gaussian radial basis functions 

(RBF)) through maximum likelihood estimation, risking the specification of overly strong 

assumptions for these nonlinear functions. More recent approaches alleviate assumptions 

on the data-generation mechanism by incorporating multiple candidate kernels into the 

analysis, treating the kernel function as a weighted combination of candidate kernels, 

and learning kernel weights by maximizing various objective functions such as centered 

kernel alignment (10) or by an L1-regularized model likelihood (37). However, designed 

primarily to maximize predictive accuracy, such procedures can be overly flexible under the 

alternative and potentially result in hypothesis tests with low power (49). Permutation tests 

are another popular approach for alleviating the issue of kernel misspecification (7; 49); 

however, constructing a permutation procedure for an interaction test is usually not possible 

in observational studies, since the gene-environment independence condition tends to not 

hold (6).

In this article, we propose a new approach to test for the interaction effect between groups of 

continuous features, each having potentially complex main effect functions relating outcome 

to that set of exposures. Built under the framework of kernel machine regression, we address 

the issue of kernel misspecification by deploying an ensemble of candidate kernels, and 

carefully design the ensemble strategy so that it minimizes the generalization error of the 

overall ensemble (11). Consequently, the proposed test automatically estimates the form of 

the kernel under the null from the data and guards against overfitting the interaction effect 

under the alternative, resulting in a powerful test that is robust under a wide range of data 

generation mechanisms. As we discuss in Section 3, such a strategy results in an estimator 
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that enjoys an oracle property for ensemble selection and good generalization performance 

in limited samples, thereby achieving a powerful null-model estimator especially suitable 

for hypothesis testing in epidemiology studies. We term our method the Cross-Validated 

Ensemble of Kernels (CVEK). In Section 4, we illustrate the robustness of our method 

by conducting simulation studies that evaluate the finite-sample performance (Type-I error 

and power) under a range of data-generating scenarios and compare the performance of the 

proposed approach with other popular interaction tests. Finally, in Section 5, we apply our 

method to data from the Bangladesh reproductive cohort study (13; 21) to investigate the 

interaction between mother’s daily nutrient intake and in-utero exposure to an environmental 

metal mixture (As, Mn and Pb) on children’s neurodevelopment.

2 Model and Inference

Assume we observe data from n independent subjects. For the ith subject, let yi be a 

continuous response, xi be the set of p baseline covariates that can be entered into the model 

linearly, and zi be the set of q continuous covariates that have a nonlinear effect on yi. 

Furthermore, we assume that there exists a grouping structure among the zi covariates such 

that zi = {z1,i, z2,i}, where the mth group zm, i ∈ ℝqm contains qm covariates, m = 1, 2. We 

discuss the generalization to the case of more than two groups in zi in Section 2.2.

We assume that the outcome yi depends on covariates xi, zi through the model:

yi = xiTβ + ℎ zi + ϵi where ϵi
iidN 0, σ2 , (1)

where β is a p × 1 vector of unknown coefficients for background covariates, ℎ zi :ℝq ℝ
is an unknown continuous function describing the effect of zi, and ϵi is random noise that 

is independently and identically distributed as N (0,σ2). For identifiability purpose, h is 

assumed to be square-integrable and subject to the constraint ∫ℝqℎ z dz = 0.

Our main objective in this work is to test for the interaction between two chosen sets of 

covariates in zi = {z1,i z2,i}, while accounting for interactions within each covariate set. 

Without loss of generality, consider testing for the interaction between z1,i and z2,i. Then our 

hypothesis is:

H0:ℎ ∈ ℋ12
⊥, (2)

where ℋ12 is the functional space of ”pure interaction” functions that contain only the 

interaction effect between (z1,i, z2,i). That is, under the null hypothesis, h(z) may depend on 

the individual main effects of z1,i, z2,i, but does not depend on the interaction effect of the set 

pair (z1,i, z2,i).

We take the penalized likelihood approach to estimate parameters (β, h). Namely, we 

first specify ℋ the candidate space and λ the penalty parameter, then estimate parameters 

θ = β, ℎ  by minimizing the penalized negative log likelihood:
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β, ℎ = argmin
β ∈ ℝ, ℎ ∈ ℋ

Lλ β, ℎ , where Lλ β, ℎ

= ∑
i = 1

n
yi − xiβ − ℎ zi

2 + λ ℎ ℋ
2 .

(3)

We model ℋ using Kernel Machine Regression (KMR) (36). Specifically, we assume ℋ
to be a Reproducing Kernel Hilbert Space (RKHS) generated by a positive-definite kernel 

function k(zi, zi′), such that any ℎ ∈ ℋ can be expressed in terms the kernel function as 

ℎ zi = ℎ, k zi, . ℋ. Then by the Representer theorem (5), if we define yn × 1 = y1, …, yn
T , 

Xn × p = x1
T , …, xnT

T
, α = α1, …, αn

T  and also denote Kn×n the kernel matrix with its (i, j)th 

element to be δ = I T ≤ C , then (3) can be re-written as

β, α = argmin
β ∈ ℝ, α ∈ ℝn

Lλ β, α , where Lλ β, α = y − Xβ − Kα 2 + λαTKα (4)

Furthermore, if we define τ = σ2
λ , h = ℎ z1 , …, ℎ zn

⊤ can arise exactly from a linear mixed 

model (LMM) (29)

y = Xβ + h + ϵ where h N 0, τK ϵ N 0, σ2I . (5)

2.1 A Variance Component Test for Kernel Interaction

Under the LMM formulation of the kernel machine regression model in (5), Maity and Lin 

(30) built a general test for the hypothesis H0:ℎ ∈ ℋ0 by assuming that h lies in a RKHS 

generated by a garrote kernel function kδ(z, z′), which is constructed by attaching an extra 

garrote parameter δ to a regular kernel function. When δ = 0, the garrote kernel function 

k0 z, z′ = kδ z, z δ = 0 generates exactly ℋ0 the space of functions under the null hypothesis. 

The authors further proposed a REML-based variance component score test for H0.

In order to adapt the above approach to the hypothesis for interaction H0:ℎ ∈ ℋ12
⊥, 

we construct the garrote kernel function Kδ(z, z′) by building its corresponding RKHS 

for the main-effect and interaction spaces using the tensor-product construction (15; 16). 

Briefly, for the two sets of covariates zm ∈ ℝqm, where m = 1, 2, let μm be the probability 

measure of zm on k ∈ D, let 1m = f:ℝqm ℝ|f ∝ 1  be the RKHS of constant functions 

with kernel function Pmax,k, and let ℋm be the RKHS of centered and square-integrable 

functions on zm (i.e. ∫ ℎ zm dμ zm = 0 and ∫ ℎ2 zm dμ zm < ∞). Now consider the space 

1m ⊕ ℋm. Any function h in this space can be decomposed as ℎ = Pcℎ + ℎ − Pcℎ  with 

a constant component Pcℎ = ∫ ℎ zm dμ zm ∈ 1m and a centered non-constant component 

ℎ − Pcℎ ∈ ℋm. As a result, the tensor product space ℋ = 11 ⊕ ℋ1 ⊗ 12 ⊕ ℋ2  adopts 

the following orthogonal decomposition:
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ℋ = 11 ⊗ 12 ⊕ ℋ1 ⊗ 12 ⊕ 11 ⊗ ℋ2 ⊕ ℋ1 ⊗ ℋ2
= 1 ⊕ ℋ1 ⊕ ℋ2 ⊕ ℋ1 ⊗ ℋ2 ,

where 1 is the space of constant functions with support on z = {z1, z2} (24). This 

decomposition is shown to be unique under mild regularity conditions (i.e., the probability 

measures μm’s are absolutely continuous and bounded away from zero and infinity) (39; 20). 

In the equation above, ℋ0 = ℋ1 ⊕ ℋ2 is the space of main-effect functions that does not 

contain the (z1,i, z2,i) interaction, and ℋ12
⊥ = ℋ1 ⊗ ℋ2 is the space of “pure interaction” 

function whose elements describe only the interaction effect between (z1,i, z2,i) and are 

orthogonal to the main-effect functions. Consequently, we can construct the garrote kernel 

function for the tensor product space ℋ as

kδ z, z′ = k0 z, z′ + δ∗k12 z, z′ (6)

where k0 (z, z′) = k1 (z, z′) + k2 (z, z′) is the kernel function for ℋ0 = ℋ1 ⊕ ℋ2 that 

corresponds to the null hypothesis of no interaction, and k12 z, z′ = k1 z, z′ ∗k2 z, z′  is the 

kernel function for space of interaction-effect functions ℋ12
⊥ = ℋ1 ⊗ ℋ2. Finally, notice that 

kδ does not include the kernel function for the space of the constant functions 1 since this is 

already modeled by the intercept term.

Under the above form of the garrote kernel function, the derivative of the kernel function 

with respect to the garrote parameter is ∂
∂δ kδ z, z′ = k12 z, z′ , i.e., the kernel function that 

corresponds to ℋ12
⊥ . Therefore given n data points yi, xi, zi i = 1

n , the derivative kernel matrix 

∂K0 under the null is simply the n × n kernel matrix K12 whose (i, j)th element is k12 (zi, zj), 

and the score test statistic is:

T 0 = τ * y − Xβ TV0
−1∂K0V0

−1 y − Xβ
= τ * y − Xβ TV0

−1K12V0
−1 y − Xβ .

(7)

where V0 = σ2In × n + λK0 is the marginal covariance matrix of yn×1, K0 is the n × n kernel 

matrix whose (i, j)th element is k0(zi, zj), and β, σ2, τ  are the model parameters estimated 

under the null hypothesis (30). The null distribution of T 0 is a mixture of chi-squares that 

can be approximated using a scaled chi-square distribution κχν2 using either Satterthwaite-

Welch method (48) or other higher-moment approximations (3).

2.2 Generalization to Multiple Groups with Nuisance Interaction

Our description so far assumes there exists no nuisance interaction terms in the 

model y = xTβ + ℎ z + ϵ. However, in more realistic scenario, z usually exhibits complex 

hierarchical structure subsuming multiple groups, and it is often of interest to test only for 

the interaction between two small subgroups of z, leaving other interactions as nuisance 

effect to be accounted for by the null model. For example, consider the case of nutrition-
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environment interaction in Bangladesh birth cohort, zi is the 30 × 1 vector of during-

pregnancy exposure to 27 nutrients and 3 metal pollutants, corresponding the grouping 

structure zi = {zmetal, znutr}, where znutr is further divided into znutr = {zmacro, zmineral, zvitA, 

zvitB, zvitO}. Therefore, when testing for the interaction between metal mixture exposures 

and a specific nutrient group of interest, care should be given to formulate h(zi) such that it 

not only explicitly characterizes the interaction of interest, but also account for all nuisance 

interactions among other zi subgroups.

More specifically, assume zi = {z1, z2, z3}, when testing for the interaction between z1 

and z2, the nuisance interactions between z1 and z3, as well as between z2 and z3, should 

also be included in the null model. To this end, following the tensor-product construction 

in Section 2.1 and under the same regularity conditions, h(z) adopts an unique orthogonal 

decomposition:

ℎ z1, z2, z3 = ℎ1 z1 + ℎ2 z2 + ℎ3 z3 + ℎ12 z1, z2 + ℎ13 z1, z3 + ℎ23 z2, z3
+ ℎ123 z1, z2, z3 , (8)

where for ℋm the RKHS of centered and square-integrable functions, hm are the main-effect 

functions such that ℎm ∈ ℋm, and ℎm1m2 and ℎm1m2m3 are the higher-order interaction 

functions that belong to ℋm1m2 = ℋm1 ⊗ ℋm2 and ℋm1m2m3 = ℋm1 ⊗ ℋm2 ⊗ ℋm3, 

respectively. Under such construction, the null hypothesis of no interaction between z1 and 

z2 corresponds to h12 and h123 equaling zero, i.e.

H0: ℎ = ℎ1 + ℎ2 + ℎ3 + ℎ13 + ℎ23

Ha: ℎ = ℎ1 + ℎ2 + ℎ3 + ℎ13 + ℎ23 + ℎ12 + ℎ123,

and the corresponding garrote kernel for the null hypothesis is kδ(z, z′) = k0 (z, z′) + 

δ*ka(z, z′), where k0 = k1 + k2 + k3 + k13 + k23 and ka = k12 + k123. Here km is 

the reproducing kernels for the main-effect space Hm, and the higher-order interaction 

kernels are constructed as ∀ i, j , kij = ki * kj and k123 = k1 *k2 *k3 similar to Section 2.1. 

Consequently, denoting Km as the n × n kernel matrix corresponding to km, the null kernel 

matrix K0 and the interaction kernel matrix K12 are n × n matrices that are computed as:

2K0 = K1 + K2 + K3 + K1°K2 + K2°K3

K12 = K1°K2 + K1°K2°K3 .

where ° indicates the Hadamard (i.e., element-wise) product. As a result, the test statistic can 

be constructed as in (7).
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3 Robust Effect Estimation using Cross-validated Ensemble

We motivate the importance of robust null model estimation by considering the possible 

impact of a misspecified null kernel function k0 on the performance of the resulting 

hypothesis test. Specifically, we express the test statistic T 0 in (7) in terms of the model 

residual ϵ =y – μ – h:

T 0 ∝ ϵTK12ϵ, (9)

where we have used the fact V0
−1 y − μ = σ2 −1 ϵ  (17). Therefore, the test statistic T 0 is a 

scaled quadratic-form statistic that is a function of the model residual. If k0 is too restrictive, 

model estimates will underfit the data under the null hypothesis, introducing extraneous 

correlation among the ϵ i‘s that yield inflated T 0 values and deflated p-values under the 

null. Therefore, this approach will yield an invalid test having inflated Type I error. On 

the other hand, if k0 is too flexible, model estimates will likely overfit the data in small 

samples, producing underestimated residuals, which leads to underestimated test statistics 

and overestimated p-values. Accordingly, the resulting test will have low power.

The above observations motivate a kernel estimation strategy that is flexible in that it does 

not underfit under the null, yet stable so that it does not overfit under the alternative. To this 

end, we propose estimating h using the convex ensemble of a library of fixed base kernels 

kd d = 1
D :

ℎ x = ∑
d = 1

D
udℎd x u ∈ Δ = u u ≥ 0,1Tu = 1 , (10)

where ℎd is the kernel predictor generated by dth base kernel kd. In order to maximize model 

stability, we divide data D = yi, xi, zi i = 1
n  into a training and validation set Dtrain, Dvalid

and estimate the ensemble weights u to minimize the overall cross-validation error of ℎ on 

Dvalid. We term this method the Cross-Validated Ensemble of Kernels (CVEK). The exact 

algorithm proceeds in three stages as follows (see Algorithm 1 for summary):

Stage 1: Candidate Kernel Predictors

For each basis kernel in the library kd d = 1
D , we first standardize the kernel matrix 

by its trace Kd = Kd / tr(Kd), and then estimate the prediction based on each kernel 

as hd, λd = Kd Kd + λdI −1y, d ∈ 1, …, D  where the tuning parameter λd is selected by 

minimizing the k–fold cross-validation error on Dtrain, and compute the validation cross-

validation error on Dvalid for the dth kernel as ϵd = CV λd |Kd .
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Stage 2: Cross-validated Ensemble

Using the estimated validation cross-validation errors ϵd d = 1
D , estimate the ensemble 

weights u = ud d = 1
D  by minimizing the overall cross-validation error ϵu = ∑d = 1

D udϵd:

u = argmin
u ∈ Δ

∑
d = 1

D
udϵd

2
, where Δ = u u ≥ 0, 1Tu = 1 ,

and produce the final ensemble prediction h = ∑d = 1
D udhd = ∑d = 1

D udAd, λdy = Ay, where 

A = ∑d = 1
D udAd, λd is the ensemble hat matrix.

Stage 3: Ensemble Kernel Matrix

Using the ensemble hat matrix A, estimate the ensemble kernel matrix K by solving K(K + 

λI)−1 = A. Specifically, if we denote UA and δA, k k = 1
n  as the eigenvector and eigenvalues 

of A, respectively, then the ensemble kernel matrix K adopts the form:

K = λK * UAdiag δA, k
1 − δA, k

UA
T , (11)

where we recommended setting λK = min 1, ∑k = 1
n δA, k

1 − δA, k

−1
 (see Supplementary Section 

A).

We remind readers that the CVEK’s ensemble form (Stage 2) belongs to the general class 

of model aggregation method known as convex aggregation (41), whose oracle property in 

model selection has been established both asymptotically and in finite-sample (44; 23). It 

can be also considered as a special case of ensemble of kernel predictors (EKP) (9), whose 

generalization behavior is well characterized in terms of the rate of eigenvalue decay of the 

base kernels. Consequently, under the null hypothesis, with a diverse set of base kernels, 

the CVEK ensemble converges in O 1
n  rate to the “oracle ensemble” made by an oracle 

that has access to infinite amount of validation data, thereby resulting in correct Type I 

error by mitigating null model misspecification. Under the alternative, by setting the diverse 

kernel library to be a mix of parametric kernels (linear, polynomial) and smooth kernels 

of exponential eigendecay rate (e.g. a collection of Gaussian RBF kernel with different 

fixed spatial smoothness parameters), CVEK converges to its asymptotic counterpart in O 1
n

rate if the data-generation function is indeed parametric, and in the ”near-parametric” rate 

of O log n
n  if the data-generation function is complex and nonlinear, thereby encouraging 

good test power by not overfitting the interaction effect due to fast generalization rate. The 

resulting ensemble kernel is therefore a strong candidate for a null model estimator that is 

suitable for hypothesis testing. We refer readers to Supplementary Section B for detailed 

discussion.
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4 Numeric Studies

We evaluate the finite-sample performance of the proposed interaction test in a simulation 

study that mimics a small-sample nutrition-environment interaction study. We generate the 

fixed-effect covariates xi ∈ ℝpx and the input features zi, 1, zi, 2 ∈ ℝp1 × ℝp2 independently 

from a standard multivariate Gaussian distribution. Here, (zi,1, zi,2) reflects each subject’s 

level of exposure to p1 environmental pollutants and the levels of a subject’s intake of p2 

nutrients during the study. We generate the outcome yi as:

yi = xiβ + ℎ1 zi, 1 + ℎ2 zi, 2 + δ * ℎ12 zi, 1, zi, 2 + ϵi, (12)

where the fixed-effect coefficients βpx × 1 is sampled from a standard Gaussian distribution. 

The nonlinear functions h1, h2, h12 are sampled from RKHSs ℋ1, ℋ2 and ℋ1 ⊗ ℋ2, 

generated using a ground-truth kernel ktrue. We standardize all sampled functions to have 

unit norm, so that δ represents the strength of interaction relative to the main effect. For 

the main section of the numeric study, we consider sample size n = 200, data dimension px 

= 5, p1 = p2 = 3 and ϵi
i . i . d .N 0, σ2 = 0.1 . For each simulation scenario, we first generate 

data using δ and and ktrue, and then use a kmodel to estimate the null model and obtain 

p-value using the proposed test. We repeat each scenario 200 times, and evaluate the test 

performance using the empirical probability P p ≤ 0.05 .

In this study, we vary ktrue to produce data-generating functions hδ(zi,1, zi,2) with different 

smoothness and complexity properties, and vary kmodel to reflect different common 

modeling strategies for the null model in addition to using CVEK. We then evaluate how 

these two aspects impact the hypothesis test’s Type I error and power. More specifically, we 

sample the data-generating function using ktrue from Matérn kernel family (34):

k r ν, σ = 21 − ν
Γ ν 2νσ r νKν 2νσ r , where r = x − x′,

with two non-negative hyperparameters (ν, σ). For a function h sampled using a Matérn 

kernel, v determines the function’s smoothness (i.e. degree of mean-square differentiability), 

and σ determines the function’s complexity in terms of spectral frequency (34).

In this work, we vary ν ∈ 3
2 , 5

2 , ∞  to generate once-, twice, and infinitely-differentiable 

functions, and vary σ ∊{0.5,1,1.5} to generate functions with varying degree of complexity.

We consider 12 kmodel ‘s that are grouped into five model families (See Table 1 for 

a complete summary): (1) Polynomial Kernels that is equivalent to polynomial ridge 

regression. In this work, we use the linear kernel klinear x, x′ | p = xTx′ and quadratic kernel 

kquad x, x′ | p = 1 + xTx′ 2. (2) Gaussian RBF Kernels: kRBF x, x′ |σ = exp − x − x′ 2/σ2

is a general-purpose kernel family that generates nonlinear, but very smooth (infinitely 

differentiable), functions. Under this kernel, we consider two hyperparameter selection 

strategies commonly seen in application: RBF-Median where we set σ to the sample 

Liu et al. Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



median of xi − xj i ≠ j, and RBF-MLE, which estimates σ by maximizing the model 

likelihood. (3) Matérn and (4) Neural Network Kernels are two flexible kernel families 

both containing a rich space of candidate functions. For Matérn kernel, we use Matern 
1/2, Matern 3/2 and Matern 5/2, corresponding to flexible models that is capable of 

approximating non-differentiable, once-differentiable, and twice-differentiable functions. 

Neural network kernels (34), on the other hand, represent a 1-layer Bayesian neural network 

with σ being the prior variance on the hidden weights, and it is theoretically capable of 

approximate arbitrary continuous functions on the compact domain (19). In this work, we let 

NN 0.1, NN 1 and NN 10 denote Bayesian neural networks with different prior constraints 

σ ∊{0.1,1,10}. Finally, we evaluate the performance of the (5) Cross-validated Kernel 
Ensemble estimator we propose here. Specifically, we consider a CVEK estimator based 

on a Gaussian RBF kernel with log(σ) ∊{−2, −1, 0,1, 2}, which we label CVEK-RBF. 

Furthermore, to evaluate the consequence of more flexible kernel families on ensemble 

behavior, we also consider CVEK-NN, which is a ensemble of neural network kernels with 

σ ∊{0.1,1,10,50} ).

The results of our primary simulation scenario (n = 200 and p1 = p2 = 3 ) are presented 

graphically in Figure 1. We first observe that for reasonably specified values of kmodel, 

the proposed hypothesis test with CVEK estimator always has the correct Type I error and 

reasonable power. We also observe that the complexity of the data-generating function hδ 
(12) plays a role in test performance, in the sense that the power of the hypothesis tests 

increases as the Matérn ktrue ‘s complex parameter σ becomes larger, which corresponds 

to functions that put more weight on the simpler, slow-varying eigenfunctions in Bochner’s 

spectral decomposition (34).

There exist clear differences in test performance between different model families. In 

general, polynomial models (linear and quadratic) appear to be too restrictive and underfit 

the data under both the null and the alternative, producing inflated Type I error and 

diminished power. On the other hand, lower-order Matérn kernels (Matérn 1/2 and Matérn 
3/2, dark blue lines) appear to be too flexible, due to their slow eigenvalue decay. Whenever 

data are generated from similarly or smoother ktrue, Matérn 1/2 and 3/2 overfit the data and 

produce deflated Type I error and severely diminished power, even if the hyperparameter σ 
is fixed at its true value. Comparatively, Gaussian RBF works well for a wider range of ktrue 

‘s but only if the hyperparameter σ is selected carefully. Specifically, RBF-Median (black 

dashed line) works generally well, despite being slightly conservative (i.e. lower power) 

when the data-generation function is smooth and of low complexity. RBF-MLE (black solid 

line), on the other hand, tends to overfit the data and exhibits weak power especially in 

higher dimension and for complex data generation functions (45). Neural Network kernels 

also perform well for a wide range of ktrue and with the Type I error more robust to the 

specification of hyperparameters. Finally, the two ensemble estimators CVEK-RBF and 

CVEK-NN perform as well or better than the non-ensemble approaches for all ktrue ‘s, 

despite being slightly conservative under the null.

To understand how the performance of CVEK depends on the dimension of the inputs, we 

conduct additional studies for p1 = p2 = 6 and p1 = p2 = 10, and report the results in Figure 
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C.1–C.2 in the Supplementary Material (Section C). Briefly, there is a clear effect of the 

data dimension and the complexity of the data generation mechanism on the test power. As 

the dimension p1 = p2 = p increases, we observe a consistent pattern of power degradation 

in test performance that strongly depends on the complexity of the data-generating function 

hδ. For example, consider the test power of CVEK-NN at an interaction strength δ = 1 

for ktrue = Gaussian RBF. As data dimension increases from p = 3 (Figure 1) to p = 10 

(Figure C.2), test power degrades to as low as 0.2 for highly complex data-generating 

functions (σ = 0.5 ), around 0.6 for moderately complex data-generating functions σ = 1, 

yet remains close 1.0 for smooth data-generating functions ( σ = 1.5). Comparing different 

model families in high dimensions (p = 10; Figure C.1–C.2), we find that the polynomial 

models either have difficulty maintaining the correct Type I error, or have weak power under 

the alternative. Among the nonlinear models, the RBF-MLE model’s test power degrades 

particularly quickly due to overfitting. Interestingly, we also observe that the hypothesis test 

based on NN-based models (e.g., CVEK-NN) becomes more powerful than the RBF-based 

models in higher data dimension, which is consistent with the recent theoretical observations 

on the effectiveness of neural network models in high-dimensional scenarios (1).

5 Nutrition-Environment Analysis for Child Neurodevelopment in 

Bangladesh Birth Cohort

We use the proposed methods to test for nutrition-environment interactions for the child 

neurodevelopment in the Bangladesh birth cohort study. Section 5.1 presents a detailed 

description of the Bangladesh birth cohort study, and the Section 5.2 present the analysis. 

Our aim is to detect whether mother’s nutrient intake during pregnancy modifies the effect 

of metal mixture exposures on children’s early-stage fine motor BSID-III scores in the 

district of Pabna (n = 351).

5.1 Study Background

The Bangladesh Reproductive Cohort Study (Project Jeebon) was initiated in 2008 to 

investigate the effects of prenatal and early childhood exposure to As, Mn and Pb 

on early childhood development. During 2008–2011, pregnant female participants (with 

gestational age < 16 weeks) were recruited from two rural health clinics operated by the 

Dhaka Community Hospital Trust (DCH) in the Sirajdikhan and Pabna Sadar upazilas of 

Bangladesh. During 2008–2013, data were collected at five time points spanning the entire 

perinatal and early childhood period, including: initial clinic visit (gestational age < 16 

weeks, Visit 1); pre-delivery clinic visit (gestational age = 28 weeks, Visit 2), time of 

delivery (Visit 3), post-delivery clinic visit (infant age less than 1 month, Visit 4), and a 

postnatal follow-up visit (infant age between 20–40 weeks, Visit 5). Our central hypothesis 

is that children born from mother who had lower nutrient intake will be the most susceptible 

to adverse effects of metal exposures.

Detailed procedures for data collection and measurement protocols have been documented 

previously (13; 21; 43). Briefly, background information on parent’s demographic status, 

including age, education, smoking history and socioeconomic status were collected through 

structured questionnaires at the two clinic visits during pregnancy (Visits 1–2). Information 
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on infant’s biometric measurements, including sex, birth weight, length, head circumference, 

birth order and gestational age, were recorded at birth. Information on maternal medical 

history, maternal depression status (in Edinburgh Depression scale), maternal IQ (assessed 

using the Raven’s Progressive Indices (35)) were measured during the pregnancy visits 

(Visits 1–2), and an infant’s early childhood development, medical history, and quality 

of home environment (in terms of emotional, social, and cognitive stimulation, measured 

by Home Observation Measurement of Environment (HOME) instrument score (2) were 

measured during the follow-up visits (Visits 4–5), respectively.

Each infant’s exposure to multiple metals As, Mn and Pb (concentrations in µg / dL ) 

during pregnancy were measured using blood samples from infant’s umbilical cord 

venous blood collected at the time of the birth. Mother’s overall nutrition intake status 

during pregnancy was measured for 27 nutrients derived from semi-quantitative Food 

Frequency Questionnaires (FFQs) specially adapted to Bangladeshi diet (25) at both the 

pre- and post-delivery visits (Visit 2 and 4). This instrument derives data on these 27 

nutrients from measures of the consumption frequency (amount per week) of 42 food 

items during the 12-month period preceding delivery. The nutrients measured can be 

grouped into 5 categories including macro-nutrients (5 nutrients: protein, fat, carbohydrate, 

dietary fiber and ash), minerals (7 nutrients: calcium, magnesium, phosphorus, potassium, 

sodium, zinc and copper), vitamin A and provitamin As (6 nutrients: vitamin A, retinol, 

beta-carotene equivalents, alpha-carotene, beta-carotene, and cryptoxanthin), vitamin B (5 

nutrients: thiamin (B1), riboflavin (B2), niacin (B3), vitamin B6 and folate (B9)), and 

other vitamins (3 nutrients: vitamin C (i.e. L-ascorbic acid), vitamin D, and vitamin E). 

Finally, infant’s neurodevelopmental outcomes were assessed at 20–40 months of age (Visit 

5) using a translated and culturally-adapted version of the Bayley Scales of Infant and 

Toddler Development, Third Edition (BSID-III) including five cognitive domains: cognitive, 

receptive language, expressive language, fine motor and gross motor.

We compare our method with three existing approaches for testing high-dimensional 

interaction. The (1) Interaction Sequence Kernel Association Test (iSKAT)(28) is a baseline 

approach that assumes linear relationship between exposures and outcome. It estimates the 

null model using ridge linear regression and corresponds to the linear model in simulation. 

(2) The Gaussian Kernel Machine test (GKM) (30) estimates the null model using kernel 

machine regression with Gaussian RBF kernels and tunes the kernel hyperparameter by 

maximizing REML. It correspondes to the RBF-MLE model in simulation. Finally, the (3) 

GE-spline test (18) which uses the generalized additive regression to model the nonlinear 

effect of environmental exposures using spline sieves. It can be considered as a special 

case of kernel machine regression with the kernel matrix constructed adaptively using spline 

basis functions (22). In order to visualize the identified interaction and thereby provide 

interpretable findings, we graphically summarize the multivariate interaction effects by 

examining the joint exposure-response surface between the principal components of the 

pollutant mixture and those for each nutrient group.

Liu et al. Page 13

J Am Stat Assoc. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.2 Data Analysis

In this nutrition-environment interaction study, our interest concentrates on the interaction 

between the mixture of As, Mn and Pb, and five major nutrient groups: macro-nutrient, 
mineral, vitamin A, vitamin B and the other vitamins (denoted as vitamin, other). For each 

of the five nutrient groups, we test for the overall interaction between the selected group and 

the joint effect of the As, Pb, Mn mixture. We adjust for parent’s demographic status (age, 

education, smoking history), infant’s biometric measurements at birth (sex, birth weight, 

length, head circumference, birth order and gestational age), and quality of early-childhood 

home environment (HOME score, maternal depression scale, maternal IQ).

5.2.1 Nutrient - Mixture Interactions—Table 2 presents p–values for the interaction 

between the overall metal mixture and each of the five nutrient groups. We conducted the 

proposed test using two types of CVEK models: an ensemble of seven RBF kernels with 

bandwidth parameter set between log(σ2) ∊{−3, −2, −1, 0,1, 2,3} (denoted as CVEK-RBF), 

and an ensemble of seven neural network kernels with prior parameters set between log(σ2) 

∊{−3, −2, −1, 0,1, 2,3} (denoted as CVEK-NN). We compared the results of each to those 

generated by iSKAT, GKM, and GE-Spline. As shown in the table, most tests yielded 

strong evidence of interaction (p < 0.05) for the vitamin A and the vitamin, other groups, 

as well as weak-to-moderate evidence of interaction ( p <≈0.1) for the mineral and the 

vitamin B groups. There was no evidence of an interaction between metal exposures and 

macro-nutrients.

Comparing the performance across different tests, we observed similar patterns for p-values 

for CVEK-NN and CVEK-RBF, suggesting robustness in test performance with respect to 

the choice of the family of the base kernels. We also observed higher values of p-values 

for the iSKAT (linear kernel) and GKM, the latter of which used a single RBF kernel with 

REML-based hyperparameter tuning. The statistical conclusions from these two tests are 

similar to those from the CVEK tests for vitamin A and vitamin, other groups of nutrients (at 

the significance level of 0.05). However, they are less powerful in detecting the interaction 

for the mineral and the vitamin B groups. This is consistent with our observation in Section 

4 that, when the true effect is smooth, nonlinear and exhibits a moderate level of complexity 

(a scenario that is likely to hold for the effect of environmental exposures, see Figure 1 

(h)), the hypothesis test based on GKM is slightly more powerful than that based on the 

iSKAT but is less powerful than the CVEK-based test. This reduction in power is possibly 

due to the overly strong smoothness assumption imposed by these two models. Finally, we 

notice that the performance of the test from the GE-spline model appears sub-optimal when 

compared to that of the other methods. GE-spline produced much higher p–values for all 

nutrient groups, failing to detect the interaction for the A vitamins and the other vitamins. 

We hypothesize that the observed instability of GE-spline is likely caused by the lack of fit 

of the null model, due to the difficulty in estimating multivariate splines in high dimensions.

5.2.2 Visualization of Exposure-Response Surface—To better understand the 

nature of the multivariate interactions between the environmental exposures and nutrition, 

in Figure 2 and 3, we visualize the fitted exposure-response surface relating the mean 

normalized fine motor BSID-III score and the principal components (PCs) of the pollution 
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mixture and of the nutrient groups. Every panel in Figure 2 and 3 depicts the joint effect 

of a pollutant PC and a nutrient PC for a selected nutrient group on the fine motor score, 

holding all the other PCs at their median. For each joint-effect term, the strength of evidence 

of an interaction between metal exposure and nutrition is driven by the ”importance” of 

the corresponding PCs, i.e. the amount of variation the corresponding PCs explain in their 

respective pollutant/nutrient group. For example, in Figure 2, the pollutant PCs account 

for 42.6%, 37.3% and 20.1% of the total variation in pollutant mixture, and the nutrient 

PCs account for 63.5%, 28.5% and 7.4% of the total variation in the macronutrient group. 

Consequently, the strength of the signal of the interaction between the 1st PCs (e.g. Figure 

2 (a)) in the overall interaction is expectedly much stronger than that between the 3rd PCs 

(e.g. Figure 2 (i)). This explains the lack of significant evidence of overall interaction for 

the macronutrients in Table 2, since the joint effect between the PCs accounting for more 

variance (e.g. Figure 2 (a),(b) and (d)) do not display strong evidence of interaction. In 

comparison, for the other four nutrient groups, evidence of interaction can be observed 

between at least two nutrient-pollutant PC pairs among their leading PCs (Figure 3), thereby 

suggesting evidence of overall interaction between nutrients and the pollutant mixture, and 

consequently providing additional evidence for the findings from the CVEK tests in Table 

2. Finally, we observe that across all nutrient groups, the nutrient PCs interacts the most 

often with the 1st pollutant PC, which is strongly associated with As, and also with the 

3rd pollutant PC, which is strongly associated with Mn, suggesting that As and Mn are the 

two main pollutants driving the overall interaction. Furthermore, the pattern of interaction 

between nutrient and pollutant PCs are observed to be similar across nutrient groups: at 

lower levels of nutrients (x-axis), higher levels of metal exposure (y-axis) is associated with 

lower neurodevelopment scores. At intermediate or high levels of the nutrient, however, 

this negative association either disappears (see, e.g. Figure 3 (c), (d), (h)) or even becomes 

positive (see, e.g. Figure 3 (a), (b), (f)).

6 Discussion

Under the framework of kernel machine regression, we have developed a hypothesis testing 

procedure for detecting nonlinear interactions between groups of continuous covariates. In 

this context, we identified the unique challenge of possible kernel misspecification for the 

main-effect terms in the model, and illustrated the negative consequences of misspecified 

main effect kernels both in terms of Type I error and power. Specifically, we showed that an 

overly smooth model, even when including all causal covariates, can still underfit the data 

under the null and thereby produce inflated Type I error rates. On the other hand, an overly 

flexible model tends to overfit the data under both the null and the alternative, resulting in 

deflated Type I error and weak power. While these observations motivate careful selection of 

the form of the main effect kernels, we also observe that choice of regularization parameters 

via a likelihood-based model selection strategy (for example, estimating the bandwidth 

parameter in a Gaussian RBF kernel via REML (30)) can also over-smooth the main-effect 

terms under the null. This situation appears to be especially severe in limited sample sizes 

and for misspecified kernel functions (Figure 1 (a)–(c)). Our work addresses this challenge 

by estimating the main-effect model using a flexible ensemble of carefully selected base 

kernels, which we term Cross-validated Ensemble of Kernels (CVEK), coupled with a 
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hyperparameter selection strategy based on cross validation. This approach avoids kernel 

misspecification under the null and mitigates overfitting under the alternative, resulting in 

tests that are powerful yet maintain nominal Type I error rates. We validated the approach 

through extensive numerical studies. Under a wide variety of data-generation mechanisms, 

CVEK consistently produced correct Type I error and reasonable power.

We applied the proposed method to estimate nutrition-environment interactions between 

exposure to a metal mixture and multiple nutrient groups on neurodevelopment in 

Bangladeshi children. Challenges presented by the analysis included the presence of 

nonlinear within-group interactions within the effect of the metal mixture, the high-

dimensionality for the between-group interaction terms (dN×E ≥ 9 ), and the limited sample 

size (n = 351).

The proposed test identified evidence of interaction between the metal mixture and four 

nutrient groups, and we observed differences between the CVEK-based results and those 

from existing approaches for the mineral group. Visualization of bivariate exposure-response 

surfaces based on nutrient and metal PCs allowed us to visualize the direction of these 

interactions. The application is important in that identification of nutritional factors that can 

effectively mitigate the impact of adverse effects of environmental exposures can inform 

recommendations for pregnant women to improve the health of children across the lifespan.

An important extension of the proposed method would be to incorporate variable selection 

methods (e.g., shrinkage estimators) to further improve the effectiveness of the proposed 

approach in the high-dimensional settings. As shown in the numerical studies presented in 

Section 4, for complex and non-smooth data-generation functions (e.g., ktrue = Matérn 3/2 

or σ = 0.5 in Figure 1), the proposed method may have weak power even in moderate 

data dimension. Consequently, it is desirable to identify methods that prune out the effect 

of irrelevant main effect and nuisance interactions during estimation and inference, rather 

than fitting all possible nuisance terms. To this end, one particular interesting direction 

is to combine the sparseness-inducing penalties (e.g., L1 penalty on the nuisance-effect 

functions h1, h2, h3, h13, etc in (8)) with a post-selection inference procedure that handles 

high-dimensional nuisance parameters. One possible avenue to pursue is the de-correlated 

score test, where the test statistic is made to be orthogonal to the score statistic of the 

high-dimensional nuisance parameters (32).

A second important extension is to improve the method’s robustness to the non-normality of 

the residual distributions. Although the kernel ensemble approach is designed to be robust 

against the mis-specification of the mean functions, the inference procedure employed in 

this work is consistent with that of the classic variance component test. Under heavier-tailed 

distributions, the variance component test is known to overestimate the spread of its null 

distribution, leading to an overly conservative test with weak power (38). To verify this 

empirically, we conducted a simulation study in which the residual follow a t-distribution 

with degrees of freedom equal to either 5 and 10. (Supplementary Figure C.3–C.4). These 

results showed that the test is able to maintain Type I error, but has extremely weak power. 

Consequently, it is of great practical interest to explore combining kernel ensemble methods 
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with a hypothesis testing procedure based on flexible distributional assumptions, thereby 

improving the method’s performance in non-Gaussian scenarios.

Finally, the ensemble weights ud d = 1
D  (see (10)) in CVEK were estimated to maximize the 

estimator’s cross-validation stability. The optimality of such method in terms of the power 

of the hypothesis test has not been fully investigated. It is desirable to develop an optimal 

estimation procedure for the ensemble weights ud d = 1
D  that maximizes the power of the 

hypothesis test, in a manner similar to (14). Given such a procedure, it is also of theoretical 

interest to compare the difference between the ensemble weights generated by maximizing 

cross-validation stability to those generated by maximizing the power of the test in both 

finite samples and asymptotically.
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Algorithm 1 Cross Validated Ensemble of Kernels (CVEK)
1:

procedure CVEK

Input: A library of kernels kd d = 1
D , Data y, X, x

Output: Ensemble Kernel Matrix K

#  Stage 1:  Estimate λ and CV error for each kernel

2:

for   d = 1 to D   do

3:

Kd = Kd/tr Kd

4:

λd = argmin CV λ Kd

5:

ϵd = CV λd Kd

6:

end for

#  Stage 2:  Estimate ensemble weights uD × 1 = u1, …, uD

7:

u = argmin
u ∈ Δ

∑
d = 1

D
udϵd

2
where Δ = u u ≥ 0, u 2

2 = 1

#  Stage 3:  Assemble the ensemble kernel matrix Kens

8:

A = ∑
d = 1

D
μdAλd, kd

9:

UA, δA = spectral_decomp A

10:

λK = min 1, ∑
k = 1

n δA, k
1 − δA, k

−1
, min λd d = 1

D

11:

K = λK *UA diag
δA, k

1 − δA, k
UA

T

12:

end procedure
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Fig. 1. 
Estimated P p < 0.05  (y-axis) as a function of Interaction Strength δ∊ [0,1] (x-axis) for n 

= 200 and p1 = p2 = 3. Sky Blue: Linear (Solid) and Quadratic (Dashed) Kernels, Black: 

RBF-Median (Solid) and RBF-MLE (Dashed), Dark Blue: Matérn Kernels with ν = 1
2 , 3

2 , 5
2 , 

Purple: Neural Network Kernels with σ = 0.1,1,10, Red: CVEK based on RBF (Solid) and 

Neural Networks (Dashed). Horizontal line marks the test’s significance level (0.05). When 

δ = 0, P  should be below this line.
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Fig. 2. 
Interaction between joint mixture and macronutrient by principal components The top 3 PCs 

for pollutants accounts for 42.60%, 37.34%, 20.05% of total variation, The top 3 PCs for 

macro accounts for 63.54%, 28.46% and 7.36% of total variation.
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Fig. 3. 
Interactions between joint mixture and selected principal components in other four nutrition 

groups (i.e. Mineral, Vitamin A, Vitamin B and Other Vitamins).
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Table 1

List of kmodel’s considered in the numeric study

Kernel Family Kernel Function
Model
Name Parameter Value

Polynomial 1 + xTx′ d
Linear d = 1

Quadratic d = 2

Gaussian RBF
exp − x‐x′ 2/σ2

RBF-MLE σ = argmax(ML(σ))

RBF-Median σ = median({|| xi – xj ||}i≠j)

Matérn
21 − ν
Γ v 2v r vKv 2vσ r

Matérn 1/2 v = 1/2

Matérn 3/2 v = 3/2

Matérn 5/2 v = 5/2

Neural Network

2
π ∗ sin−1 2σxTx′

1 + 2σxTx 1 + 2σx′Tx′ NN 0.1 σ = 0.1

NN 1 σ = 1

NN 10 σ = 10

CVEK
K=λK * UAdiag

δA, k
1 − δA, k

UA
T

CVEK-RBF log(σ) ∊{−2, −1, 0,1, 2}

CVEK-NN σ ∊{0.1,1,10,50}
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Table 2

p – value for Nutrient - Environment interaction test with joint As, Pb, Mn mixture

Model Nutrient Group

macro mineral vitamin A vitamin B vitamin, other

CVEK-NN 0.1442 0.0456 0.0135 0.0672 0.0315

CVEK-RBF 0.1257 0.0270 0.0124 0.0541 0.0288

iSKAT 0.2530 0.0905 0.0442 0.1299 0.0459

GKM 0.2081 0.0707 0.0297 0.1075 0.0391

GE-spline 0.1167 0.2080 0.0745 0.2562 0.2133
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