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Abstract: The coronavirus 2019 pandemic has affected many healthcare systems worldwide. While
acute respiratory distress syndrome (ARDS) has been well-documented in COVID-19, there are
several cardiovascular complications, such as myocardial infarction, ischaemic stroke, and pulmonary
embolism, leading to disability and death. The link between COVID-19 and increasing thrombogenic-
ity potentially occurs due to numerous different metabolic mechanisms, ranging from endothelial
damage for direct virus infection, associated excessive formation of neutrophil extracellular traps
(NETs), pathogenic activation of the renin-angiotensin-aldosterone system (RAAS), direct myocardial
injury, and ischemia induced by respiratory failure, all of which have measurable biomarkers. A
search was performed by interrogating three databases (MEDLINE; MEDLINE In-Process and Other
Non-Indexed Citations, and EMBASE). Evidence from randomized controlled trials (RCT), prospec-
tive series, meta-analyses, and unmatched observational studies were evaluated for the processing
of the algorithm and treatment of thromboembolic disease and cardiac thrombotic complications
related to COVID-19 during SARS-CoV-2 infection. Studies out with the SARS-Cov-2 infection period
and case reports were excluded. A total of 58 studies were included in this analysis. The role of the
acute inflammatory response in the propagation of the systemic inflammatory sequelae of the disease
plays a major part in determining thromboembolic disease and cardiac thrombotic complication in
COVID-19. Some of the mechanisms of activation of these pathways, alongside the involved biomark-
ers noted in previous studies, are highlighted. Inflammatory response led to thromboembolic disease
and cardiac thrombotic complications in COVID-19. NETs play a pivotal role in the pathogenesis of
the inflammatory response. Despite moving into the endemic phase of the disease in most countries,
thromboembolic complications in COVID-19 remain an entity that substantially impacts the health
care system, with long-term effects that remain uncertain. Continuous monitoring and research
are required.

Keywords: SARS-CoV-2 infection; COVID-19; coronary artery thrombosis; neutrophil extracellular
traps (NETs)

1. Introduction

The coronavirus infection 2019 (COVID-19) occurred at the beginning of 2020, causing
a devastating global pandemic and placing the health systems of high-income countries in
crisis mode. We know that the morbidity and mortality associated with the development
of COVID-19 are generally heralded by the onset of acute respiratory distress syndrome
(ARDS) and multiorgan failure. Cardiovascular complications, such as myocardial in-
farction, ischaemic stroke, and pulmonary embolism (PE), may occur in patients, as well.
Complications can progress to severe disabilities and even death [1–6]. Early on, during
the COVID-19 pandemic, an increased frequency of arterial and venous thrombosis was
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recorded in many patients, which has been linked to the devastating systemic inflammation,
combined with immobility and the creation of a prothrombotic context favored by the
release of cytokines [7–12]. Thromboembolic disease (TED) is one of the crucial factors in
causing increased cardiovascular risks in patients with COVID-19 [9,10,13–21].

The data revealed a high thromboembolic complication rate for patients requiring
ICU admission, albeit with some variability. A total of 25% of TED cases occurred in
the forms of symptomatic diseases, while 69% were diagnosed with surveillance venous
ultrasound [9,14,16–18]. A reasonable proportion of patients developed microthrombotic
processes in situ, raising a crucial key point concerning the possible genesis of endothelial
damage for direct virus infection, as has been reported [22–24]. Some problems emerged
immediately, thus complicating the clinical management of patients. In the first place, a
quantification of the risk of cardiovascular complications immediately appeared very diffi-
cult because it was linked the heterogeneity of the patient population with COVID-19 to
the reports of cases that included limited sample sizes, restrictions on intensive care assess-
ments, non-homogeneous outcome definitions, and the application of different thrombo-
prophylaxis models. Second, although recommendations for administering antithrombotic
therapy to hospitalized patients with COVID-19 to prevent thromboembolic cardiovascular
events were put in place early [1,7–9], evidence quickly emerged that a subgroup of patients
experienced arterial and venous events, despite the appropriate use of thromboprophylaxis
standards [1,25–29].

It has been suggested that patients who manifest organ dysfunction for COVID-19, due
to severe SARS-CoV-2 infection disclose, an associated excessive formation of neutrophil ex-
tracellular traps (NETs) led to vascular injury. Evidence from autopsies reports highlighted
the role of mechanical vessel obstruction mediated by the formation of NET aggregates
as primary movers in the pathogenesis of COVID-19 [30]. Our knowledge suggests that
acute cardiac injury is a common complication in patients with severe COVID-19, thus
contributing to the mortality of patients with severe SARS-CoV-2 infection [3]. In these
patients, the onset of ST-elevation myocardial infarction (STEMI) occurs as a severe cardiac
manifestation of the disease [31]. However, the intrinsic mechanism leading to coronary
thrombosis in COVID-19 has not been fully explained.

Another point of discussion is the persistence of weariness, migraine, dyspnea, heart
abnormality, cognitive and attention impairments, sleep disorders, post-traumatic stress
dysfunction, muscle discomfort, and concentration difficulties, which characterized the
clinical symptoms in patients with long COVID-19. Although, under the molecular profile,
the renin-angiotensin-aldosterone system (RAAS) is decisively involved in the pathogenesis
of COVID-19 taking the stage, since the development of the acute phase of the viral infection,
RAAS seems to also play a crucial role in the pathogenesis of long-term COVID, due to its
action on different organs and tissues [32,33].

To foster a broader understanding of cardiovascular complications that occurred in
COVID-19 and provide a guide for clinicians, we discuss the current evidence base, in
regard to the mechanisms that support thromboembolic disease and cardiac thrombotic
complications during the spread of SARS-CoV-2 in the uninfected population and involving
asymptomatic and symptomatic patients. An evidence-based algorithm for the treatment of
thromboembolic disease and cardiac thrombotic complications during COVID-19 infections
was processed (Figure 1).

The proposed systematic review was registered with the Open Science Framework (OSF)
Registry, at the following address: https://osf.io/dm57g (accessed on 15 September 2022).

https://osf.io/dm57g
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Figure 1. SARS-CoV-2 has spread with dissimilarity rates of the infection among population, and it 
has been characterized by distinct case fatality rates, across various regions and countries. Inflam-
matory response, increased age, and bedridden status, which are more frequently observed in se-
vere coronavirus disease 2019 (COVID-19), may contribute to thrombosis and adverse outcomes. 
Abbreviations: CTC, cardiac thrombotic complication; SARS-CoV-2, severe acute respiratory syn-
drome-coronavirus-2; TED, thromboembolic disease. 

2. Search Method and Systematic Literature Review 
In January 2022, databases (MEDLINE; MEDLINE In-Process and Other Non-In-

dexed Citations, and EMBASE) were searched, using the terms “SARS-CoV-2,” “COVID-
19,” “thromboembolic disease”, ” venous thromboembolic disease”, “COVID-19 venous 
thromboembolic”, “cardiac thrombotic complication”, “COVID-19 cardiac thrombotic 
complication”, “COVID-19 myocardial ischemia”, “neutrophil extracellular traps”, and 
“COVID-19 neutrophil extracellular traps”. For these studies, abstracts of the included 
manuscripts were considered and agreed upon. The present review focuses on data from 
randomized controlled trials (RCT), prospective series, meta-analyses, and unmatched ob-
servational studies that were considered for the processing of the algorithm for the treat-
ment of thromboembolic disease and cardiac thrombotic complication inflammatory dur-
ing SARS-CoV-2 infection. Data were extracted from the main publication, and searches 
were performed by two independent researchers (P.N, SSAS, using the blind method). A 
third independent reviewer estimated pertinence (FN). No funding was received for this 
study. The review was not formally registered. The protocol was not prepared. The au-
thors have no conflicts of interest to declare. PRISMA flow diagram for systematic review 
and PRISMA checklist are reported in Figure 2 and Supplementary Table S1. 

Figure 1. SARS-CoV-2 has spread with dissimilarity rates of the infection among population, and
it has been characterized by distinct case fatality rates, across various regions and countries. In-
flammatory response, increased age, and bedridden status, which are more frequently observed
in severe coronavirus disease 2019 (COVID-19), may contribute to thrombosis and adverse out-
comes. Abbreviations: CTC, cardiac thrombotic complication; SARS-CoV-2, severe acute respiratory
syndrome-coronavirus-2; TED, thromboembolic disease.

2. Search Method and Systematic Literature Review

In January 2022, databases (MEDLINE; MEDLINE In-Process and Other Non-Indexed
Citations, and EMBASE) were searched, using the terms “SARS-CoV-2,” “COVID-19,”
“thromboembolic disease”, ” venous thromboembolic disease”, “COVID-19 venous throm-
boembolic”, “cardiac thrombotic complication”, “COVID-19 cardiac thrombotic complica-
tion”, “COVID-19 myocardial ischemia”, “neutrophil extracellular traps”, and “COVID-19
neutrophil extracellular traps”. For these studies, abstracts of the included manuscripts
were considered and agreed upon. The present review focuses on data from randomized
controlled trials (RCT), prospective series, meta-analyses, and unmatched observational
studies that were considered for the processing of the algorithm for the treatment of throm-
boembolic disease and cardiac thrombotic complication inflammatory during SARS-CoV-2
infection. Data were extracted from the main publication, and searches were performed by
two independent researchers (P.N, SSAS, using the blind method). A third independent
reviewer estimated pertinence (FN). No funding was received for this study. The review
was not formally registered. The protocol was not prepared. The authors have no conflicts
of interest to declare. PRISMA flow diagram for systematic review and PRISMA checklist
are reported in Figure 2 and Supplementary Table S1.
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Figure 2. PRISMA 2020 flow diagram. Figure 2. PRISMA 2020 flow diagram.

3. Results

Results focused on the pivotal mechanism of pathogenesis and transmission of SARS-
CoV-2 and provided evidence insight into the hemostasis parameters and thromboembolic
disease during COVID-19. Again, substantial evidence emerged regarding the role of
SARS-CoV-2 in causing heart disease (Table 1).
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Table 1. Characteristics of the included studies. Abbreviations: DAD, diffuse alveolar damage; SOFA,
Sequential Organ Failure Assessment; other abbreviations in other figures.

First Author/Year Ref Type of Study Number of Patients Mean
Age, years Finding

Klok (2020)
Thromb. Res. [9]

Retrospective
Single Center
(Netherlands)

184 64 (12)

Higher incidence (31%) of
TED in ICU patients. VTE in

27% (95%CI 17–37%) and
arterial thrombotic events in

3.7% (95%CI 0–8.2%).

Tang (2020)
J. Thromb. Haemost [11]

Prospective
Single Center
Wuan (China)

183 54.1 ± 16.2

Elevated D-dimer and FDP
are common in deaths with

NCP fibrin degradation
product (FDP) novel

coronavirus pneumonia
(NCP).

Cui (2020)
J. Thromb Haemost [14]

Prospective
Single Center
Wuan (China)

81 59.9 (14.1)

Higher incidence of VTE
(25%) in severe NCP, with

poor prognosis.
High-risk groups of VTE
identified for increased

D-dimer.

Klok (2020)
Thromb Res. [17]

Retrospective
Single Center
(Netherlands)

184 64 (12)

Higher cumulative incidence
of thrombotic complications
in critically ill patients with
NCP. Total 95% confidence

interval [CI] 41–57%.
Pulmonary embolism (PE)

(65/75; 87%).

Lodigiani (2020)
Thromb Res. [15]

Prospective
Single Center
Milan (Italy)

388 61 (55–69)

High rate of TED within 24 h
of admission. High rate of

positive VTE imaging
suggested to improve

specific thromboprophylaxis.

Middeldorp (2020)
J Thromb Haemost.

[20]

Prospective
Single Center
Amsterdam

(Netherlands)

75 62 (10)
Higher risk of VTE in ICU

patients 42% (95% CI 30–54)
at 21 days.

Tang (2020)
J. Thromb Haemost [29]

Prospective
Single Center
Wuan (China)

449 65.1 ± 12.0

Anticoagulant therapy,
mainly using low molecular
weight heparin, is associated

with better prognosis. SIC
criteria were relevant or
D-dimer were markedly

elevated.

Huang (2022)
Lancet Respir Med. [33]

Retrospective
Single Center
Wuan (China)

2469 57.0 (48.0–65.0)

Within 2 years, COVID-19
survivors had longitudinal
improvements in physical

and mental health; however,
this population had a

remarkably lower health
status.

Wu (2020)
JAMA [34]

Retrospective
multicenter

(China)
72,314 30 to 79 years of age

(87%)

Draconian measures may be
considered to limit the

spread of infection.
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Table 1. Cont.

First Author/Year Ref Type of Study Number of Patients Mean
Age, years Finding

Wu (2020)
JAMA Intern. Med.

[35]

Retrospective
Multicenter

(China)
201 51 (43–60)

Older had greater risk of
progression toward ARDS

and death HR, 6.17; 95% CI,
3.26–11.67. Higher D-dimer
HR, 1.02; 95% CI, 1.01–1.04.

Zhou (2020)
Lancet [36]

Retrospective
Multicenter

(China)
191

56 (46–67)
Non-survivor 69

(63–76)
Survivor 52 (45–58)

Older age is an increased risk
factors (p < 0.0001), as well

high SOFA score and
d-dimer greater than

1 µg/mL These factors can
identify poor prognosis at an

early stage.

Lymperaki (2022)
Medicines [37]

Prospective
Single center

199
Non COVID (60)

COVID (139)

Non COVID
9–89

COVID
28–91

Biomarkers, such as vitamin
B12 (p = 0.0029), ROS

(p < 0.0001), and albumin
(p = 0.046), are useful as

possible prognosis tools for
an early diagnosis.

Garma (2022)
Sci. Rep. [38]

Prospective
Single center 22 ACE-2 was not expressed by

infected or control platelets.

Lippi (2020)
Clin. Chim. Acta. [39]

Retrospective
Multicenter
(Study level

meta-analysis)

1779 38–67

Low platelet count is
associated with increased
risk of severe disease and
mortality in patients with

COVID-19.

Varikasuvu (2021)
Sci. Rep. [40]

Retrospective
Multicenter
(Study level

meta-analysis)

Unadjusted 26,960
Adjusted 15,653 41–73

Higher D-dimer levels
provide early assess

COVID-19 patients at risk for
disease progression and

mortality outcomes.

Du (2021)
Int. J. Clin. Pract. [41]

Retrospective
Multicenter
(Study level

meta-analysis)

1430
Non severe COVID

(1025)
Severe COVID (378)

Non severe COVID
29–74

Severe COVID
41–83

Severe COVID-19 patients
reveal a higher concentration
of D-dimer, when compared

with non-severe patients.

Han (2020)
Clin Chem Lab Med [42]

Prospective
Single Center
Wuan (China)

94

Patients with SARS-CoV-2
reveal significant changes in

coagulation function, as
compared with healthy

people. Monitoring D-dimer
and FDP values may be

helpful to identify severe
cases.

Yang (2020)
Lancet Respir Med. [43]

Retrospective Single
Center

Wuan (China)

710
52 critically 59·7 (13·3)

Older patients (>65 years)
with comorbidities and

ARDS are at increased risk of
death.

Gao (2020)
J. Med. Virol. [44]

Retrospective Single
Center

Wuan (China)
43

Severe COVID
45.20± 7.68

Mild COVID
42.96± 14.00

IL-6 and d-D tandem testing
predict severity of COVID
(sensitivity 93.3%, for IL-6

and 96.4%.d-D).
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Table 1. Cont.

First Author/Year Ref Type of Study Number of Patients Mean
Age, years Finding

Wang (2020)
JAMA [45]

Retrospective Single
Center

Wuan (China)
138 56 (42–68)

A total of 41% of patients
with COVID-19 have

presumed hospital-related
transmission. A total of 26%
of patients received ICU care,

and mortality was 4.3%.

Yang (2020)
J. Thromb Haemost [46]

Retrospective Single
Center

Wuan (China)
1476

Survivors
56 (46–65)

Non survivors
67 (59–75)

Thrombocytopenia is
marked in patients with

COVID-19, and it is
associated with increased

risk of in-hospital mortality.

Nappi (2022)
J. Clin. Med. [47]

Retrospective
Multicenter

(Systematic review)
38,485 (29–86)

NETs are implicated in the
pathogenesis of the

inflammatory response
during COVID-19, and

long-term effects requires
ongoing monitoring and

research.

Guo (2020)
JAMA cardiology

[48]

Retrospective Single
Center

Wuan (China)
187 58.50 (14.66)

Myocardial injury is
significantly associated with
fatal outcome of COVID-19

with increased cardiac
dysfunction and

arrhythmias.

Zhu (2021)
Immun. Inflamm. Dis.

[49]

Retrospective
Multicenter
(Study level

meta-analysis)

15,354 40 (1–96)

Hypertension,
cardiovascular disease, acute

cardiac injury, and related
laboratory indicators are

associated with the severity
of COVID-19.

Lala (2020)
JACC [50]

Prospective single
center 985 66.4 (18–100)

Myocardial injury is
prevalent among patients

hospitalized with COVID-19.
Low levels of troponin are

revealed.

Zuo (2020)
Sci. Transl. Med. [51]

Prospective single
center 172 61 ± 17

(25–95)

Patients hospitalized with
COVID-19 reveal transient

positivity for APL antibodies.
APL autoantibodies are
potentially pathogenic.

Zuo (2020)
JCI Insight [52]

Prospective single
center 80 61 ± 15

(29–91)

Sera from patients with
COVID-19 disclose NET

release.

Bryce et al. (2021)
Mod. Pathol [53]

Retrospective
Single center 100 68

(29 to 94)

A total of 82 cases were DAD.
Hemphagocytosis,

higher cytokines IL-6, IL-8,
and TNFα.

Schaefer et al. (2020)
Mod. Pathol. [54]

Retrospective
Single center 7 66

(50 to 77)

A total of 5 cases diffused
DAD. Two cases alveolar

injuries. SARS-CoV-2
infection involving epithelial

lung cell in acute phase.
No endothelial cell infection.
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Table 1. Cont.

First Author/Year Ref Type of Study Number of Patients Mean
Age, years Finding

Delorey et al. (2021)
Nature [55]

Retrospective
Single center 32 30 to 89

Higher viral RNAs in
phagocytic mononuclear and

endothelial lung cells.
Transcriptional alterations in

multiple cell types in the
heart tissue.

Lindner et al. (2020)
JAMA Cardiol. [56]

Prospective
Single center 39 68

(78–89)

SARS-CoV-2 directly infects
the myocardium.

Absence of inflammatory cell
infiltrates in patient with

SARS-CoV-2 infection.
Higher cytokine response.

Varga et al. (2020)
Lancet [22]

Retrospective
Single center 3 63

(58–61)

Lymphocytic endotheliitis in
lung, heart, kidney, and liver.
Apoptotic bodies in the heart;

mononuclear cells in lung.

Ackerman et al.
(2020)

N. Engl. J. Med. [24]

Retrospective
Single center

14
SARS-CoV-2 7

H1N1
7

68 ± 9.2 years
(female)

80 ± 11.5 years
(male)

Alveolar capillary
microthrombi 9 times more

in SARS-CoV-2. Higher CD3,
CD4, and CD-8 positive T

cells in SARS-CoV-2.
Lower neutrophils (CD15).

Blasco (2020)
JAMA Cardiology [57]

Prospective
Single center 55

COVID
62 (14)

Non COVID
58 (12)

In patients with COVID-19
and myocardial infarction,
NETs seem to play a major
role in the pathogenesis of

STEMI.

Chen (2020)
Lancet [58]

Retrospective
Multicenter center

Wuan (China)
99 55.5 (13.1)

The COVID-19 infection is
more likely to affect older
males with comorbidities,

resulting in severe and even
fatal acute respiratory

distress syndrome.

Shi (2020)
JAMA Cardiol. [59]

Retrospective
Multicenter center

Wuan (China)
416 64 (21–95)

Cardiac injury is a common
evidence among hospitalized
patients with COVID-19, and

it is associated with higher
risk of in-hospital mortality.

Szekely (2020)
Circulation [60]

Prospective
Single center 100 66.1 ± 17.2

Preservation of LV systolic
function is in the majority of

COVID-19 patients.
Impairement of LV diastolic
and RV functions. Elevated
troponin and poorer clinical

grade are associated with
worse RV function.

Xie (2022)
Nat. Med. [61]

Retrospective
Multicenter center 153,760 61.42 (15.64)

Risk and 1-year burden of
cardiovascular disease in

survivors of acute COVID-19
are substantial.
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Table 1. Cont.

First Author/Year Ref Type of Study Number of Patients Mean
Age, years Finding

Guan (2020)
NEJM [61]

Retrospective
Multicenter center

Wuan (China)
1099 47 (35.0–58.0)

COVID-19 spread rapidly
throughout China and

caused varying degrees of
illness. Many patients

without fever did not have
abnormal radiologic

findings.

COVIDSurg
Collaborative (2022)

Anaesthesia [62]

Prospective
Multicenter 128,013 55.6 (18–49)

High risk of thromboembolic
complication in COVID-19

patients.

COVIDSurg
Collaborative (2021)

Anaesthesia [63]

Prospective
Multicenter 96,454

Isolation before elective
surgery might be associated
with a small, but clinically

important, increased risk of
postoperative pulmonary

complications.

COVIDSurg
Collaborative (2021)

Br. J. Surg. [64]

Prospective
Multicenter 56,589 (18–69)

As global roll out of
SARS-CoV-2 vaccination

proceeds, patients needing
elective surgery should be

prioritized ahead of the
general population.

COVIDSurg
Collaborative (2021)

Anaesthesia [65]

Prospective
Multicenter 140,231 (31.4–87.4)

After a ≥7 week delay in
undertaking surgery,

following SARS-CoV-2
infection, patients with

ongoing symptoms had a
higher mortality than

patients whose symptoms
had resolved or who had
been asymptomatic 6.0%
(95% CI 3.2–8.7) vs. 2.4%
(95% CI 1.4–3.4) vs. 1.3%

(95% CI 0.6–2.0).

4. Pathogenesis and Transmission

SARS-CoV-2 consists of a single-strand RNA coronavirus, which uses the angiotensin-
converting enzyme (ACE) as the point of entry to infect human cells [66]. ACE is greatly
expressed in lung alveolar cells, cardiac myocytes, the vascular endothelium, and other
cells. SARS-CoV-2 expresses the glycoprotein S protein, with a peak of 180 kDa (S), which
serves to identify the ACE2 receptor. Protein S is involved in cellular infection, with two
crucial roles: it promotes binding to ACE2 from the amino-terminal region and promotes
the fusion of viral and cell membranes across the carboxy-terminal region. Furthermore,
lung cell infection is determined by the proteolytic activation of spikes that occur at a
host-mediated polybasic furin cleavage site. It is important to note that the furin cleavage
site is also present in the influenza A virus, but it is not expressed by SARS-CoV [67–69].

SARS-CoV-2 infection determines an involvement of the vascular endothelium with
the associated endotheliitis, thrombosis, and marked infiltration of inflammatory cells.
In patients with severe clinical evolution, a rupture of the vascular barrier and edema
occur [22]. The resulting vascular angiogenesis, either intussusceptive or germinative,
differentiates the pulmonary pathobiology of patients who have COVID-19 from those
of severe influenza virus-related infections [24]. Immunohistochemistry revealed a high
expression of ACE2 in alveolar epithelial and endothelial capillary cells in the autopsy
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findings of patients who died from severe forms of COVID-19. Furthermore, the presence
of ACE2-positive lymphocytes, as well as the evidence of an interaction between the ACE2
receptor and immune cells, has been detected in the perivascular tissue or the alveoli of the
lungs of patients infected with SARS-CoV 2 [22–24].

In particular, patients with COVID-19 had well-defined and characteristic pulmonary
vascular alterations. Evidence from autopsy controls reported diffuse alveolar damage
with the infiltration of perivascular T cells. Histopathological examinations described
the severe endothelial injury associated with the presence of intracellular viruses and
destroyed cell membranes. The pulmonary vessels manifest that diffused thrombosis with
microangiopathy and the homogeneous accumulation of fibrin was necessary. These lesions
are associated with marked interstitial edema and early interalveolar organization [22,24].

From a cytological point of view, patients who died from COVID-19 showed CD3
T cells and high levels of CD4-positive T cells in the lungs. A significant amount of
CD8-positive T cells were recorded, as well as a substantial increase in neutrophils (CD15
positive) [24].

SARS-CoV-2 infection leads to an acute inflammatory stimulus, which can, among
other things, destabilize the atherosclerotic plaque and induce acute myocardial infarction
(AMI). A particular role during SARS-CoV-2 infection is played by the so-called “cytokine
storm” [1,23]. In particular, cytokines, such as IL-1 α, IL-1β, IL-6, and TNF-α, can per-
turb all the protective functions of the normal endothelium and enhance the pathological
processes. The pathophysiological mechanism of a cytokine storm is closely related to
the self-induction of the proinflammatory cytokine IL-1. IL-1, by inducing its own gene
expression, determines an amplification of its production levels, thus leading to a storm of
cytokines [57,70,71]. IL-1 also induces the expression of other proinflammatory cytokines,
including TNF-α and IL-1, as well as leukocyte invasion. The latter induces the production
of chemotactic molecules, including chemokines, causing the penetration of inflammatory
cells into the tissues [72]. Meanwhile, IL-1 stimulates the production of IL-6. IL-6 is a
27KD cytokine involved in a variety of immune and inflammatory responses; however,
plasma levels of IL-6 under physiological conditions are generally very low. During acute
infection, a large variety of cells, including macrophages, B, and T lymphocytes, increase
the production of IL-6. Again, IL-6 offers a stimulus to the acute phase response. It induces
the synthesis of fibrinogen, the precursor of clots, PAI-1 (an important inhibitor of our
endogenous fibrinolytic mediators), and C-reactive protein (a biomarker of inflammation
closely linked to COVID-19). During infection, the endothelium becomes activated, re-
sulting in the loss of barrier function, expression of adhesion molecules, such as soluble
ICAM-1 (intercellular adhesion molecule 1) and soluble VCAM-1 (vascular cell adhesion
molecule 1), release of VWF (which allows platelet binding), the expression of TF (which
activates the coagulation system) [1,23,34–37,73].

The transmission mechanism of SARS-CoV-2 is mainly mediated by the inhalation of
viral particles that penetrate the respiratory tract [66]. Its contagiousness also depends on
the survival of the virus for 24/72 h on the surfaces, in relation to the type of surface, which
allows for the possibility of fomite transmission [69]. COVID-19 occurs with initial symp-
toms similar to other viral syndromes, including fever, fatigue, headache, cough, shortness
of breath, diarrhea, and myalgia. Likewise, regarding the other zoonotic coronaviruses that
preceded it, such as SARS and Middle East respiratory syndrome, COVID-19 also holds the
peculiarity of causing severe illness, thus promoting acute respiratory disease syndrome
(ARDS), systemic inflammatory response syndrome (SIRS), multiorgan implication, and
shock [34]. No age group is exempt from the development of serious diseases and risk
of serious complications. However, patients of older age and with comorbidities, such
as cardiovascular disease, have a higher risk of developing more severe forms of the dis-
ease [35], regarding the most common laboratory changes lymphopenia and increase in
lactate dehydrogenase occurring in patients with COVID-19 [73]. Again, the elevation of
pro-inflammatory markers, such as C-reactive protein, D-dimer, ferritin, and interleukin-
6 (IL-6), occur as prominent variations [1,15,36,37]. In particular, the levels of IL-6 can
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be related to the more complicated forms of the disease and presence of a procoagulant
profile [1,15].

The spread of SARS-CoV-2 in the world population has taught us that there is wide
international variability in the prevention measures applied, and the control strategies
have been different between local authorities. A different availability in diagnostic tests
and inhomogeneous access to treatment was also noted in therapeutic strategies, as well
as a variability in results reported for COVID-19. Given the emergency of these concerns,
we have witnessed a discrepancy between the diagnosed cases, victims, and mortality
rates. Furthermore, only today are large cohorts available for extensive evaluation, so
the evidence existing two years prior, including data reporting on thrombotic and cardiac
complications, is based on a larger population.

5. Hemostasis Parameters during COVID-19

COVID-19 determines various haemostatic abnormalities; among these, the most frequent
are mild thrombocytopenia [38,39,74,75] and increased levels of D-dimer [40,41,76,77]. Patients
who experience this type of heamostatic abnormality develop an increased risk of being
admitted to intensive care for mechanical ventilation. For these individuals, the risk of a
nefarious evolution of the disease and death is substantial. Diagnostic certainty, based on
other tests and related data produced, was less evident and often contradictory [39,42,77,78].
The crucial key point concerns the variability in disease severity, which is associated with
the prolongation of both the prothrombin time (PT) and international normalized ratio
(INR) [1,36,43]. Furthermore, an elongation of thrombin time (TT) was recorded in patients
with COVID-19 [35,44,45], and they variably disclosed a trend toward noticeable changes
in activated partial thromboplastin time (aPTT) [1,35,45,79]. A study published in the
early stages of the pandemic spread [11] found that, in a cohort of 183 patients with
COVID-19, 21 (11.5%) died. Considerable statistical evidence was disclosed between
patients who died and those who survived, regarding increased levels of D-dimer and
fibrin degradation produced, showing levels approximately 3.5 and 1.9 times, respectively,
with a PT prolongation of 14% (p < 0.001). It is important to underline that, by examining
data from the International Society for Thrombosis and Hemostasis (ISTH) [80] for DIC,
these were in line with the mortality from DIC in deceased COVID-19 patients, which
reached 71% of the total, compared to 0.6% of the survivor population. COVID-19 has
taught us that these haemostatic changes can induce some forms of coagulopathy that
can predispose to thrombotic events, although the complex mechanisms that favor them
deserve further consideration, especially with regard to the formation of microthrombi and
production of NETs (Table 2).

Table 2. The 2020 case-control retrospective studies comparing risk factors for thrombosis develop-
ment in hospitalized patients with severe COVID-19 (controls) versus hospitalized patients with both
severe infection and DVT or ATE (cases). VTE: venous thromboembolism, ATE: arterial thromboem-
bolism, WBCs: white blood cells, INR: international from Nappi et al. [81], Metabolites, 25 May 2021;
11(6):341.

Authors
Total SARS-CoV-2

+ Hospitalized
Patients

VTE, ATE
Cases

Risk Factors More
Present in Cases

(p < 0.05)

Risk Factors Similar in
Cases and Controls

(p > 0.05)
Conclusions

Stoneham et al.,
2020
[82]

208 21 High WBCs, high
D-dimer, high INR. APTT ratio, fibrinogen.

Comorbidities were
not associated with a

higher risk of
thrombosis.

Monitoring of D-dimer
and anti-factor Xa

levels may be relevant
for management.
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Table 2. Cont.

Authors
Total SARS-CoV-2

+ Hospitalized
Patients

VTE, ATE
Cases

Risk Factors More
Present in Cases

(p < 0.05)

Risk Factors Similar in
Cases and Controls

(p > 0.05)
Conclusions

Zuo et al., 2020
[83] 44 11

High calprotectin,
markers of NETs

(myeloperoxidase-
DNA complexes)

high D-dimer,
high platelets.

Troponins, WBCs.

There was a significant
difference between

peak D-dimer,
calprotectin and cell

free DNA levels
between the
populations.

Zhang et al.,
2020 [84] 143 66

High WBCs, older
age,

low oxygenation
index, high rate of

cardiac injury,
CURB-65 score 3 to 5,

Padua score ≥ 4,
high D-dimer.

Platelets count.

COVID-19 is
suspected to cause an
additional risk factor

for DVT in
hospitalized patients.

Planquette
et al., 2020

[85]
1042 59

High CRP,
fibrinogen,

d-dimer. IMV.

Comorbidities:
BMI, previous VTE, ATE,

cancer, hypertension,
cardiovascular diseases.

No higher prevalence
for VTE risk factors in
cases group compared

to both cases and
control was found.

Altered coagulation
parameters were

found.

Trimaille et al.,
2020
[86]

289 49

High Improve score,
high WBCs, d-dimer,
low haemoglobin at

discharge.

Padua score of 4 or more,
CRP-

Lack of
thromboprophylaxis is
a major determinant of

VTE in non-ICU
COVID-19 patients.
Comorbidities were

not found to affect the
event occurrence.

Shah et al.,
2020
[87]

187 81 High troponins,
ferritin, d-dimer.

Platelets count, WBCs,
thromboelastography

parameters.

Elevated D-dimer,
ferritin, troponin and

white cell count at ICU
admission may reflect
undiagnosed altered
coagulation and be

used to identify
patients for CTPA.

Kolielat et al.,
2020
[88]

117 18
High d-dimer,

fibrinogen,
ferritin.

WBCs, platelets,
troponins,

Il-6.

Elevated d-dimer and
a less elevated
fibrinogen are

associated with DVT
despite conventional
thromboprophylactic

treatment.
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Table 2. Cont.

Authors
Total SARS-CoV-2

+ Hospitalized
Patients

VTE, ATE
Cases

Risk Factors More
Present in Cases

(p < 0.05)

Risk Factors Similar in
Cases and Controls

(p > 0.05)
Conclusions

Kampuori
et al., 2020

[89]
443 41

High d-dimer,
positive Wells

criteria,
bilateral infiltrates

on X-rays or CT scan,
mechanical
ventilation.

Wbcs, platelets, CRP,
Padua score, Geneva

score.

The combination of
Wells ≥ 2 score and

D−dimer ≥ 3000 ng/L
is a good predictor of

VTE at admission.
Hospitalization in the

ICU and especially
mechanical ventilation
were associated with

VTE occurrence.
The combination of

Wells’ score with the
D-dimer value at

admission can be a
useful tool to guide

empiric
anticoagulation

therapy.

Thromboembolic Disease Diagnosed in COVID-19 Patients

Platelets play a crucial role in viral infections, as has long been proven. Evidence
suggesting the presence of influenza virus type A (IAV) particles was recorded in the
platelets of patients with acute influenza infection. Once the IAV was embodied into the
platelets, TLR7-dependent C3 was released, with the subsequent activation of neutrophils,
as well as the extracellular neutrophil trap (NET) release [10,30]. Platelets interpret a
substantial role in maintaining vascular integrity, but they can trigger the mechanisms that
support thrombosis. More recently, the role of platelets in the immune response to viral
infections has been studied, focusing on its active involvement in the host’s immune
response [90,91]. The enormous amount of data available on the pathophysiological
mechanisms that support SARS-CoV-2 infection has clearly disclosed that, during the
viral infection, the risk of thrombosis is greater. A recent review discussed the potential
role of platelets in thrombosis in COVID-19, confirming the Chinese study that found a
close correlation between thrombocytopenia and risk of in-hospital mortality [46,90,91].

Studies have reported the incidence of VTE in patients with COVID-19 [1,27,28].
A Chinese retrospective study worked in this direction by revealing a percentage, i.e.,
25% (20 out of 81) of patients admitted to the ICU, in whom an accident of VTE occurred.
Of note, none of the patients had been managed with the use of VTE prophylaxis drugs [37].
Klok et al., in a multicenter study that included 184 patients with severe COVID-19, revealed
a percentage of 31% (95% confidence interval: 20% to 41%) of patients who developed an
accident of VTE. All patients were managed with VTE prophylaxis drugs, although the
authors observed underdosing in 2 of the 3 recruiting centers [9]. It cannot be ruled out
that VTE may go undiagnosed and unrecognized in patients with severe COVID-19. This
is an important aspect during the clinical evolution of COVID-19, as ARDS in patients
with COVID-19 are potentially the source of a vicious circle involving hypoxia, pulmonary
vasoconstriction, pulmonary hypertension, and right ventricular failure. The onset of
pulmonary embolism is an additional clinical event that often cannot be resolved (Figure 3).
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tions ICU, intensive care unit; PT, prothrombin time; TT, thrombin time. Ref [9–
11,17,27,28,30,35,36,39,42–46,67,75,76,79,80,90,91]. 
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of onset of SIRS, thus confirming the observations already reported in other viral infec-
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it can lead to severe forms of COVID-19 with cerebral infarction and bilateral limb ische-
mia in the setting of elevated antiphospholipid antibodies, in the context of elevated an-
tiphospholipid antibodies. The latter plays an important role in the pathophysiology of 
COVID-19-associated thrombosis, as observed during the formation of microthrombi and 
NETs [93–95]. We have reported the case of a 10-day right carotid artery thrombosis, de-
veloping an intermediate grade form of COVID-19 in a 47-year-old woman with no 
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19, as well as a correlation both with the localization of the infection in the liver, with 
relative hepatic dysfunction and suspected drug-induced liver injury (DILI) [96,97]. How-
ever, Teschke et al., with Roussel Uclaf Causality Assessment Method (RUCAM)-based 
DILI revealed that, in COVID-19 patients with the expressed clinical characteristics, its 
classification as a confounding variable was well-established. So, a new correct descrip-
tion of the characteristics of COVID-19 is required by removing the DILI characteristics as 
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Figure 3. Patients who are infected with SARS-CoV-2 and develop COVID-19 experience consistent
hemostatic abnormalities, of which, the most relevant comprise mild thrombocytopenia and increased
D-dimer levels, which are related with a greater risk of demanding the benefit of mechanical ventilation,
intensive care unit (ICU) admission, or death. Disease gravity may reveal variability of the modification
of other coagulative parameters, such as a prolongation of the PT, international, and TT. The increased
troponin level is associated with higher risk of STEMI and death. Abbreviations ICU, intensive care unit;
PT, prothrombin time; TT, thrombin time. Ref [9–11,17,27,28,30,35,36,39,42–46,67,75,76,79,80,90,91].

SARS-CoV-2 appears to exert haemostatic changes, both as a specific effect of the
infection and consequence of the cytokine storm, which has a catalytic effect on the rate
of onset of SIRS, thus confirming the observations already reported in other viral infec-
tions [46,90–92]. SARS-CoV-2 acts on several organs. For example, it has been shown
that it can lead to severe forms of COVID-19 with cerebral infarction and bilateral limb
ischemia in the setting of elevated antiphospholipid antibodies, in the context of elevated
antiphospholipid antibodies. The latter plays an important role in the pathophysiology
of COVID-19-associated thrombosis, as observed during the formation of microthrombi
and NETs [93–95]. We have reported the case of a 10-day right carotid artery thrombosis,
developing an intermediate grade form of COVID-19 in a 47-year-old woman with no
comorbidities and negative antiphospholipid antibody assay. Regression of the thrombus
was achieved after the application of the anticoagulant treatment [47]. However, further
investigation deserves the study of the haemostatic changes that emerged with COVID-19,
as well as a correlation both with the localization of the infection in the liver, with relative
hepatic dysfunction and suspected drug-induced liver injury (DILI) [96,97]. However,
Teschke et al., with Roussel Uclaf Causality Assessment Method (RUCAM)-based DILI
revealed that, in COVID-19 patients with the expressed clinical characteristics, its clas-
sification as a confounding variable was well-established. So, a new correct description
of the characteristics of COVID-19 is required by removing the DILI characteristics as
confounding [97].
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6. Cardiac Thrombotic Complication

Myocardial injury is a major cause of mortality from COVID. In a study performed in
Wuhan, China hospitals, a high percentage of mortality (70%) was reported in patients with
high cTnI levels [49]. Acute inflammation stimulus triggered by SARS-CoV-2 infection,
which was embedded in atherosclerotic plaque development, with progression toward
myocardial injury and acute coronary syndrome [1–4,48,49].

6.1. Myocardial Injury

Several studies based on COVID-19 cohort patients reported that increased troponin
levels suggest poor results [49,50,98–101]. High troponin C levels are not only an expression
of specific myocardial damage type 1 and 2 myocardial infarction (MI), but they are part
of a broader differential diagnosis [48] that extends to non-specific myocardial damage.
For example, increased troponin levels occur following renal impairment with troponin
accumulation), myocarditis, and pulmonary embolism (PE) [36,100,101]. On the contrary,
Lala et al. found that although myocardial damage was usual among patients who require
hospitalization for a clinically critical COVID-19; however, troponin concentrations were
generally recorded at low levels. Of significant impact is the increase in troponin C in
COVID-19 patients with coronary artery disease (CAD). Patients with cardiovascular
disease (CVD) were more likely to disclose myocardial disorder than patients without CVD.
Troponin augmentation among patients hospitalized with COVID-19 was associated with
a higher risk of death [48]. Concerns related to the increased level of natriuretic peptides
suggest its non-specificity, while the reported pulmonary embolism events should only be
included in the appropriate clinical context [102–104].

6.2. Acute Coronary Syndrome

Two independent studies have proven that myocardial injury in COVID-19 is sup-
ported by cardiac troponin levels or abnormal electrocardiography and echocardiography,
whose occurrence leads to a severe form of the disease. There is also a close correlation
between the more severe forms of COVID-19 with the diagnosis of higher troponin lev-
els. [6,49]. It is important to underline that not all cases of increased levels are attributable
to acute coronary syndrome (ACS), due to thrombosis. There have been several reports of
patients with COVID-19 who presented with ACS caused by rupture of an atheromatous
plaque (type 1 MI), thus paving the way for the role played by NETs in coronary thrombotic
complications [51,52,81,105–108]. Similar cases have been reported in patients infected with
the influenza virus or other viral diseases, and they have been related to a combination of
several processes, such as the development of a SIRS in the presence of localized vascular
or plaque inflammation [109–111].

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), induces thrombotic disease in both the venous and arterial
branches [112]. This process is orchestrated by the combination of the different players such
as inflammation, platelet activation, endothelial dysfunction, and stasis. Investigators have
suggested a crucial role played by extracellular neutrophil traps (NETs) in causing vascular
damage and organ dysfunction in severe cases of SARS-CoV-2 infection [51,52,81,105–109,113].
Similarly, studies from autopsy findings have supported the role of the mechanical obstruc-
tion of vessels mediated by NET aggregates as an essential key point in the pathogenesis
of COVID-19 [22,24,53–56,113,114]. Acute heart damage may occur commonly in patients
with severe COVID-19, and this complication contributes to increased mortality in this co-
hort of individuals [113]. The event that is attributable to elevated ST myocardial infarction
(STEMI) leads to a serious cardiac complication of the disease [4,31,57], and the intrinsic
mechanism by which coronary thrombosis occurs in COVID-19 has been studied since the
first phase of the SARS-CoV-2 pandemic [51,52].

Recently, Blasco et al. revealed evidence of NETs in coronary thrombi in patients in
which COVID-19 occurred in association with STEMI. The findings explained the intrinsic
mechanism that leads to coronary occlusion in patients who experienced STEMI, thus
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focusing on the crucial role of NETs in the pathogenesis of coronary thrombosis in the course
of COVID-19 [56]. Investigators disclosed an increased level of NETS in the thrombi of all
patients with COVID-19 in their thrombi. Importantly, the load of NETs was remarkably
greater than in patients with STEMI and without COVID-19 infection, from the previous
series reported by the same group. Evidence from immunohistochemical evaluation
suggested the composition of all thrombi was constituted by a higher amount of fibrin and
polymorphonuclear cells. The entirety of the lesion analyzed (thrombi, NETs, and cellular
infiltrate) did not show the presence of atheromatous plaques, unlike 65% of patients in the
non-infected group, who showed STEMI with evident atheromatous plaques. Furthermore,
Blasco et al. found that the percentage of plaque fragments in patient historical control
was close to that recorded in a previously published series of the same group 11, in which
142 patients were studied without STEMI occurring [56,57].

The work of Blasco et al. highlights some substantial key points between the presence
of STEMI, NETs, and thrombus formation. We know that coagulation changes are asso-
ciated with COVID-19, and these alterations suggest the presence of a hypercoagulable
state that could increase the risk of thrombotic complications [93]. In patients presenting
with COVID-19, the most typical modifications in blood coagulation parameters are an
augmentation of D-dimer concentration, moderate reduction in platelet count, and prolon-
gation of prothrombin time [112]. It is of note that, in the Blasco cohort, the patients with
STEMI did not report any marked alteration of the coagulation parameters described above,
except for one patient who presented with a high concentration of D-dimer. Likewise, this
study offers a plausible explanation for the important role of neutrophils and NETs in the
development of coronary thrombus in patients with COVID-19, despite the study being
supported by a small sample of individuals [56].

Whether there is a cause-and-effect relationship between circulating NETs dosage
and unfavorable clinical outcomes after STEMI has not yet been corroborated by solid
results. Langseth et al. determined the peripherally measured NET-specific components
and established a correlation with the clinical outcomes of STEMI by analyzing the serum
collected, on average, 18 h after PCI. Briefly, the observational cohort study enrolled pa-
tients who received PCI (n = 956) and suffering from STEMI and were followed for a
median of 4.6 years. [70] Investigators disclosed 190 events, such as heart failure hospital-
ization, reinfarction, unscheduled revascularization, stroke, or mortality. With the use of
the serum of patients’ double-stranded DNA (dsDNA), the more specific NETs markers,
i.e., myeloperoxidase-DNA and citrullinated histone, were quantified. As for the levels of
NETs markers, the authors did not notably disclose a dissimilarity between the cohorts
with/without a primary composite endpoint that comprised reinfarction, stroke, rehospital-
ization for heart failure, unscheduled revascularization >3 months after the index infarction,
or all-cause death rate, to any extent, occurring first. However, dsDNA levels were higher
(p < 0.001) in patients who died (n = 76), compared to survivors. Above-median dsDNA
was associated with an increased number of deaths (54 vs. 22, p < 0.001), and dsDNA
in the upper quartiles (Q) was associated with increased mortality. Instead, dsDNA was
weakly correlated with D-dimer (rs = 0.17, p < 0.001), while dsDNA levels were associated
with increased all-cause mortality. Again, in patients with STEMI, dsDNA was weakly
correlated with hypercoagulability [112].

Studies performed by Blasco et al. and Langseth et al. confirmed the pertinent role of
NETs in the pathogenesis of SARS-CoV-2 infection. These findings sustain the concept that
targeting intravascular NETs might be a relevant goal to the purpose of treatment of the
patient with STEMI and represents a practicable method to prevent coronary thrombosis in
patients with severe COVID-19 (Figure 4) [56,57,70].
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of disease may experience an acute illness or progression toward a long-term illness. Direct viral
infiltration or indirect inflammatory response, as well as adverse cardiac remodelling, can lead to
chronic heart and pulmonary disease. Abbreviations: COVID-19 indicates coronavirus disease 2019;
IL: interleukine; HF, heart failure; LDH, lactate dehydrogenase; PAI-1, plasminogen activator inhibitor
1; TNF, tumor necrosis factor.

7. Principles of Therapy of COVID-19 Heart Disease
7.1. COVID-19 and Antithrombotic Therapy in Occurring Acute Coronary Syndrome

Patients with a clinical picture consistent with ACS type 1 MI, due to plaque rup-
ture [99], according to international guidelines (European Society of Cardiology (ESC and
the American College of Cardiology (ACC)/American Heart Association (AHA)) received
dual antiplatelet therapy and a therapeutic-dose anticoagulant, except for those with con-
traindications [115–117]. It is of note that the use of antithrombotic drugs for parenteral
infusion does not lead to important interactions when COVID-19 experimental therapies
are used [118–120].

Several drugs administered as antiviral agents have been used to curb COVID-19,
especially to prevent the disease from evolving into more severe forms of the disease. Many
of these potential drugs have not demonstrated the proposed efficacy against COVID-
19. Particular attention has been paid to the clinical interactions that several of these
medications have antiplatelet or anticoagulant agents. The interaction of these drugs with
the coagulation system has already been studied in populations of patients who did not
experience COVID-19, thus revealing that their administration can lead to both increased
or reduced risks of thrombotic events or thrombocytopenia [117–122].

Among these substances, bevacizumab has been studied as a potential antiviral drug
against COVID-19. Bevacizumab, while working as a monoclonal antibody with the func-
tion of interfering with vascular endothelial growth factor, however, is associated with
an increased risk of adverse cardiovascular events, including myocardial infarction, cere-
brovascular accidents, and VTE [119,120]. The researchers also paid attention to the drug
fingolimod, which has immunomodulatory action and was tested for COVID-19; however,
its primary role is to reduce reperfusion injury and improve the outcomes in patients
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who developed acute stroke ischemia [121]. Although hydroxychloroquine has received
US Food and Drug Administration authorization for emergency use for the treatment of
COVID-19, it did not have substantial proof of efficacy and safety in exercising its prop-
erties as a substance with antithrombotic action, in particular, against antiphospholipid
antibodies [122].

7.2. Interaction between COVID-19 Investigational Therapies and Antiplatelet Medicaments

Many of the proposed therapies for the treatment of COVID-19 have revealed the exis-
tence of an interaction between these drugs and oral antiplatelet agents. Lopinavir/ritonavir
was among the first drugs to be used as antiviral agents for the treatment of COVID-19.
Lopinavir/ritonavir works as a protease inhibitor by interfering with the metabolism of
cytochrome P450 3A4 (CYP3A4). Although clopidogrel has a specific action mediated
by the active metabolite, which is mainly formed by CYP2C19. However, inhibition of
CYP3A4 may also lead to a reduction in the dose efficacy of clopidogrel [118].

Conversely, the inhibition of CYP3A4 may increase the effects of ticagrelor. There-
fore, particular caution should be considered when particular antiviral drugs, such as
lopinavir/ritonavir, are administered in combination with oral antiplatelet therapy. While
considering the possibility of setting P2Y12-based platelet function tests to guide the use of
clopidogrel or ticagrelor, however, available clinical data are scarce. The use of prasugrel,
as an alternative to antiplatelet therapy, which is not prone to negative interactions of the
type described, should be considered, after documenting an absence of contraindications
to its use [123–126]. As for Remdesivir, which acts as a nucleotide analogue inhibitor of
RNA-dependent RNA polymerase, the investigators revealed its function as an inducer
of CYP3A4; however, dose adjustments of oral antiplatelet therapy are not currently rec-
ommended in conjunction with Remdesivir administration. Of substantial importance
is the absence of important drug interactions between COVID-19 experimental therapies
and parenteral antiplatelet agents, such as cangrelor and glycoprotein IIb/IIIa inhibitors
(Figure 5) [118,123–126].
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Figure 5. Depiction of the interaction between antiviral medicaments and antiplatelet drugs on
CYP3A4 metabolism. In the marked red box, antiviral agents are represented. Lopinavir and
ritonavir drive an inhibitory action on the cytochrome. This activity may increase the exposure of
ticagrelor (marked yellow box), leading to a dysregulation of hemostasis (highlighted in the picture
being the only depicted potential effect). Conversely, remdesivir (marked red box) is an inducer
of CYP3A4 function. Differently from ticagrelor, prasugrel (marked yellow box) is metabolized by
several cytochromes (2C19, 2C9, 3A4/3A5, 2B6, and 2D6), thus its effects seem to be unmodified
by ritonavir or lopinavir interaction. Abbreviations: CYP3A4: cytochrome P450 3A4, ADP P2Y12
receptor: adenosine 5′diphosphate P2Y12 receptor.
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7.3. New Strategies for Patients with STEMI and Indications for the Percutaneous Coronary
Intervention during COVID-19 Pandemic

The ACC and Society for Cardiovascular Angiography and Interventions delivered
recommendations, regarding catheterization laboratory procedures during the SARS-CoV-2
pandemic [116]. Given the new emergency that involves the health system, due to the
SARS-CoV-2 pandemic, the recommendations have been adapted by setting some criteria.
Non-urgent cardiac issues were postponed, and patients were recommended to continue
medical treatment to the preserve cardiovascular preparticipation evaluation (PPE). This
made it possible to avoid a large waste of hospital resources, with the occupation of both
hospital and intensive care beds. Furthermore, the reduced influx of patients reduced the
risk of contagion by significantly minimizing exposure for both patients and healthcare
professionals. In light of this, individual centers in China and elsewhere have developed
adjusted ACS protocols, which call for the consideration of fibrinolytic therapy in selected
patients with STEMI [1–3,116,117].

The first step that precedes the intervention is the achievement of an optimal diagnosis
that allows distinguishing patients with non-specific myocardial damage or myocardi-
tis from those who have symptoms attributable to true plaque rupture [127]. A useful
procedure to perform a first diagnostic classification of patients, before activating the
catheterization laboratory, can be the use of transthoracic echocardiography to identify wall
motion abnormalities. In the presence of hospitalized patients with myocardial infarction
and ST-segment elevation (STEMI), which benefit from primary percutaneous coronary
intervention (PCI) because it reduces mortality and reinfarction, it is appropriate to consider
the potential risk of transmission of COVID-19 from patients to healthcare professionals, or
vice versa, especially in the presence of asymptomatic vectors. The changes imposed by
the SARS-CoV-2 pandemic have prompted individual centers in China and many other
countries to develop appropriate protocols for patients with acute coronary syndrome
(ACS), which require consideration of fibrinolytic therapy in selected patients who are
hospitalized with a STEMI [116,128]. Moreover, fibrinolytic therapy was the first choice in
centers where timely PCI was not possible, due to conditions of severe pressure on the hos-
pitalization system. However, for patients who reveal symptoms referable to myocarditis,
in the context of COVID-19, fibrinolytic therapy should be carefully considered.

8. NETs and Autoantibodies May Drive COVID-19 Blood Clots: A New Investigation
and Therapy Plan

Evidence emerged in severe cases of coronavirus disease 2019 (COVID-19), suggesting
the occurrence of blood clots in patients who experienced pulmonary embolism with
clot formation in situ, thrombosis of the deep venous veins of the lower limbs, and clot
formations that led to strokes or heart attacks [30,47,81,93–95,106–109,113,117,129–131].
Zuo et al. reported that clot-promoting autoantibodies play a substantial role in causing
or contributing to the development of these complications [51]. Given the previously
reported evidence, the investigators announced clear parallelism between blood clotting
abnormalities in patients with COVID-19 and those occurring in an autoimmune clotting
disorder known as antiphospholipid syndrome (APS) [52]. The results published by
Zuo et al. revealed the production of autoantibodies to phospholipids and phospholipid-
binding proteins in patients who developed antiphospholipid syndrome (APS). The authors
measured different types of antiphospholipid antibodies (aPL) in serum samples from
172 hospitalized patients with COVID-19. They recorded an antibody rate of 52% within
the samples tested; if a stricter cutoff was used, the threshold reached 30% [51].

The significant data that distinguished this research concerns the higher levels of
aPL antibodies, which were associated with the most severe forms of respiratory tract
disease [30,47,51,52,93–95,105,129–131]. In addition, patients with the highest antibody
titers exhibited impaired renal function and overactivity of the immune system [105]. Zuo
et al. confirmed the substantial role played by extracellular neutrophil traps (NETs), which
had previously been reported to be increased in COVID-19 patients [30,47,51,52,105,113].
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NETs are made up by extracellular webs of chromatin, microbicidal proteins, and oxidant
enzymes that are released by neutrophils to contain infections. However, when not suitably
monitored, NETs are likely to spread inflammatory process and microvascular thrombosis,
including in the lungs of patients with ARDS [30,47,93–95,113,129–131]. Zuo et al. revealed
that increased levels of cell-free DNA, myeloperoxidase-DNA (MPO-DNA), and citrul-
linated histone H3 (Cit-H3) were found in the sera of COVID-19 patients; the latter two
substance may be considered as NET specific markers. For the authors, this discovery paves
the way for the potential clinical relevance of cell-free DNA, which is strongly correlated
with the presence of specific acute phase reagents, including C-reactive protein, D-dimer,
and lactate dehydrogenase, as well as the absolute neutrophil count. In particular, it was
shown that MPO-DNA was associated with both cell-free DNA and absolute neutrophil
counts, while Cit-H3 was related to platelet levels. A first substantial finding was conferred
on both cell-free DNA and MPO-DNA, which were higher in hospitalized patients, for
whom mechanical ventilation was required than in hospitalized patients who breathed
room air. The second relevant evidence explaining the crucial role of NETs, associated with
high levels of aPL antibodies, was related to the clot formation that occurred after injections
with antibody fractions from patients with severe COVID-19. The latter led a thrombotic
process more aggressively [51].

Evidence from the reports by Zuo et al. did not indicate whether these antibodies can
provide a therapeutic target or be used to further define the degree of vascular damage.
Furthermore, the potential degree of morbidity or mortality associated with the production
of these antibodies remains to be demonstrated. Once again, the search for these antibod-
ies can help identify patients who have COVID-19 and are most likely to benefit from
aggressive anticoagulation therapy [30,47,51,52,93–95,105–108,113].

Working on the mechanisms that block the release of NETs, in response to these
autoantibodies, could potentially be fundamental in preventing the cascade of events
that produce clots in patients with COVID-19 [56]. Recently a study revealed that the
antithrombotic drug dipyridamole hampers the release of NET in mice, thus supporting
the drug’s potential as a treatment for APS. Another important piece of data emerging
from this study supports the action of dipyridamole in reducing the release of NETs from
neutrophils subject to autoantibodies in the presence of COVID-19 [132]. Dipyridamole
is an inexpensive drug that exerts a safe antiplatelet action that has been shown to have
immunomodulatory action associated with potential antiviral properties. Specifically, it
showed a robust antiviral type I interferon immune response, which is suppressed in
patients with COVID-19. Data published in a recent article have emerged that reinforce
these premises [133]. The study revealed that dipyridamole suppresses SARS-CoV-2
replication, thus paving the way for a clinical trial to test its efficacy among COVID-19
hospitalized patients [134].

The evidence proven in the two studies by Zuo et al. is also of substantial relevance
to other potential COVID-19 treatment strategies. Another therapy of potential interest
could be plasmapheresis, which may improve outcomes among individuals with APS. It
can be translated to benefit patients with COVID-19, in whom high aPL antibody titers
occur [47,93–95]. There are two sides to the coin, so it is possible that the transfer of plasma
from COVID-19 survivors and convalescent patients to seriously ill ones could also transmit
the risk of impairing coagulation to them. However, plasma screening for prothrombotic
autoantibodies, which was touted to potentially improve treatment, did not show the
expected efficacy in clinical trials [135–137].

9. Long Term Consequences of COVID-19 Heart Disease

The affinity of SARS-CoV-2 to the host angiotensin-converting enzyme 2 receptor, as
the gate of entry [58–60,138–143], which has been demonstrated previously for other coron-
aviruses, raises the probability of involving the myocardium and vascular endothelium
with direct viral infection [140,141]. The cardiovascular complications of acute COVID-19
disease are well-reported; however, the post-acute cardiovascular manifestations that char-
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acterize COVID-19 that have not yet been fully elucidated deserve greater attention. In
this regard, Al-Aly et al. and Xie et al. [61,144] explored the national health care database
of the United States Department of Veterans Affairs, constituting a very large cohort of
153,760 individuals with COVID-19. Two groups of controls with 5,637,647 (contemporary
controls) and 5,859,411 (historical controls) were studied. Interestingly, Xie et al. noted
that, over the first 30 days of infection, patients with COVID-19 had an increased risk of
cardiovascular disease-related events affecting several classes, which comprehended cere-
brovascular disorders, arrhythmias, ischaemic and non-ischaemic heart disease, pericarditis,
myocarditis, heart failure, and thromboembolic disease.

The results reported by Xie et al. [61] offered substantial clarification regarding the
higher risks and charges that were shown among individuals who did not require hospi-
talization during the acute phase of the infection. The risk of developing a cardiovascular
complication after COVID-19 gradually increased in the care setting in which patients
were treated during the acute phase. In detail, non-hospitalized patients revealed a low
risk, while the latter increased from hospitalized patients to those requiring the ICU. Fur-
thermore, both the 1-year risk and burden of cardiovascular disease in acute COVID-19
survivors were considerable.

What emerges from the study by Xie et al. confirms that COVID-19 is a disease with a
significant social impact. Particular attention to the care pathways of those who survive acute
episodes of COVID-19 is necessary, including cardiovascular diseases [34–36,61,73,139].

10. Discussion

Several reports from series by China, Italy, and the United States reveal that most of the
affected patients who develop COVID-19 experience a relatively mild clinical form; however,
the clinical picture may evolve toward life-threatening disease. The evidence that emerged in
the past two years supports the idea that the individuals at the highest risk of serious illness,
those requiring intensive care hospitalization and at higher risk of death, are older and with
underlying comorbidities, such as cardiovascular diseases [34,45,58,62–65,67,145,146]. However,
even younger patients have been affected by the serious form of COVID-19, thereby requiring
hospitalization. Many of these experienced a progression toward surgical intervention demand,
which was complicated with nefarious evolution and death [62–65,106].

Clinical evolution of COVID-19, influenza, and other diseases supported by an acute
inflammatory state may involve heart structures, and coronary artery disease may occur as a
complication in this population of patients. It is of note that individuals who experience risk
factors for atherosclerotic cardiovascular disease have an increased risk of acute coronary
syndromes during the disease [110,111,147]. It is suggested that acute coronary events,
similar to type 2 myocardial infarction, could be related to the crucial augmentation of
myocardial demand that is mainly due to the infection, so that the progressive evolutive
phase of this process is represented by myocardial damage or infarction. [148] However, an
uncontrolled increase in the levels of circulating inflammatory cytokines that characterizes
the intense systemic inflammatory activity may determine the instability or rupture of the
atherosclerotic plaque. Again, in patients with the severe form of COVID-19 requiring
hospitalization, heart failure complications may occur, thus suggesting that the evolution
towards haemodynamic decompensation is related to the stressful condition in the presence
of serious infectious diseases [62–65,106,147–149].

The evidence published revealed that patients with underlying cardiovascular disease
were prevalently older and more prone to higher risks of adverse outcomes and death. This
population of old individuals developed an aggressive form of COVID-19, sustained by a
severe inflammatory state, as compared to younger patients [34–36,45,48,59,61,73]. It is of
note that, regarding the Middle East respiratory syndrome coronavirus outbreak, several
cases of acute/fulminant myocarditis with heart failure have been reported, in association
with the localization of the heart infection in SARS-CoV-2 [139].

Two independent large series from Wuhan hospitals [48,59] provided circumstantial
evidence, regarding the incidence and consequences of myocardial lesions in patients with
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SARS-CoV-2. Shi et al. explored a population of 416 hospitalized patients, with COVID-19
disclosing a rate of 19.7% of myocardial damage and increased level of troponin I (TnI)
levels. In patients with myocardial damage, the hospital stay was higher, with a mortality
rate of 51.2%, as compared to 4.5% in patients without myocardial damage. Furthermore, in
patients who developed myocardial damage, higher levels of TnI elevation were correlated
with higher mortality rates [59].

Guo et al. [48] worked on a cohort of 187 hospitalized patients with laboratory-
confirmed COVID-19, reporting that 27.8% had myocardial damage with elevated tro-
ponin T (TnT) levels. The investigators focused their attention on C-reactive protein and
N-terminal pro-B-type natriuretic peptide (NT-proBNP), thus providing additional novel
insights. In-hospital mortality was 59.6% in patients with high TnT levels, compared to
those with normal TnT levels (8.9%). Another substantial result supported those individu-
als with elevated TnT levels and underlying cardiovascular disease recorded the highest
mortality rates of 69.4%. Mortality rates were found to be lower in patients with high TnT
levels, without prior cardiovascular history. It is important to highlight that, importantly,
despite an announced mortality rate of 13.3%, patients with evidence of cardiovascular
disease, but without increased TnT levels, did not reveal a high mortality rate [48].

Lastly, TnT levels were notably associated with levels of C-reactive protein and N-
terminal pro-B-type natriuretic peptide (NT-proBNP), thus explaining that myocardial
damage was related to the severity of the inflammatory state and ventricular dysfunction.
Both the TnT and NT-proBNP levels increased progressively during hospitalization in
patients with evolutionary deteriorating clinical courses. Conversely, in patients in which
COVID-19 occurred in a less severe form, more favorable outcomes, with lower levels of
these biomarkers, were revealed [48].

Some points of convergence emerged from studies of Shi et al. and Guo et al. [48,59],
who have offered substantially similar evidence in patients with COVID-19, thus disclosing
elevated levels of TnI or TnT in those individuals who develop myocardial damage with
adverse outcomes. The picture reveals that those patients at risk of myocardial injury
present more advanced age and greater. Frequently, comorbidities resulted in increased
prevalence of hypertension, coronary artery disease, heart failure, and diabetes, compared
to the cohorts with normal levels of TnI or TnT. Undoubtedly a more severe systemic inflam-
mation was found in patients with myocardial damage, including substantial increases in
PMNs, higher levels of C-reactive protein, and procalcitonin. In addition, greater levels of
creatine kinase, myoglobin, and NT-proBNP marked this population of patients. A finding
that emerges in patients with the severe form of COVID-19, coupled with myocardial injury,
is a greater acuity of the disease. Likewise, a higher incidence of acute respiratory distress
syndrome and more frequent necessitation of mechanical ventilatory support, compared to
those without myocardial damage, was recorded [48,59].

The studies of Shi et al. and Guo et al. were confirmed by other publications, based on
cardiac autopsy and PCI performed in patients with COVID-19, reporting results that are
consistent with the history of patients who experienced the severe disease. The findings
here offer an explanation to the greater clinical acuity that occurred in older patients with
pre-existing cardiovascular comorbidities and diabetes, who have contracted SARS-CoV-2
and are most prone to developing the severe disease. Again, this population of patients
revealed an increased risk of developing myocardial damage and significantly higher
short-term mortality rate [48,59].

Systemic inflammation and uncontrolled coagulopathy in COVID-19 patients play
a pivotal role, and a more complete explanation has recently been offered regarding the
crucial key point concerning serious SARS-CoV-2 infections, which can destabilize patients
with coronary artery disease or heart failure [42–45,48,62–65,92,146]. The investigators
suggested that a complementary mechanism is performed by systemic inflammatory
stimuli, thus leading to greater oxygen consumption that results in demand ischemia,
which evolves into myocardial damage or plaque rupture. This picture is frequent in
SARS-CoV-2 infection, and it is similar to other coronaviruses, as it can elicit the intense
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release of multiple cytokines and chemokines [67,140]. This orchestrated process is decisive,
not only in causing vascular inflammation, plaque instability, and inflammation of the
myocardium, but also in triggering the release of NETs [30,47,51,52,57,105,130–133].

Cases of myocarditis have been described in patients with COVID-19. Associated
myocardial damage, with or without pre-existing cardiovascular comorbidities, may oc-
cur. [110] A well-documented case of acute myocarditis, following a respiratory infection,
coupled with COVID-19, was described in a 53-year-old Italian woman [140]. However,
several studies have been documented, focusing on potential direct viral infection of the
myocardium, which is another possible modus operandi in causing myocardial dam-
age. [60,141] Cardiac autopsies revealed that the virus was found in interstitial myocardial
tissue, without the presence of replication in myocardial cells lacking unequivocal my-
ocarditis [22,53–56] (Figure 6).
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Figure 6. The acute clinical manifestations of COVID-19 are well-characterized by inflammatory
response, endothelial dysfunction and overlapping infection that can evolve into major arterial and ve-
nous thromboembolism, major adverse cardiac event, and symptomatic venous thromboembolism. In
COVID, heart condition patients may reveal a range of increased cardiovascular risks. Abbreviations:
COVID-19: coronavirus disease 2019; SARS-CoV-2: severe acute respiratory syndrome-coronavirus-2.

11. Limitations

One of the major limitations of the study involves the real-world presentation of data;
hence, its inherent biases in study design. The robustness of study results were assumed
during a pandemic with a higher number of observational studies included, given the
acuity of disease. A large number of studies were also excluded, due to the non-English
nature of these studies, which were mainly from China, the initial epicenter of the disease.

12. Conclusions

The deleterious effects of COVID-19 are well-documented within the literature, espe-
cially with regards to the acute phase of the illness and multiorgan involvement. However,
understanding long-term COVID is a larger proposition, which may have further ram-
ifications on healthcare resources as further evidence of chronic inflammation surfaces.
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Vaccinations have permitted the transition to endemicity, but COVID19’s true effects were
not completely documented and understood at the time of writing.
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