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Abstract: Hepatitis B virus (HBV) is a hepatotropic virus with the potential to cause chronic infection,
and it is one of the common causes of liver disease worldwide. Chronic HBV infection leads to
liver cirrhosis and, ultimately, hepatocellular carcinoma (HCC). The persistence of covalently closed
circular DNA (cccDNA) and the impaired immune response in patients with chronic hepatitis B
(CHB) has been studied over the past few decades. Despite advances in the etiology of HBV and
the development of potent virus-suppressing regimens, a cure for HBV has not been found. Both
the innate and adaptive branches of immunity contribute to viral eradication. However, immune
exhaustion and evasion have been demonstrated during CHB infection, although our understanding
of the mechanism is still evolving. Recently, the successful use of an antiviral drug for hepatitis C has
greatly encouraged the search for a cure for hepatitis B, which likely requires an approach focused
on improving the antiviral immune response. In this review, we discuss our current knowledge of
the immunopathogenic mechanisms and immunobiology of HBV infection. In addition, we touch
upon why the existing therapeutic approaches may not achieve the goal of a functional cure. We
also propose how combinations of new drugs, and especially novel immunotherapies, contribute to
HBV clearance.

Keywords: HBV; Immunotherapy; immune evasion

1. Introduction

Hepatitis B virus (HBV) is a prototypical member of the Hepadnaviridae family. HBV
is a hepatotropic virus that generates covalently closed circular (ccc) DNA, a plasmid-like
episome, in the nucleus of host cells [1–3]. According to the estimated number of the
world’s population with serological evidence of current or past HBV infection, around 2
billion people may have been infected with HBV at some point in their life [4–6]. Many
of these infections are acquired in infancy or early childhood and could lead to chronic
hepatitis B (CHB), which is highly prevalent in some parts of Africa and Asia [6,7]. There are
more than 250 million individuals infected with CHB worldwide (at the time of writing) [7].
Furthermore, ~700,000 deaths per year are caused by complications of persistent HBV
infection, liver cirrhosis, as well as hepatocellular carcinoma (HCC) [2,8–12]. In China, the
burden of HBV is considerable [13,14]. It was reported that, in 21–49-year-old men, the
seroprevalence was ~6% [15]. For younger individuals (aged between 1 and 29 years old),
the reported incidence was ~2.6% [16]. This lower figure can be attributed to the success of
vaccination policy, which caused the seroprevalence of hepatitis B surface antigen (HBsAg)
in younger people to decline rapidly.
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In patients with CHB, a high HBV load, and serum hepatitis B e antigen (HBeAg)
and HBsAg levels may play a key role in the impaired antiviral immune response [17].
However, the mechanism has not been fully explored for various reasons. Preventive
treatments, including a prophylactic vaccine, have a significant effect on HBV control [18].
However, the vaccine does not appear to be beneficial for people with existing CHB. In
addition, current hepatitis B therapies are limited to immunoregulatory drugs, including
IFN-α, or several direct-acting antivirals (DAAs) such as tenofovir and entecavir (ETV) [10].
Moreover, the drugs rarely achieve HBV clearance from the liver, meaning that the majority
of patients need lifelong treatment [19]. The target of any new treatment regimen is to
increase the possibility of a functional cure [20]. Current therapies have improved the
quality of life and the survival of patients with CHB, and reduced the incidence of HCC,
cirrhosis, and other complications through the suppression of HBV replication and/or by
reducing hepatic necroinflammation. However, the ultimate goal of a functional cure is not
frequently achieved.

In this review, we have summarized the key milestones of HBV research that has been
performed over the last 30 years and focused on recent findings relating to advances in the
etiology of HBV and immunologic assumptions. As the important challenge of achieving
an HBV functional cure is likely to be overcome by improving the HBV-specific immune
response, we have also reviewed the current strategies aimed at restoring the function of
HBV-specific immune cells.

2. The Etiology for Hepatitis B

In China, prior to vaccination, hepatitis B was typically spread through vertical trans-
mission. Nearly 20% of HBsAg-positive families contain at least two HBsAg carriers [13,21].
In Asia, since hepatitis B occurs at an early age, CHB and viral persistence seem more
frequent, complicating the selection of effective treatment options. The HBV genotypes
vary across different geographical regions. In Europe and the United States, genotypes
A and D are the most frequently occurring HBV genotypes, while genotypes B and C are
predominately found in China [22]. Many important factors, such as the genotype, the age
of the infected individual, as well as the stage of the disease, could influence the immune
response to therapy.

The entry of HBV into host cells is a complex process. Parenchymal liver cells are
susceptible to infection upon HBV entering the circulatory system. Features of human
liver microcirculation, including slow blood flow, have been demonstrated to increase the
possibility of HBV interacting with the sodium taurocholate co-transporting polypeptide
(NTCP), which is expressed on the surface of hepatocytes. This interaction is thought
to initiate viral entry into host cells and its subsequent replication [23–25]. Additionally,
platelets are always recruited to the liver microcirculation after viral infection. Their
activation correlates with severely reduced microcirculation, and delayed viral elimination.
Lack of platelet-produced serotonin contributes to accelerating viral clearance in the liver.

HBV then spreads rapidly throughout the liver. Studies performed in chimpanzees
verified that, during the initial spreading stage, HBV can easily escape recognition by the
innate immune system. This immune escape is probably due to the unique replication
strategy of HBV, which involves the cccDNA molecule [2]. Furthermore, cccDNA has
been confirmed to be the source of the circulating antigens HBsAg and HBeAg in human
peripheral blood. This replicative feature enables HBV to produce a viral load of over a
billion particles per milliliter [17]. Moreover, studies of human liver biopsies did not find
significant innate immune responses in the early phase of CHB. In addition, it was reported
that HBV may have evolved a hidden strategy to evade recognition by the innate immune
system and rapidly infect and replicate in the hepatocytes [26,27].

HBV DNA is considered to be a major biomarker of viral replication and has been
regarded as an important endpoint of clinical trials using nucleoside analog therapy [28,29].
Hepatitis B virions have an envelope containing three viral gene products, including HBsAg
determinant [2,30]. The HBV envelope has been found to enclose an inner nucleocapsid
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particle, which in most virions, is composed of 120 core protein (i.e., HBcAg) homodimers.
Furthermore, it has been shown that the nucleocapsid particles include a copy of a partially
double-stranded relaxed circular DNA (rcDNA) genome (Figure 1) [31,32]. Approximately
10% of the nucleocapsid particles are thought to contain double-stranded linear DNA
(dslDNA) in place of an rcDNA genome [2,33,34]. After HBV entry, the nucleocapsids (with
their rcDNA) are transported into the nucleus, where the host enzymes participate in the
repair of the viral genome and its conversion into the cccDNA [35–37].
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(cccDNA). In addition, transcription and nuclear export of mRNA to the hepatocellular cytoplasm 
for translation are observed. HBsAg are produced via the endoplasmic reticulum (ER)-Golgi com-
plex and then assembled in the cytoplasm, while HBV virions are formed by budding from mul-
tivesicular bodies (MVBs). The new virions will exit the host and infect new hepatocytes. 
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Figure 1. HBV particle and life cycle. (A) Hepatitis B virions are about 42 nm in diameter. The
envelope of HBV virion contains three forms of HBsAg: large (L), middle (M), and small (S) envelope
proteins. The capsid encapsidates a partially double stranded (ds) DNA. The HBV envelope has
an inner nucleocapsid particle that always consists of 120 core protein. (B) Firstly, HBV attaches to
the host cell membrane through its envelope proteins and the sodium taurocholate co-transporting
polypeptide (NTCP). Next, the viral genome reaches the cytoplasm of hepatocytes and enters the
nucleus, where host enzymes will repair the genome into the covalently closed circular DNA (cc-
cDNA). In addition, transcription and nuclear export of mRNA to the hepatocellular cytoplasm for
translation are observed. HBsAg are produced via the endoplasmic reticulum (ER)-Golgi complex
and then assembled in the cytoplasm, while HBV virions are formed by budding from multivesicular
bodies (MVBs). The new virions will exit the host and infect new hepatocytes.

3. Mechanisms of HBV Immune Evasion

HBV can avoid elimination by the immune system via a process called immune
evasion, which is a major concern in CHB. There are various mechanisms of HBV immune
evasion, including reduced TNF-α production by T cells and Kupffer cells, impaired IFN-
α production by plasmacytoid DC (pDC) cells, low induction of interferon-stimulated
genes (ISGs), inhibition of TLR signaling [38–46], and so on. Although immune evasion
may implicate both the innate and adaptive branches of immunity, the exact mechanisms
remain unknown.

3.1. Evasion of the Adaptive Immune Response

Over the last 30 years, numerous studies in humans and animal models have demon-
strated that the outcome of HBV infection is strongly determined by the dynamics and
the effector functions of the HBV-specific adaptive immune response. Adaptive immunity
is a complex branch of the human immune system, and the main force against HBV [2].
During HBV infection, both the number and fitness of HBV-specific T and B lymphocytes
increase significantly [47–49]. The indispensable role played by HBV-specific CD8+ T
cells in the clearance of HBV has been well recognized [38,48,50–53]. Moreover, CD4+ T
cells are required to promote the activation and function of these CD8+ T cells. However,
these adaptive immune responses are typically functionally impaired in patients with
CHB [2,47,53–57]. It has been reported that HBV-specific CD8+ T cells in both the periph-



Pathogens 2022, 11, 1116 4 of 15

eral blood and liver microenvironment of patients with CHB always exhibit an exhausted
phenotype [58,59]. Furthermore, in patients with CHB, suppressive mechanisms, such as
regulatory T cells (Tregs), and the increased expression of co-inhibitory receptors such as
cytotoxic T-lymphocyte antigen 4 (CTLA-4), T cell immunoglobulin and mucin domain 3
(Tim-3), and programmed cell death protein 1 (PD-1) on CD8+ T cells dampen the antiviral
response [10,53,60–62].

Although the mechanisms that regulate the above co-inhibitory factors are still to be
elucidated, hepatocytes and other hepatic cell populations might contribute to the impaired
function and exhaustion of HBV-specific CD8+ T cells. It was reported that the hepatocytes
of patients with CHB did not express certain classical costimulatory molecules (e.g., CD80
and CD86), meaning that infected hepatocytes may not be able to transfer the second signal
required for CD8+ T cell activation [63,64]. In addition, Benechet et al. found that naïve
HBV-specific CD8+ T cells primed by infected hepatocytes could not differentiate into
interferon (IFN)-γ-expressing effector T cells in an HBV transgenic mouse model [65]. Tregs
and macrophages may also contribute to the immunosuppressive environment through
the production of immunomodulatory cytokines such as interleukin (IL)-10 and tumor
growth factor (TGF)-β1 [39,66,67]. Furthermore, myeloid-derived suppressor cells (MDSC)
in the liver microenvironment were shown to suppress T cell signaling partially through
the production of arginase, which could degrade arginine and significantly inhibit T cell
effector function [68–70].

Antibodies secreted by B cells recognize antigens by directly binding to the com-
ponents of the pathogen or interacting with the proteins expressed on the surface of
hepatocytes [48]. However, only antibodies targeting the HBV envelope can prevent the
spread of HBV infection [57,71]. In addition, the presence of HBsAg in the serum causes
B cell exhaustion and impedes the maturation of HBsAg-specific B cells, which might be
associated with the high expression of PD-1 [72]. Indeed, PD-1 blockade or HBsAg clear-
ance were shown to restore the antibody-producing ability of HBsAg-specific B cells [73,74].
Moreover, persistent IFN-α therapy was able to induce large numbers of CD24+CD38hi reg-
ulatory B cells (Bregs) and promote an immunosuppressive response, which resulted in the
downregulation of CD8+ T cell and natural killer (NK) cell effector functions (Figure 2). In
addition, patients with fewer Bregs exhibited improved therapeutic effects [53]. Some other
types of cells also pay a role during HBV infection such as the liver-resident macrophages,
the Kupffer cells [75]. Kupffer cells are regarded as one of the predominant populations
in the liver and they secrete immunomodulatory cytokines, for example, TGF-β1 and
IL-10 [38]. Additionally, Kupffer cells in the liver highly expressed PD-L1 or PD-L2 dur-
ing CHB infection, thus suppressing antiviral immune responses and leading to immune
tolerance [38,75]. However, Kupffer cells could also present antigens to CD8+ T cell and
induce their activation. Moreover, Kupffer cells have been found to recruit monocytes via
chemokines in the liver [75]. Tacke et al. reported that the pathogenic macrophage subsets
were a potential target for treating liver disease in mouse models [75]. Furthermore, there
are enriched NKT cells in the human liver, which also play important roles in CHB and
could modulate both innate and adaptive immunity [40,76]. The MHC-like molecule CD1d
is important for NKT cells to recognize the lipid-based antigen [40,77,78]. However, until
now, the characterization of NKT cells in the liver of CHB patients has still been poorly
verified. It has been reported that, in the HBV-infected liver, the proportion of NKT cells
were obviously decreased and had lost a-galactosylceramide (a-GalCer)-induced IFN-γ
production, which may contribute to immune evasion. Importantly, when PBMCs were
stimulated with α-GalCer plus IL-2 and IL-15, the ratio and the IFN-γ production of NKT
cell were restored [76,77], which indicated that protective immunity might be partially
recovered in patients with CHB. Taken together, these findings imply that the mechanisms
that impair T and B cell responses during CHB likely contribute to the evasion of the
adaptive immune response.
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Figure 2. Possible inhibitory mechanisms result in immune escape. The liver microenvironment
is enriched with various cells that can inhibit the T cell responses. Abnormal PD-1, Tim-3, and other
negative signaling pathways probably result in the T cell exhaustion. MDSCs and Tregs could be a
great source of arginase and suppress T cell responses through arginase and secreting several immune-
modulatory cytokines such as TGF-β1 and IL-10. In addition, CD24+ Breg cells may suppress T cell
function by IL-10. Furthermore, HBV-specific CD8+ T cells could be lysed by activated NK cells via
a contact-dependent manner (for example, TRAIL/TRAIL-R). MDSC, Myeloid-derived suppressor
cells; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand.

3.2. Evasion of the Innate Immune Response

Although T cell dysfunction may be the most fascinating immune change leading to
HBV persistence, the interactions between HBV and different types of innate immune cells
should not be ignored. However, the relationship between the virus and innate immune
response remains highly controversial, and the mechanisms of innate immune escape have
not been fully understood [17].

HBV can disrupt antiviral responses within infected cells and evade the innate im-
mune response. Pattern recognition receptor (PRR) distribution has been identified as an
important factor for identifying drugs targeting the innate immune system [79,80]. During
chronic HBV infection, interactions between HBV antigens, PRRs, as well as various innate
immune cell types, have been reported [17]. For instance, dendritic cells (DCs) promote the
adaptive immune response through antigen presentation and the production of several cy-
tokines, including IL-12 [81]. HBV may suppress DCs by downregulating the expression of
co-stimulatory molecules such as CD80 and CD86, and by inducing the high expression of
PD-L1 [82–84]. Additionally, it has been reported that the proportion of plasmacytoid DCs
(pDCs) was markedly decreased in patients with CHB [85–87]. It was also reported that
monocytes inhibit the production of IL-12 by DCs when exposed to HBsAg [88]. Therefore,
targeting innate immunity may be a potential novel approach to developing a functional
cure for HBV infection in the future.
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4. Progress in Hepatitis-B-Specific Immunotherapy

Existing treatment regimens have achieved remarkable cure rates for patients infected
with the hepatitis C virus (HCV). However, the current regimens for treating HBV remain
suboptimal. Current therapeutic approaches include nucleoside analogues (NA) and nu-
cleotide drugs (NUCs), which both efficiently inhibit HBV replication. Lamivudine, the first
nucleoside reverse transcriptase inhibitor (NRTI), obtained Food and Drug Administration
(FDA) approval in 1998. Since then, other NRTIs such as adefovir and telbivudine have
been developed but these are not used as first-line therapies due to drug-associated resis-
tance. Currently, entecavir (ETV), tenofovir alafenamide (TAF), and tenofovir disoproxil
fumarate (TDF) are used as the first-line oral drugs against HBV infection [89,90]. These
agents can optimally lower HBV DNA levels in the serum of patients and reduce liver
failure. However, current antiviral agents have minimal impact directly on cccDNA in
primary human hepatocytes [80]. With the persistence of long-lived cccDNA, the potential
for relapse of HBV exists, even after the clearance of viremia [91]. In addition, integrated
viral DNA may survive immune clearance and the potential for relapse also exists in pa-
tients with resolved HBV infection. To date, the study of HBV cccDNA is still hampered
by the lack of an appropriate model [92,93]. A deeper understanding of cccDNA might
provide new perspectives to find a functional cure. Additionally, the loss of HBeAg or
HBsAg with prolonged therapy occurs in very few patients [17,27]. For HBeAg-positive
patients, oral antiviral drugs are regarded as the most common treatment strategy because
of their effectiveness and ability to provide sustained viral suppression. The decision to
treat HBeAg-positive CHB patients with one of the NUCs (such as lamivudine, entecavir, or
tenofovir) should be individualized [94,95]. Additionally, the number of HBeAg-negative
CHB patients is increasing and these patients have become the majority in terms of the
form of chronic HBV, especially in Middle Eastern and north African countries. Indeed, few
patients who are HBeAg-negative would achieve the loss of HBsAg, and a large quantity
of these patients may experience HBV recurrence after discontinuation of therapy. There-
fore, most guidelines suggest lifelong treatment, with the goal of achieving high rates of
viral suppression [96]. Marcellin et al. carried out a study of HBeAg-negative patients
with TDF treatment for up to 10 years and demonstrated that TDF therapy resulted in
persistent maintenance of viral suppression and was well tolerated [97]. Furthermore,
through a study from 17 countries, Maria Buti found that more than 90% of patients who
were HBeAg-negative and receiving TDF had an HBV DNA of less than 29 IU/mL after
treatment for 48 weeks [98].

IFN-α has antiviral properties and can regulate immune function. To date, IFN-α
has been regarded as the first-choice therapy for treating CHB [10]. A multi-center study
reported that, after 48 weeks of treatment with a combination of PEG-IFN-α plus TDF, a
9.1% HBsAg loss was observed at week 72 post treatment initiation [99–101]. In addition,
Fu et al. reported that, after PEG-IFN-α-2b treatment, approximately 30% of patients
with CHB underwent HBeAg seroconversion by week 72 [53,54]. However, there are
some limitations of therapeutic IFN-α administration. For example, IFN-α therapy may
have some side effects and contraindications, especially in patients with advanced liver
disease [102]. To achieve a functional cure for HBV, a properly orchestrated activation of
anti-HBV immunity is required. As patients with CHB have low numbers of HBV-specific
CD8+ T cells, which are frequently exhausted, existing immunotherapeutic approaches
designed to promote antiviral immunity may not be adequate [103–105]. After analyzing
the characteristics of innate and adaptive immune response during HBV infection, some
promising immuno-dependent therapeutic strategies to achieve a functional cure for CHB
were proposed. These included IL-2, checkpoint inhibitors (e.g., anti-PD-1 and anti-CTLA-
4), and therapeutic vaccines. We demonstrated that non-responder (NR) patients who
failed to respond to PEG-IFN-α treatment, benefited from a sequential low dose of IL-2
(1 × 106 IU) therapy, which caused a decrease in the frequency of PD-1+ CD8+ T cells
and Tregs [9]. Furthermore, we found sequential IL-2 therapy significantly restored the
frequency of HBV-specific CD8+ T cells and the HBsAg-specific effector function of CD8+
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T cells. Importantly, we found that, in the majority of NR patients, HBeAg levels were
markedly decreased after sequential IL-2 therapy [10] (Figure 3).
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Figure 3. Restoration of HBV-specific CD8+ T cell and NK cell responses by sequential IL-2 treatment
in non-responder patients after IFN-α therapy. IL-2Rα was high expressed, and NKp30 was low
expressed on T cells and NK cells, respectively, of non-responder (NR) patients, in whom IFN-α
therapy had failed. Those NR patients were treated with low-dose IL-2 for 24 weeks. A decrease in
IL-2Rα expression on their CD4+ T cells was verified, suggesting that IFN-α therapy may provide
a rationale for sequential IL-2 treatment without increasing regulatory T cells (Tregs). In addition,
non-responders experienced a decrease in the numbers of PD-1 expression. Furthermore, sequential
IL-2 administration restored effective immune function, involving STAT1 activation in both T cells
and NK cells. Moreover, IL-2 therapy increased the function of HBV-specific T cells and NK cells,
which translated into improved clinical outcomes, including HBeAg seroconversion, among the
non-responder CHB patients.
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Checkpoint inhibitors and therapeutic vaccination have also been proposed to restore
the antiviral immune response of patients with CHB [106]. However, so far, treatments
with checkpoint inhibitors have only been applied usefully in some solid malignancies
including melanoma and renal cell carcinoma. In vitro studies have shown that anti-
PD1/PDL-1 blockade could partially restore the function of exhausted HBV-specific CD8+

T cells [62,107,108]. Gane et al. found that nivolumab (a PD-1 inhibitor) with or without GS-
4774 (a therapeutic vaccine) was well-tolerated and would contribute to an HBsAg decrease
in virally suppressed HBeAg-negative patients in a phase Ib study [109]. In addition, trials
of several vaccine candidates have been carried out in patients with CHB [18,110,111].
Boni et al. reported that the administration of tenofovir plus GS-4774 therapy was well
tolerated and could improve HBV-specific T cell responses in CHB patients. In addition, the
production of TNF-α, IFN-γ, as well as IL-2, obviously increased. Furthermore, data have
suggested that combination treatments including vaccines may be regarded as sequential
administration that is able to increase the antiviral immune response in the future [112].

The role of the innate immune system should not be ignored in the process of HBV
eradication. However, in the context of HBV infection, the innate immune response is often
poorly activated due to immune evasion. RIG-I or Toll-like receptor (TLR) agonists, such
as TLR-7 and TLR-8 agonists, have been used to induce the activation of innate immunity.
GS-9620, a TLR-7 agonist, has been found to induce the production of IFN-α, especially by
pDCs. In addition, the treatment of RO7020531 triggered obvious immune activation in
patients with CHB [113–115]. Moreover, recently developed TLR-8 agonists may contribute
to the activation of PRRs present in the liver, and GS-9688 has been shown to promote
the production of IL-12 and IL-18 from monocytes or DCs [116–118]. Furthermore, as
cytokines such as IL-12 also contribute to NK cell activation, which have been demonstrated
to kill both HBV-infected hepatocytes and HBV-specific CD8+ T cells, it is necessary to
comprehensively evaluate the function of activated innate immunity in the process of
HBV eradication. Furthermore, there are a large quantity of new therapeutic drugs for
patients with CHB under investigation. GLS4 is a core protein allosteric modulator. A
total of 20 weeks of treatment with GLS4 resulted in reduced DNA levels (1.48–6.09 log
decrease) [20]. Several capsid assembly modulators have been under development for CHB
therapy. For example, ABI-H0731, was found to cause a significant decrease in HBV DNA
levels at 12 weeks, when combined with entecavir [119]. In addition, the administration
of RO7049389 not only reduced HBV DNA levels, but also decreased HBsAg, as well as
HBeAg levels in the serum [20,120]. Additionally, the effects of siRNAs in clinical trials also
appear encouraging. Treatment with JNJ3989 achieved a 1.3–3.8 log decrease in HBsAg
levels [20]. Furthermore, several other new therapies that have been investigated have
been reported as safe and well tolerated in healthy volunteers, such as GSK3389404 [19]
(Table 1).

Table 1. Select new therapeutic strategies for patients with CHB under development.

Drug Names Mechanism of Function Effects References

GLS4 Core binding Data of 20 weeks demonstrated DNA level log decrease
of 1.48–5.58 after administration (twice daily, BID) [20]

ABI-H0731 Core binding
Data showed mean maximum NA level log reduction
from baseline were 1.7, 2.1, and 2.8 in the 100, 200, and

300 mg dose group, respectively
[20,119]

RO7049389 Core binding Median DNA level declines of 2.7 (200 mg, BID) and 3.2
(400 mg, BID) demonstrated at 28 days [20,121]
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Table 1. Cont.

Drug Names Mechanism of Function Effects References

REP 2165 HBsAg binding

Obviously higher percentages of CHB patients in REP
2165 group had reduction in HBsAg to below 1 IU/mL
and HBsAg seroconversion during the first 24 weeks of

TDF and PEG-IFN-α treatment

[20,122,123]

TG-1050 Transgene HBV specific T cell responses were induced. Data at day
197 showed mean 0.45 log reduction in HBsAg levels [124]

RO7020531 TLR7 agonist Safety and tolerability in healthy Chinese donors with a
150 mg q.o.d. [125]

GS-9688 TLR8 The antiviral efficacy of 3 mg/kg (weekly) was
confirmed in a woodchuck study [126]

JNJ3989 mRNA degradation Data showed HBsAg level log reduction of 1.3–3.8 [127]

CRV431 Blocks NTCP Data showed a significantly decreased liver HBV DNA
levels with the treatment (50 mg/kg/day) for 16 days [128]

GSK3389404 mRNA degradation Data showed safe and target engagement, with
dose-dependent reductions in HBsAg [129]

HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; BID, twice daily; anti-HBs, anti-hepatitis B surface
protein; TLR, Toll-like receptor; IU, infectious units; NTCP, sodium–taurocholate cotransporting polypeptide.

Furthermore, immunological approaches against HBV infection, which involve the
use of T cells engineered with a classical T cell receptor (TCR) specific for human leukocyte
antigens (HLA)-class I restricted HBV epitopes or a chimeric antigen receptor (CAR), have
shown some promise [106]. Despite the encouraging preliminary results of such T cell
therapies, they are associated with a risk of inducing fatal hepatic inflammation. Thus,
the adoptive transfer of engineered T cells and the manufacturing techniques used must
be evaluated with more caution. In addition, more robust experimental and clinical trial
data are needed. Platelets play important roles in inflammatory and immune-mediated
disorders. Aiolfi et al. reported that platelets contributed to the pathogenesis of HBV-related
liver disease by their ability to promote the homing of effector CD8+ T cells in the liver,
expression of pro-angiogenic mediators (such as VEGF and TGF-β1) and the production of
pro-inflammatory cytokines (such as IFN-γ) [130]. Aspirin is a widely used anti-platelet
drug. Notably, the suppression of platelet activation using aspirin would significantly
reduce the number of HBV-specific CD8+ T cells and the recruitment of inflammatory cells
in the liver, which contributes to alleviating liver injury and the likelihood of HCC [130,131].
Therefore, anti-platelet therapy might be another promising approach for the treatment of
patients with CHB. Collectively, to achieve the goal of developing a functional cure, more
knowledge derived from the accumulation of experiment and clinical trials is needed.

5. Conclusions and Perspectives

Based on the findings presented, it is clear that the future of HBV treatment requires the
direct suppression of cccDNA replication. However, achieving the ultimate goal of finding
a functional cure for CHB will be challenging. Although the molecular biology of HBV is
becoming gradually understood and novel DAAs are being developed, it is still unclear
whether these agents are safe and would be able to provide a long-term functional cure.
Immunotherapy is receiving increasing attention from scientists and clinicians in many
fields of research. Additionally, the investigation of curative strategies for patients with
CHB will benefit greatly from the knowledge of immunological features and mechanisms
that govern HBV pathogenesis and immunobiology. Despite ongoing challenges in the
quest for HBV eradication, there remains much promise and optimism on the way to
achieving the goal of an HBV functional cure.
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