
Toward Certifiable Motion Planning for Medical Steerable
Needles

Mengyu Fu*, Oren Salzman†, Ron Alterovitz*

*Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
27599, USA

†Computer Science Department, Technion - Israel Institute of Technology, Israel

Abstract

Medical steerable needles can move along 3D curvilinear trajectories to avoid anatomical

obstacles and reach clinically significant targets inside the human body. Automating steerable

needle procedures can enable physicians and patients to harness the full potential of steerable

needles by maximally leveraging their steerability to safely and accurately reach targets for

medical procedures such as biopsies and localized therapy delivery for cancer. For the automation

of medical procedures to be clinically accepted, it is critical from a patient care, safety,

and regulatory perspective to certify the correctness and effectiveness of the motion planning

algorithms involved in procedure automation. In this paper, we take an important step toward

creating a certifiable motion planner for steerable needles. We introduce the first motion planner

for steerable needles that offers a guarantee, under clinically appropriate assumptions, that it will,

in finite time, compute an exact, obstacle-avoiding motion plan to a specified target, or notify

the user that no such plan exists. We present an efficient, resolution-complete motion planner for

steerable needles based on a novel adaptation of multi-resolution planning. Compared to state-of-

the-art steerable needle motion planners (none of which provide any completeness guarantees), we

demonstrate that our new resolution-complete motion planner computes plans faster and with a

higher success rate.

I. Introduction

Steerable needles are highly flexible medical devices able to follow 3D curvilinear

trajectories inside the human body, reaching clinically significant targets while safely

avoiding critical anatomical structures [3, 12, 39, 52]. Compared with traditional rigid

medical instruments, steerable needles can reduce a patient’s trauma, increase safety, and

provide minimally invasive access to previously inaccessible targets. Steerable needles have

been considered for a wide range of diagnostic and treatment procedures including biopsy,

drug therapy delivery, and radioactive seed implantation for cancer treatment [2].

Automating steerable needle procedures can enable physicians and patients to harness the

full potential of steerable needles by maximally leveraging their steerability and ability to

mfu@cs.unc.edu .

HHS Public Access
Author manuscript
Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

Published in final edited form as:
Robot Sci Syst. 2021 July ; 2021: . doi:10.15607/rss.2021.xvii.081.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

accurately and precisely reach targets. Automation is critical to harnessing the full potential

of these needles since the nonholonomic constraints on the needle’s 3D motion coupled

with the cluttered nature of anatomical environments make direct manual control unintuitive

and impractical for human operators. To automate steerable needle procedures, physicians

first obtain a medical image (such as a computed tomography (CT) or magnetic resonance

imaging (MRI) scan) of the relevant anatomy, from which we can segment (manually or

automatically) the relevant anatomy, including the target to reach and obstacles to avoid.

The next key ingredient to the automation of steerable needle procedures is motion planning,

which requires computing feasible motions to steer the needle safely around the anatomical

obstacles and to the target. An example scenario of a lung biopsy is shown in Fig. 1 (top).

For the automation of medical procedures to be clinically accepted, it is critical from a

patient care, safety, and regulatory perspective to certify the correctness and effectiveness of

the algorithms involved in procedure automation. Unfortunately, no previously developed
motion planner for steerable needles offers a formal guarantee that it will compute a
solution, when one exists, in finite time, or notify the user that no solution exists. Although

many steerable needle motion planners have been proposed, for all prior methods, the

method either is not guaranteed to return a solution (e.g., [15, 16, 20, 40, 47, 51, 53]) or is

not guaranteed to find a solution within a clinically reasonable distance of the target [34]

when a solution exists.

As an important step toward creating a certifiable motion planner for steerable needles,

we introduce the first motion planner for steerable needles that enables us to offer a

guarantee under clinically appropriate assumptions that it can, in finite time, compute an

exact, obstacle-avoiding motion plan to a specified target, or notify the user that no such

plan exists. In motion planning, such a guarantee is defined as completeness [32]. A motion

planner that lacks a completeness guarantee may find solutions for only a subset of problem

instances, and when no solution is found by the planner, a user has no way to distinguish

whether the planner is incapable of finding an existing solution or if no solution exists.

Providing a completeness guarantee for a steerable needle motion planner is challenging

in part because motion planning for steerable needles in 3D with curvature constraints is

at least NP-hard [26, 48]. This challenge inspires us to consider variants of completeness

relevant to medical applications. We note that some variants of completeness that only offer

asymptotic guarantees, such as probabilistic completeness [32], are not useful for needle

steering since they only are guaranteed to find a solution as computation time increases

to infinity, but medical applications typically require guaranteeing the planner’s behaviour

within a finite time.

In this paper, we focus on a specific type of completeness relevant to real-world medical

applications: resolution completeness [32]. Generally speaking, a resolution characterizes

the discretization of some space (e.g., state space, configuration space, action space, and

time). An algorithm is resolution complete if there exists a fine-enough resolution with

which the algorithm finds a plan in finite time when a qualified solution exists, and

otherwise correctly returns that no such plan exists. We illustrate at the bottom of Fig. 1

an example showing searches with different resolutions for needle steering.

Fu et al. Page 2

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In this work, we present an efficient, resolution-complete motion planner for steerable

needles based on a novel adaptation of multi-resolution planning. The planner is resolution

complete, which means under some mild assumptions on the system and the solution

(detailed in Sec. V and Appendix A), the planner, in finite time, is guaranteed to find a

motion plan as long as the problem admits a qualified solution. Our main contributions

include: (i) carefully defining the motion primitives [17] used by our planner which are

specifically tailored to our domain of 3D steerable needles (Sec. IV-B); (ii) introducing

a set of domain-specific optimizations that improve the efficiency of the algorithm while

maintaining resolution completeness (Sec. IV-G); and (iii) providing a proof sketch to show

the resolution completeness of our method (Sec. V and Appendix A).

We demonstrate the performance of our planner in scenarios based on lung biopsy. In these

scenarios, a steerable needle is deployed through a bronchoscope and must steer through the

lung parenchyma (the substance of the lung outside the bronchial tubes) to a target while

safely avoiding obstacles (e.g., blood vessels). We compare in simulation our planner with

two existing steerable needle planners—one is sampling based while the other is search

based. Not only does our motion planner provide a resolution-completeness guarantee, but

compared to prior work it also computes plans of comparable quality, faster, and with a

higher success rate.

II. Related Work

Steerable needles have many different designs, including bevel-tip flexible needles [52,

12], symmetric-tip needles [13], needles with curved stylet tips [38], needles with tendon-

actuated tips [43], and programmable bevel-tip needles [28, 46]. In this paper, we focus on

bevel-tip flexible needles but our approach can be easily used in any mechanical design as

long as the major kinematic constraint to consider is the curvature of the needle trajectory.

A. Motion planning for steerable needles

Early work studied planning and control for steerable needles in the 2D plane [4, 6, 10, 44].

To fully utilize the capability of steerable needles, later work began to focus more on needle

steering in 3D environments. Duindam et al. [15] used inverse kinematics for planning but

the planner was tested only with simple geometrically shaped obstacles and provides no

theoretical guarantees.

Other planners built upon the probabilistic completeness guarantees of sampling-based

methods such as the Rapidly-exploring Random Tree (RRT) [31]. Xu et al. [53] used an

RRT variant for needle steering but showed low efficiency in computing time. Patil et al.

[40] developed an RRT-based needle planner that guides the tree expansion by sampling

in the 3D workspace (instead of the configuration space). The efficiency obtained by

sampling in the workspace and not accounting for the needle’s orientation makes the planner

extremely fast in practice. Unfortunately, this makes the completeness proofs of the original

RRT inapplicable and probabilistic completeness is not guaranteed.

To avoid dealing with curvature constraints directly in the RRT algorithms, there are also

hybrid methods that combine sampling and other techniques. Favaro et al. [16] proposed a

Fu et al. Page 3

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

method that uses RRT* [25] that builds a tree embedded in the 3D workspace to generate

candidate plans of low cost, followed by a smoothing step to account for the curvature

constraint. However, this decoupled approach does not provide any theoretical guarantees.

Liu et al. proposed the Adaptive Fractal Tree (AFT) [34] for needle steering and used a

Graphics Processing Unit (GPU) to further speed up their algorithm. The method uses a

greedy approach for path refinement—it iteratively uses the lowest-cost path in the previous

iteration for plan refinement. However, expanding the best path of a coarse resolution does

not necessarily lead to a best path of a finer resolution. Furthermore, the authors use a cost

function consisting of three factors, only one of which is the distance to the goal, also known

as the targeting error. Thus, when provided with a required targeting error, paths produced

by the method are not guaranteed to adhere to this constraint since the targeting error may

be sacrificed for a better cost for the other two terms. Pinzi et al. [41] later extended AFT to

account for goal orientation constraints.

Other methods focus on accounting for uncertainty during needle insertion but do not

account for completeness [20, 47, 51, 49]. To summarize, to the best of the authors’

knowledge, none of the existing steerable needle planners provide provable guarantees on

the planner’s completeness.

B. Resolution-complete motion planners

Generally speaking, an algorithm is resolution complete if it generates a plan to the goal

whenever a solution exists at the maximal resolution and returns failure otherwise [7]. This

property guarantees that given a predefined maximal resolution, the algorithm terminates in

finite time and provides a deterministic result.

Barraquand et al. [8] proposed a planner for single/multibody mobile robots with

nonholonomic constraints. They formally proved the planner is guaranteed to generate a

solution path when the discretization of the search parameters is fine enough. This approach

was later extended by Lindemann and LaValle [33] to suggest a multi-resolution approach

for 2D carlike robots. Both these works [8, 33] serve as the algorithmic foundations to the

planner we present in this paper.

Sampling-based planners (such as RRT) typically ensure probabilistic completeness (i.e.,

such a planner is guaranteed to find a solution, if one exists, with probability one when given

infinite time). However, they can also be used to build resolution-complete planners given

some mild assumptions on the minimal motion that the system can perform. Cheng et al.

[11] proposed a resolution-complete version of RRT for systems that satisfy the Lipschitz

condition. Yershov et al. [54] formally analyzed the system conditions for the existence of

resolution-complete planners. Kleinbort et al. [27] later analyzed the assumptions for RRT’s

probabilistic completeness in kinodynamic planning. However their analysis can be adapted

to resolution-completeness guarantees.

Ljungqvist et al. [35] proposed a planner for a general two-trailer system in 2D. They used

a two-point boundary value problem (2pBVP) solver to generate a set of motion primitives

connecting 2D grid points. Their planner is resolution-complete and resolution-optimal with

Fu et al. Page 4

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

respect to the resolution in the configuration space, which means the planner generates a

plan with minimal cost among all solutions that can be represented as a sequence of motion

primitives. Most of the above-mentioned planners can be used to plan for 2D nonholonomic

robots. However, none account explicitly for the challenges of planning with curvature

constraints in 3D, where the dimension of the search space is higher and there is no efficient

2pBVP solver. In this work, we provide a planner for 3D needle steering that is both efficient

in practice and is guaranteed to be resolution complete.

III. Problem Definition

In this work, we consider steerable needles that operate in a 3D workspace W ∈ ℝ3, which

is cluttered with obstacles Wobs ⊂ W. We define the configuration space (or C-space) of the

steerable needle as X ⊂ Sℰ (3). Each configuration x = (p, q) ∈ X uniquely defines the pose

(i.e., position p ∈ ℝ3 and orientation q ∈ SO (3)) of the needle tip. We define a projection

function Proj(⋅):X W that projects configurations to points in the workspace, i.e., Proj(x)

= p. A configuration x is collision free if Proj(x) ∉ Wobs, and is in collision otherwise. The

union of all collision-free configurations is denoted as Xfree. Since we assume the needle

shaft perfectly follows its tip, a motion plan of the needle can be uniquely defined as a

trajectory σ: [0, 1] X. And such a motion plan σ is collision free if all configurations along

the trajectory are collision free. Namely, ∀s ∈ [0, 1], σ(s) ∈ Xfree.

We also need to consider the kinematics of the steerable needle. We specifically consider

steerable needles that are highly flexible and have an asymmetric tip (e.g., a bevel) [3, 12,

39, 52]; the asymmetric tip exerts asymmetric forces on the tissue in front of the needle tip,

and the high flexibility enables the needle to curve substantially at maximum curvature κmax

as it moves through the tissue. Furthermore, rotating the needle axially at its base changes

the direction of the needle’s asymmetric tip, enabling the needle to change its direction of

steering. See Fig. 2 for an illustration.

We say a motion plan is (kinematically) feasible if it never exceeds the maximum curvature

κmax. A valid motion plan for the needle is both collision free and feasible. We also assume

there exists a resolution describing the smallest interval or precision of the achievable

motions, which may be limited by the physical system’s hardware (e.g., motor, encoders,

controller, etc.) and its interaction with the environment. In this paper, we determine this

finest resolution by considering the hardware’s ability to measurably change the steerable

needle tip’s position and orientation in tissue. Considering real-world effects such as

torsional wind up of the needle shaft during actuation, the control resolution of the needle

tip is coarser than the control resolution of the needle base where motors directly apply

controls. Thus, we are not using minimal motions of the motors. Instead, we consider the

minimal motions the tip of the needle can perform. We assume there exists a lower-level

controller taking care of controlling the tip to the desired pose, as is common in needle

steering systems.

We are now ready to state the steerable needle motion planning problem.

Fu et al. Page 5

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Problem 1. A steerable needle motion planning problem is defined as the tuple
Δ = X, Wobs, xstart, pgoal, τ, ℓmax, κmax , where Wobs is the obstacle set, xstart is the start

configuration, pgoal ∈ W is the goal point, τ > 0 is the goal tolerance, ℓmax is the maximum

insertion length, and κmax is the maximum curvature. The problem calls for computing a
valid motion plan σ that satisfies: (i) σ(0) = xstart, (ii) the Euclidean norm ∥Proj(σ(1)) −

pgoal∥2 ≤ τ, and (iii) trajectory length ℓ(σ) ≤ ℓmax.

As we show in our later discussion (in Sec. V and Appendix A), for any given instance of

Problem 1, under some mild assumptions, there exists some fine-enough resolution Rmin =

{δℓmin, δθmin} (corresponding to the needle’s insertion and axial rotation, respectively) for

which our planner is guaranteed to find a solution in finite time (when one exists) or to

indicate that no solution exists.

IV. Method

A. Overview

Our needle planner builds a search tree T = (V, ℰ) embedded in the C-space with xstart as its

root. Each node v ∈ V is associated with a configuration xv ∈ X, and each edge e = (v, u) ∈ ℰ
represents the transition from xv to xu. To expand a node v ∈ V, we construct new nodes

(children of v) with motion primitives (to be explained shortly in Sec. IV-B), which are

pre-defined feasible motions. A child node vchild is accepted and added to the search tree

if the trajectory from v to vchild is collision-free and vchild is valid (will be detailed in

Sec. IV-D). The search tree grows until there is some node v with configuration xv whose

projection is inside the τ-neighborhood of pgoal (condition (ii) in Problem 1).

A key aspect of our search method (which is similar in nature to other search-based planners

[33]) is to use a set of motion primitives defined using multiple resolutions. Instead of

expanding each node in our search tree using the entire set of motion primitives, we start

with coarse motion primitives and use finer motion primitives as the search progresses.

Thus, we start (Sec. IV-B) by describing the parameters required to define a motion

primitive. After that, we continue (Sec. IV-C) to detail a hierarchy of motion primitives

together with an ordering that will be used in our search algorithm. We then describe

our search algorithm in detail (Sec. IV-D) and elaborate on the method we use to handle

“similar” states, also known as duplicate detection [14] (Sec. IV-F). We conclude this section

with some implementation details (Sec. IV-G).

B. Motion Primitives

Motion primitives, introduced by Frazzoli et al. [17], have been used in many motion

planners [23, 24, 33, 42, 35]. In our setting, the motion primitives are a set of predefined

kinematically feasible local motions. Roughly speaking, a motion primitive defines with

what curvature the needle curves, how far the needle steers, and in what direction (see Fig.

3). Since for each motion primitive, the curvature κ is explicitly defined, a motion primitive

is guaranteed to be kinematically feasible as long as κ ≤ κmax. As we will see in the proofs

(Appendix A), our definition of motion primitives guarantees resolution completeness, and

Fu et al. Page 6

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the experiments show that the definition also the enables computation efficiency of our

algorithm.

More formally, to steer from configuration xv, a motion primitive is defined as a three-tuple

ℳ = (κ, δℓ, δθ), where κ ∈ [0, κmax] is the curvature, δℓ > 0 is the length of the circular arc,

and δθ ∈ [0, 2π) is the angle between the curving plane and the XZ-plane of xv (see Fig.

3). Thus the action space (or motion space) can be defined as A ⊂ ℝ3, which is the set of all

motion primitives. We use xu = xv ⊕ ℳ to denote the operation of extending xv with motion

primitive ℳ and obtaining the resultant configuration xu. See Fig. 3 for a step-by-step

determination of xu. In the context of a search tree, by a slight abuse of notation, u = v ⊕ ℳ
denotes the resultant node u, obtained by extending node v with the motion primitive ℳ. We

call ℳ the extending primitive of node u.

Using motion primitives allows pre-computing intermediate configurations and thus saving

computation efforts during planning by transforming these configurations to the frame

defined by xv. Since the trajectory produced with one motion primitive is a circular arc, it is

possible to densely interpolate the trajectory for collision-checking purposes.

In the following sections, we show that δℓ and δθ are gradually refined in the algorithm. In

contrast, we keep a fixed set of curvatures, {0, κmax}, for all motion primitives. As we will

see (Sec. V and Appendix A) this does not hinder the guarantees provided by our approach.

Moreover, as we demonstrate in our experiments (Sec. VI), these primitives, coupled with

our planner allow us to efficiently compute paths for non-trivial instances where other

planners fail.

C. Motion Primitive Hierarchy

Our algorithm uses a sequence of motion primitives, whose resolution changes from coarse

to fine. The coarsest motion primitives are defined by some parameters δℓmax and δθmax. In

our implementation and examples (e.g., Fig. 4) we have that δθmax = π
2 and δℓmax > 0 is a

user-given parameter.

Since δθ ∈ [0, 2π) and δθmax = π
2 , there exist four orientations (δθ ∈ {0, 0.5π, π, 1.5π})

that have the coarsest orientation (see Fig. 4). There exists only one coarsest length, which

is δℓmax, since path length is accumulated when we expand a node. To characterize how fine

the resolution of a motion primitive ℳ = (κ, δℓ, δθ) is, we define the notions of length level lℓ
and angle level lθ. More formally,

lℓ(ℳ) = min l ∈ ℤ| l ≥ 0, MOD δℓ, 2−l ⋅ δℓmax = 0 ,
lθ(ℳ) = min l ∈ ℤ| l ≥ 0, MOD δθ, 2−l ⋅ δθmax = 0 ,

where MOD(·) is the modulo operation.

For a motion primitive ℳ = (κ, δℓ, δθ), we refine the resolution of both the insertion δℓ and

the orientation δθ. The new motion primitives constructed by refining δℓ are:

Fu et al. Page 7

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ℳℓ ± = κ, δℓ ± 2− lℓ(ℳ) + 1 ⋅ δℓmax, δθ . (1)

Similarly, the motion primitives constructed by refining δθ are:

ℳθ ± = κ, δℓ, δθ ± 2− lθ(ℳ) + 1 ⋅ δθmax . (2)

It is straight-forward to see that the refined motion primitives ℳℓ − and ℳℓ + both have

a length level of lℓ(ℳ) + 1 and the refined motion primitives ℳθ − and ℳθ + both have an

angle level of lθ(ℳ) + 1 (see Fig. 4).

Note that when refining a motion primitive with lℓ(ℳ) = 0 (resp. lθ(ℳ) = 0), we ignore ℳℓ +
(resp. ℳθ −) as they both exceed the range of exploration.

Similar to Lindemann and LaValle [33], our search algorithm expands nodes according to a

node’s rank. Rank captures both the depth of a node in the search tree and the fineness of

resolution along the branch connecting the node from the root. We define the rank of the root

node to be zero, the rank of any other node v is recursively defined as:

Rank(v) = Rank(v . parent) + lℓ ℳv + lθ ℳv + 1. (3)

For a visualization, see Figs. 4 and 5.

D. Algorithm Description

We run an A*-like search where nodes are ordered according to their rank (Eq. 3). A

distinctive feature from (vanilla) A* is that when we expand a node, we also increase the

resolution of the motion primitives used to expand its parent and add nodes using these finer

motion primitives to the search’s priority queue. The rest of this section formalizes this idea.

Fu et al. Page 8

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Alg. 1 shows the pseudocode of our needle planner. We first initialize the coarsest

orientations and the curvature set (line 1), then initialize the OPEN list and CLOSED set

(line 3). The search algorithm then iteratively extracts nodes from the OPEN list (line 5),

where nodes are ordered in a monotonically non-decreasing order according to their rank.

Only at this point (line 6) the extracted node is validated (also known as lazy validation

[21, 36]). Validation of node v involves ensuring that: (i) the accumulated trajectory length

should not exceed the maximum insertion length ℓmax; (ii) the goal point should be inside

or close to the reachable region of xv (Sec. IV-G); (iii) v should not be a duplicated node

(Sec. IV-G); and that (iv) the circular arc connecting v.parent and v should be collision-free.

An invalid node will be rejected and discarded. For a valid node v, we further check if

there exists any similar configuration in the CLOSED set in order to avoid considering

highly similar configurations (Sec. IV-F and Appendix A). A valid node without a similar

configuration is accepted, expanded, and added to the CLOSED set (lines 10–12). The

search terminates if the associated configuration of the accepted node satisfies the goal

tolerance.

In our search algorithm, only the coarsest child nodes are added to the OPEN list during

the initial expansion of a node (lines 10–11). But additional child nodes, created with finer

motion primitives, are added when the coarse child nodes are extracted from the OPEN

list (line 15). More specifically, when node v is extracted, we refine its extending motion

primitive ℳv following Eq. 1 and 2 (line 14), and use the refined motion primitives ℳℓ ±
and ℳθ ± to expand v.parent.

E. Cutoff Resolution

As specified in Sec. III, for a physical needle-steering robot there exists some smallest

interval or precision of the achievable motions, which induces the minimal insertion

and axial rotation δℓmin and δθmin, respectively. We term δℓmin and δθmin as the cutoff
resolution and stop adding refined nodes when the extending motion primitive ℳ satisfies

2−lℓ(ℳ) ⋅ δℓmax < δℓmin or 2−lθ(ℳ) ⋅ δθmax < δθmin.

F. Duplicate Detection

To avoid re-expanding the same or highly similar nodes multiple times, search-based

planners often employ duplicate detection [14] that prunes so-called “duplicate” nodes.

To prune duplicate nodes and enable the planner to rapidly explore the entire C-space, we

reject a node if there already exists a similar configuration in the search tree (line 7). More

formally, we reject node v with configuration xv if ∃u ∈ V, ρ(xu, xv) < dsim, where dsim > 0

is a radius we use to identify similar configurations. Here, ρ(·) is a distance metric defined

on X which in our work is defined as

ρ xu, xv = pu − pv 2 + α ⋅ dist∢ qu, qv , (4)

where α > 0 is a weighting parameter and dist∢() is the angular distance between two

orientations. Note that to guarantee resolution completeness, the value of dsim depends on

other system parameters detailed in Sec. V and Appendix A.

Fu et al. Page 9

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

G. Implementation Details

We now describe several implementation details used to further speed up our approach. To

distinguish between different implementations of our approach we refer to the basic version

of our Resolution-Complete Search (i.e., without the implementation details described

below) as RCS_BASIC and to the (basic) version that does not use similar-node rejection

(i.e., when not performing the test in line 7) as RCS_NR. The versions that use all the

following implementation details without and with parallelization (explained shortly) will be

referred to as RCS and RCS_PARA, respectively.

1) Early pruning by testing for goal reachability: We can prune away nodes that,

due to curvature constraints, cannot be part of a path that reaches the goal (see Fig. 6 for a

2D illustration). The curvature constraint defines so-called “unreachable regions” of a node

and testing if the goal pgoal belongs to a node’s unreachable region can be done efficiently

(see Fig. 6). Such nodes are pruned away and not expanded.

However, recall that we allow some goal tolerance τ. Thus, instead of requiring the goal

point to be inside a node’s reachable region, we only require that the distance between pgoal

and the boundary of the reachable region is smaller than τ.

Our model allows a needle to make “U-turns” and reach the region we currently mark as

unreachable. But in our specific setting, the needle tip cannot (physically) turn more than

90° as the needle might buckle and shear through the tissue, so we discard such motions.

Thus we don’t need to account for a needle entering the unreachable region due to a

“U-turn”.

2) Direct goal connection: For each node v that is added to the search tree with

corresponding configuration xv, we attempt to connect xv to the goal point pgoal with a

circular arc (a similar technique is used in the RRT-based needle planner [40]). This arc lies

in the plane that is determined by the tangent vector of xv and pgoal, and its curvature can be

computed according to the relative position of xv and pgoal.

If pgoal lies outside the reachable region of xv but the distance between pgoal and the

boundary of the reachable region is no larger than τ, we steer the needle in the plane

following a circular arc of curvature κmax to the point closest to pgoal. When the circular arc

is collision-free, a solution has been found and we terminate the search. This approach can

often dramatically speed up the search.

3) Equivalent node pruning: As we use a multi-resolution approach, there may exist

multiple nodes representing the exact same configurations. Our approach for rejecting

similar nodes (Sec. IV-F) can be used to reject equivalent ones. However, testing if two

nodes are equivalent is more efficient and saves future computationally expensive collision

checking.

As we are refining the arc length δℓ and orientation δθ simultaneously, it is possible for a

node to be expanded more than once with the same motion primitive: first as a node with

finer arc length, then as a node with finer orientation. To avoid extending the same node

Fu et al. Page 10

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

with the same motion primitive, we give each motion primitive a unique index and the

parent node keeps record of which motion primitives have been explored and allows only

unexplored motion primitives when adding finer nodes (line 15).

4) Parallelism: One of the most time-consuming tasks in our search algorithm is

processing a node after it is extracted from the OPEN list (namely, evaluating if the path to

this node is collision free, computing the relevant motion primitives for its parent node and

the corresponding new nodes). To this end, we implemented a multi-threaded version of the

algorithm where each thread is tasked with processing a node extracted from the OPEN list.

This enables processing nodes in parallel while maintaining the correctness of the algorithm

by adding standard locking mechanisms to the shared data structures (i.e., OPEN list and

CLOSED set).

V. Theoretical Guarantees

In this section we state and give a proof overview of the theoretical guarantees that our

algorithm provides. We start with some general definitions pertaining to the notion of

resolution completeness adapted from LaValle [32]. Unfortunately, their generality requires

masking important problem-related details such as, “is planning defined in the C-space or in

the control space?” or “what are the specific assumptions on the system?” This is also the

reason that existing proofs (e.g., [7, Appendix A] and [11, Thm. 5.2]) cannot be used as is.

Thus, we quickly move to the specific setting of motion planning for steerable needles which

requires specifying the exact problem-related details and definitions. Here we start with an

overview of our proof explaining where we rely on the aforementioned proofs and where we

are required to account for our specific domain and planner.

A. General resolution-related definitions

Definition 1 (Resolution). Resolution is a finite set of parameters R = {r0, r1, …, rn}, where
each ri ∈ R characterizes the discretization of some space (e.g. state space, configuration
space, action space, and time), and the smaller ri is, the finer the corresponding resolution is.

Definition 2 (Resolution completeness). For a general motion planning problem Δ, a planner
P is resolution complete if when a so-called qualified solution to Δ exists, there exists some
resolution Rmin such that running P with resolution Rmin on Δ finds a solution in finite time.

Clearly the above definition is more a general intuition than a precise definition. We need

to define what a “qualified solution is” and what “running P with resolution Rmin on Δ”

means. These notions together with our main theoretic result (Thm. 2) are formalized in

Appendix A.

B. Proof overview

As a first step we need to state how Def. 1 is instantiated in our setting. Here, the resolution

is a pair R = {rℓ, rθ} that characterizes the action space (namely, the insertion δℓ and

rotation δθ of the needle). However, this geometric characterization of the needle motion

is a simplification of the way we control a needle in practice—via insertion and rotation

velocity. This difference is important as the relative insertion and rotation velocity creates

Fu et al. Page 11

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

paths that have curvatures ranging between zero and κmax. In contrast, our motion primitives

either follow a straight line or a path of maximal curvature κmax. Thus, the first part of our

proof shows that considering these two fixed curvatures allows us to approximate any path

arbitrarily well. This is done using the notion of duty cycling [37] and is detailed in Sec.

B of Appendix A. The original idea in [37] is designed specifically for bevel-tip needles.

We look at the problem from a geometric perspective and decouple the guarantees and the

needle mechanism, thus making it valid for needles with different designs.

The second part of our proof, detailed in Sec. C of Appendix A, states that any path that

adheres to some mild assumptions can be approximated arbitrarily well by a very specific

set of motion primitives—those with some fixed resolution. This is a somewhat technical but

important step—it will allow us to argue that as long as the cutoff resolution (defined in Sec.

IV-E) is fine enough, our algorithm RCS_NR is guaranteed to find a solution in finite time

(when no node rejection is applied). Here we adapt the original proof by Barraquand et al.

[7, Appendix A] that considers paths in a two-dimensional workspace. As our needle moves

in a 3D workspace, we cannot use the proof as-is and detail some required adaptations.

These parts are summarized in the following theorem (stated informally to avoid using

notations defined in Appendix A).

Theorem 1 (Resolution completeness of RCS_NR). Let
Δ = X, Wobs, xstart, pgoal, τ, ℓmax, κmax be a steerable needle motion planning problem. Under

the assumption that the system is Lipschitz continuous and there exists a traceable solution
with non-zero clearance1, there exists some cutoff resolution for which RCS_NR will find a
solution in finite time.

The third part of our proof, described in Sec. E of Appendix A, shows that even with similar

node rejection, the basic version of our algorithm RCS_BASIC still finds a solution when

several conditions are satisfied. Here we adapt the proofs provided by Cheng and LaValle

[11, Thm. 5.2]. In their proof, a fixed control period is assumed for every motion primitive.

Thus, we need to incorporate the machinery developed in the second part of our proof (Sec.

C of Appendix A) and obtain the following result (again, stated informally to avoid using

notations defined only in Appendix A).

Theorem 2 (Resolution completeness with similar-node rejection). Let
Δ = X, Wobs, xstart, pgoal, τ, ℓmax, κmax be a steerable needle motion planning problem. Under

the assumption that the system is Lipschitz continuous and there exists a traceable solution
that has sufficient clearance, there exists some cutoff resolution {δℓmin, δθmin} and some
radius for similar node rejection dsim (which is a function of τ, ℓmax and δℓmin) for which
RCS_BASIC will find a solution in finite time.

In the final part of the proof (Sec. F of Appendix A), we show that none of the

implementation details we use to improve the algorithm’s efficiency hinder the theoretical

guarantees of RCS_BASIC.

1Refer to Appendix A for detailed definitions of Lipschitz continuous, traceable trajectory, and clearance.

Fu et al. Page 12

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

VI. Results

We evaluate our new resolution-complete motion planner for steerable needles using

scenarios based on the medical task of lung biopsy. Lung cancer is the deadliest form of

cancer in the United States, killing over 150,000 Americans each year [5]. Early diagnosis

is critical for patient survival, and biopsy of suspicious nodules is required for diagnosis.

Steerable needles deployed from bronchoscopes have the potential to safely and accurately

reach nodules throughout the lung for biopsy and localized treatment [29, 50]. We illustrate

in Fig. 1 a volumetric model of the relevant anatomy segmented from a CT scan [18]. In

this procedure, the steerable needle is deployed from a bronchoscope inside the lung and

must steer from the start pose just outside a bronchial tube (the furthest pose reachable by

the bronchoscope) to the nodule while avoiding anatomical obstacles that include the large

blood vessels, the bronchial tubes, and the lung boundary.

To create test cases, we randomly sampled 50 collision-free start configurations along the

bronchial tube walls (i.e., points reachable by the bronchoscope from which the steerable

needle can be deployed), each with 10 reachable goal points in the lung parenchyma (i.e.,

points in the tissue of the lung outside the bronchial tubes in which nodules requiring biopsy

may occur), totaling 500 test cases (see Fig. 7 for 10 plans computed by RCS). To avoid

skewing the data with trivial test cases, we discarded test cases where the start configuration

can be connected directly to the goal point with a collision-free arc. Additionally, we also

disallowed test cases where there are obstacles directly in front of the start configuration

deeming the problem unsolvable. Finally, note that it is not guaranteed that a valid plan

exists for a test case.

We consider a steerable needle with a maximum curvature of κmax = 0.01(mm−1), device

diameter of 2mm, and maximum insertion length of 100mm. The simulated workspace was

reconstructed from a preoperative chest CT scan where Wobs is a point cloud representing

the anatomical obstacles described above. We use a collision-checking resolution of 0.5mm

and a goal tolerance of τ = 1.0mm.

We compared in simulation the variants of RCS with two steerable needle planners: an

RRT-based planner [30, 40] and AFT [34, 41]. While the original AFT algorithm is GPU

accelerated, here we present results for our CPU-based implementation and only focus on

the feasibility of the method and not on the computing times (we let AFT run until it

terminates). Similar to [41], we define the cost function for AFT as

Cost(σ) = ℓ(σ)/ℓmax + ∥ σ(1) − pgoal ∥2 /τ, (5)

which accounts both for insertion length and final tip error. We also ran a search-based

planner denoted as SINGLE_RES that includes all optimizations of RCS mentioned in Sec.

IV-G but that uses only the finest resolution (with no multiple resolutions). For additional

details about the parameters used for each planner, see Appendix B. All experiments were

run on a dual 2.1GHz 16-core Intel Xeon Silver 4216 CPU and 100GB of RAM. Code for

our proposed method is available on GitHub [19].

Fu et al. Page 13

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We now present results pertaining to the success rate of the different algorithms. In our

setting, the success rate is the ratio of solved cases among all 500 test cases. For RCS, RRT,

and their variants, each planner was allowed 100 seconds. The results are shown in Fig. 8.

First, among RCS variants, RCS performed much better than RCS_BASIC, indicating the

first three optimizations introduced in Sec. IV-G dramatically improved the efficiency of the

algorithm. Furthermore, except for the obvious overhead effect in the early stage (< 10ms),

RCS_PARA achieved even better performance. The single-resolution planner SINGLE_RES

only achieved a 24.2% success rate, suggesting that the multi-resolution approach in RCS

variants is valuable. Second, the single-threaded RCS achieved better performance than

the single-threaded RRT and multi-threaded RRT_PARA. From the perspective of running

time, RCS_PARA’s average running time for solved cases is 0.43 seconds, and it took

0.83 seconds to reach a success rate of 91.2%, which is roughly 120 times faster than

RRT_PARA.

Since we only had a CPU-based version of the AFT algorithm, we do not compare success

rate over time. Instead, we compare the success rate when RCS runs for 100 seconds

and AFT finishes two tree refinements. Additionally, as AFT produces many paths while

optimizing a cost function that does not necessarily favor paths with minimal goal tolerance

(Eq. 5), we chose the one with the minimal goal tolerance (not with the minimal cost) for

success rate analysis. The 5-level AFT achieved a success rate of 65.8%, with many of the

failures due to the computed paths not satisfying the maximum allowed targeting error of τ =

1mm.

For additional experiments evaluating the quality of the plans produced by each planner, see

Appendix C.

VII. Conclusion & future work

In this paper, we took an important step toward creating a certifiable motion planner

for steerable needles. Specifically, we introduced a resolution-complete planner that

dramatically outperforms state-of-the-art needle planners in a clinically inspired simulation.

This was achieved by carefully designing motion primitives and applying domain-specific

optimizations. We formally showed that the planner is resolution complete, which means

that under some mild assumptions on the system and the solution, the planner, in finite time,

is guaranteed to find a plan as long as the problem admits a qualified solution.

We view this work as an algorithmic foundation required to obtain certifiable motion

planning for steerable needles. Our planner is the first resolution-complete planner for

steerable needles, but more work remains. Our analysis showed that, under some mild

assumptions, when a qualified solution exists, if the cutoff resolution is fine enough and the

path has some clearance (distance from the obstacles), the algorithm will find it. However,

it would be valuable for medical applications to provide the precise relation between the

system’s controls and this cutoff resolution. Subsequently, we need to provide the precise

relation between this cutoff resolution (i.e., what does it mean to be “fine enough”) and the

clearance of paths (i.e., what does it mean “some clearance”?). Future work will use this

Fu et al. Page 14

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

foundation to compute the relation between the aforementioned parameters in order to give

physicians certifiable software for motion planning for steerable needles.

We believe that the algorithmic foundations laid out in this work will also allow us to

provide guarantees on the quality of the solution—a critical requirement in our medical

domain. Here, trajectory quality can correspond to minimizing damage to tissue, the time

the patient is under anaesthesia, and more (see [9] and references within). Consequently,

we plan to revisit the way nodes are ordered in our priority queue (recall that now they

are ordered according to their rank) in order to provide optimality (or near-optimality)

guarantees.

Acknowledgments

This research was supported in part by the U.S. National Institutes of Health (NIH) under award R01EB024864, the
Israeli Ministry of Science & Technology (MOST) by grant No. 102583 and 2028142, and the United States-Israel
Binational Science Foundation (BSF) by grant No. 1018193.

We thank Janine Hoelscher, Inbar Fried, Maxwell Emerson, Tayfun Efe Ertop, Margaret Rox, Josephine Granna,
Alan Kuntz, Jason A. Akulian, and Robert J. Webster III for their discussions on steerable needles for lung
applications.

Appendix A.: Resolution Completeness

A. Preliminaries

Before we state the different parts of our proof, we introduce some definitions. Recall that

a steerable needle motion planning problem is a tuple Δ = X, Wobs, xstart, pgoal, τ, ℓmax, κmax
and that ρ(·) is a distance metric defined on X (Eq. 4). Finally, recall that A is the action

space, which is the set of all valid motion primitives. Throughout the proof, for some

sequence of motion primitives M, we will use x ⊕ M to denote the resultant trajectory

obtained by sequentially applying elements in M to x.

Definition 3 (Strong clearance). Let σ: [0, 1] X be some trajectory. We say that σ has
strong γ-clearance if

∀s ∈ [0, 1], min
x ∈ Xobs

ρ(σ(s), x) > γ,

where Xobs = cl X\Xfree and cl(·) is the closure of a set.

Definition 4 (Trajectory approximation). Let σ: [0, 1] X be some trajectory. We say that
another trajectory σ′ is an ε-approximation of σ if the following conditions are satisfied:

i. boundary condition: ∀s ∈ {0, 1}, ρ(σ(s), σ′(s)) < ε;

ii. one-way Hausdorff distance:

max
t ∈ [0, 1]

{ min
s ∈ [0, 1]

ρ σ(s), σ′(t) } < ε .

Fu et al. Page 15

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Definition 5 (Decomposable trajectory). Let σ: [0, 1] X be some trajectory. We say that
σ is decomposable if it can be decomposed into a finite sequence of motion primitives.

Namely, there exists Mσ = ℳ1, …, ℳn ⊂ A such that σ = σ(0) ⊕ Mσ.

Definition 6 (Traceable trajectory). Let σ: [0, 1] X be some trajectory. We say that σ
is traceable if for any given ε > 0, there exists a decomposable trajectory that is an
ε-approximation of σ.

Note that in the definitions of decomposable and traceable trajectories we allow any

arbitrary set of motion primitives. This allows us to decouple the planner’s ability of

finding a path using a given set of motion primitives with the expressiveness of the motion

primitives.

Definition 7. We define a distance metric on action space A as the two-way Hausdorff
distance between two resultant trajectories x ⊕ ℳ1 and x ⊕ ℳ2. Formally, we have

ρA ℳ1, ℳ2 = max max
t ∈ [0, 1]

{ min
s ∈ [0, 1]

ρ σℳ1(s), σℳ2(t) }, max
s ∈ [0, 1]

{ min
t ∈ [0, 1]

ρ σℳ1(s), σℳ2(t) } ,

where σℳ1 = x ⊕ ℳ1 and σℳ2 = x ⊕ ℳ2. It is worth to note that changing x does not change

the relative position between the two trajectories. Thus, without losing generality, we have x
= (p, q) where p = (0, 0, 0) and q = (1, 0, 0, 0).

Definition 8 (Lipschitz continuous). The system is Lipschitz continuous if ∀x1, x2 ∈ X,

∀ℳ1, ℳ2 ∈ A,

ρ x1 ⊕ ℳ1, x2 ⊕ ℳ2 ≤ Ls ρ x1, x2 + ρA ℳ1, ℳ2 ,

where Ls > 0 is a constant.

Finally, as we will see, it will be convenient to introduce the notion of a finest set of motion

primitives.

Definition 9 (Finest set of motion primitives). Given a resolution R = {rℓ, rθ}, and a set of
curvatures K, we define the finest set of motion primitives as

Mfs(R, K) = κ, rℓ, n ⋅ rθ κ ∈ K, n ∈ 0, 2π
rθ

⊂ ℤ .

B. Approximating curves with arbitrary curvatures

When a bevel-tip needle is inserted only, it follows a trajectory with curvature κmax. When

the needle is inserted while applying axial rotational velocity that is relatively larger than

the insertion velocity, it follows a straight line (i.e., of curvature zero). Minhans et al. [37]

introduced the notion of duty-cycling to approximate any curvature for bevel-tip steerable

Fu et al. Page 16

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

needles. Roughly speaking, combining periods of needle spinning (i.e., zero-curvature

trajectories) with periods of non-spinning (i.e., maximal-curvature trajectories) enables the

needle to achieve any curvature up to the maximum needle curvature. This idea is formalized

in the following lemma.

Lemma 1 (Arbitrary curvature approximation using duty-cycling). Let σ be a decomposable
trajectory and let εd > 0 be some real value. There exists a finite sequence of motion
primitives MD in which every element has curvature κ ∈ {0, κmax} such that the trajectory
σ(0) ⊕ MD is an εd-approximation of σ.

Proof sketch. Here, to explicitly show how the approximation factor is used. And to provide

a more general discussion, we provide a proof from a geometric perspective (and not

control-based as in the original work by Minhas et al. [37]).

The trajectory σ is decomposable, thus there exists a sequence of motion primitives

Mσ = ℳ1, …, ℳn such that σ = σ(0) ⊕ Mσ and each motion primitive ℳi has arbitrary

curvature κi ∈ [0, κmax]. To approximate ℳi, we construct a sequence of motion primitives

Mi = ℳi
(1), …, ℳi

ni that satisfies

ℳi
(1) . δθ = ℳi . δθ,

∀j ∈ 2, ni , ℳi
(j) . δθ = 0,

∀j ∈ 1, ni , ℳi
(j) . κ ∈ 0, κmax .

Namely, the first motion primitive ℳi
(1) ensures that both trajectories use the same curving

plane (see Fig. 3) and the the rest of the sequence stays within this curving plane and

approximates the (arbitrary) curvature κi.

Fu et al. Page 17

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9. Illustration of approximation with duty-cycling.
Left: Decompose ℳi into multiple segments with length ℓi. Right: Use three segments

to approximate one segment of ℳi, where the segments have a curvature of 0, κmax, 0,

respectively. The one-way Hausdorff distance (marked as εd in the figure) depends on ℓi. For

a given κmax, to approximate ℳi (with curvature κ), the shorter ℓi is, the smaller εd is. This is

because εd < r · (1/cos(0.5η) − 1), where r = 1/κ is the radius of curvature and η = ℓi/r is the

central angle.

We then decompose ℳi into small equal-length segments of length ℓi (except possibly the

last segment) where the specific value of ℓi is chosen according to the value of εd. We then

use three motion primitives to approximate each of these segments as illustrated in Fig. 9. It

is not hard to see that (i) the start and end configurations of ℳi and Mi are identical, and (ii)

the one-way Hausdorff distance between ℳi and each ℳi
(j) is less than εd if ℓi is carefully

chosen.

Let Mσ
εd = M1 ⋅ M2 ⋅ … ⋅ Mn be this sequence of all the newly constructed motion primitives.

Then it is straightforward that σ(0) ⊕ Mσ
εd is an εd-approximation of σ. ■

Fu et al. Page 18

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

C. Approximating curves using fixed-length primitives

Lemma 2 (Fixed-resolution trajectory approximation). Let σ be a decomposable trajectory
and let εr > 0 be some real value. If the system is Lipschitz continuous (Def. 8), there exists
a fine resolution R(σ, εr) = {rℓ, rθ} and a finite sequence of motion primitives MR σ, εr such

that σ(0) ⊕ MR σ, εr is an εr-approximation of σ. Moreover MR σ, εr ⊆ ℳfs R σ, εr , Kσ ,

where Kσ is the set of curvatures that appear along σ.

Proof sketch (adapted from [7, Appendix A]). The trajectory σ is decomposable, thus there

exists a finite sequence of motion primitives Mσ = ℳ1, …, ℳn such that σ = σ(0) ⊕ Mσ.

Set Kσ = ∪i ℳi . κ to be the set of all curvatures that appear in Mσ.

To approximate each motion primitive ℳi using primitives from the finest set of

motion primitives ℳfs R σ, εr , Kσ (Def. 9), we construct a sequence motion primitive

Mi = ℳi
(1), …ℳi

ni , where

ℳi
(1) . δθ = ki ⋅ rθ,

∀j ∈ 2, ni , ℳi
(j) . δθ = 0,

∀j ∈ 1, ni , ℳi
(j) . κ = ℳi . κ, Mi

(j) . δℓ = rℓ .

Fig. 10.
Illustration of the action distance between two motion primitives with the same curvature.

Here the shorter motion primitive lies in curving plane 1, thus min{δℓ1, δℓ2} = OAcurv and

|δℓ1 − δℓ2| = OAcurv − OAcurv = BCcurv.

Fu et al. Page 19

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Similar to the sequence constructed for Lemma 1, the first motion primitive ℳi
(1) accounts

for the curving plane (though here it can only be approximated) and the the rest of the

sequence stays within this curving plane and accounts for the length of the circular arc the

trajectory follows in this plane. Applying the sequence Mi is equivalent to applying one

motion primitive ℳi = ℳi . κ, ni ⋅ rℓ, ki ⋅ rθ . Thus, by carefully choosing rℓ and rθ, distance

between ℳi and ℳi (see Def. 7) can be arbitrarily small.

This is done for every motion primitive ℳi. As M is a finite sequence of size n, for any ε > 0

we can always find a fine-enough resolution {rℓ, rθ} that ensures that

ρA ℳi, ℳi < ε, ∀i ∈ [1, n] .

This is because, given that both motion primitives have equal curvature,

ρA ℳ1, ℳ2 < |δθ1 − δθ2| ⋅ min δℓ1, δℓ2 + |δℓ1 − δℓ2|, where δℓi = ℳi . δℓ and δθi = ℳi . δθ.

See Fig. 10 for illustration.

Since the system is Lipschitz continous,

ρ σ(0) ⊕ ℳ1⋯ ⊕ ℳn, σ(0) ⊕ ℳ1⋯ ⊕ ℳn
≤ Ls ρ σ(0) ⊕ ℳ1⋯ ⊕ ℳn − 1, σ(0) ⊕ ℳ1⋯ ⊕ ℳn − 1 + ρA ℳn, ℳn

≤ Lsn ⋅ ρ(σ(0), σ(0)) + ∑
i = 1

n
Lsn − i + 1 ⋅ ρA ℳi, ℳi < ε ⋅

Ls Lsn − 1
Ls − 1 .

Thus, to ensure that σ(0) ⊕ ℳ1, …, ℳn is an εr-approximation of σ, we only need to ensure

that ε ≤
εr Ls − 1

Ls Lsn − 1
. As both n and Ls are fixed, we can choose ε to be as small as needed thus

the desired fine resolution exists which cocludes the proof. ■

Corollary 1. Let σ be a traceable trajectory and let ε > 0 be some real value. If the system
is Lipschitz continuous (Def. 8), there exists a fine resolution R(σ, ε) = {rℓ, rθ} and a finite
sequence of motion primitives MR σ, εr ⊆ Mfs R(σ, ε), 0, κmax , such that σ(0) ⊕ MR σ, εr is

an ε-approximation of σ.

Proof sketch. Set εt = εd = εr = ε/3. According to Def. 6, there exists a decomposable

trajectory σt that is an εt-approximation of σ. Moreover, according to Lemma 1, there exists

a finite sequence of motion primitives MD in which every element has curvature κ ∈ {0,

κmax} such that the trajectory σd = σ(0) ⊕ MD is an εd-approximation of σt.

Note that by construction σd is decomposable. Thus, according to Lemma 2, there

exists a fine resolution R(σ, εr) = {rℓ, rθ} and a finite sequence of motion primitives

MR σ, εr such that σr = σ(0) ⊕ MR σ, εr is an εr-approximation of σd. Moreover,

MR σ, εr ⊆ ℳfs R σ, εr , 0, κmax as the construction in the proof of Lemma 2 does not

add new curvatures.

Fu et al. Page 20

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Finally, as εd = εd = εr = ε/3. Then the trajectory σr is an ε-approximation of σ. ■

D. Resolution completeness (without similar node rejection)

Theorem 1 (Resolution completeness of RCS_NR). Let
Δ = X, Wobs, xstart, pgoal, τ, ℓmax, κmax be a steerable needle motion planning problem. If a

solution to Δ is traceable, has strong γ-clearance for some γ > 0, and the system is Lipschitz
continuous then there exists some cutoff resolution Rmin for which RCS_NR will find a
solution in finite time.

Proof sketch. Let σ be a traceable solution with clearance γ. Following Cor. 1, there exists

a fine resolution R(σ, ε) = {rℓ, rθ} and a finite sequence of motion primitives MR(σ, ε)

⊆ Mfs(R(σ, εr),{0, κmax}) such that σ(0)⊕MR(σ, ε) is an ε-approximation of σ. In our

algorithm, the resolutions are divided by half as the length level lℓ and angle level lθ
increase. Thus, there exists a fine-enough resolution R = 2−lℓ ⋅ δℓmax, 2−lθ ⋅ δθmax that

satisfies 2−kℓ ⋅ δℓmax < rℓ, 2−kθ ⋅ δθmax < rθ. Setting the cutoff resolution Rmin to be finer

(both with respect to the insertion as well as rotation) than R ensures that MR(σ, ε) can be

approximated arbitrarily well.2

The search tree built with RCS_NR is a subtree of a dense tree in which each node is

expanded with every element in ℳfs R, 0, κmax . This is because every coarse motion

primitive used in RCS_NR can be decomposed into a sequence of motion primitives

in ℳfs R, 0, κmax . Additionally, if we allow the algorithm run until the OPEN list is

exhausted, every node in the dense tree (except for those that are in collision) will be

explored by RCS_NR. Since the dense tree encodes all possible trajectories that can be

decomposed with ℳfs R, 0, κmax , when the solution σ is traceable, has γ-clearance, and

the system is Lipschitz continuous, an ε-approximation (with ε < γ) of σ will be encoded in

the dense tree and thus will be explored by RCS_NR. ■

E. Resolution completeness (with similar node rejection)

We are now ready to show that even with similar node rejection, our algorithm is still

resolution complete

Theorem 2 (Resolution completeness with similar-node rejection). Let
Δ = X, Wobs, xstart, pgoal, τ, ℓmax, κmax be a steerable needle motion planning problem.

RCS_BASIC will find a solution in finite time, if the following conditions are satisfied:

(C1) The system is Lipschitz continuous.

(C2) The cutoff resolution Rmin is fine enough and it satisfies

2To be more precise, one needs to account for the cases where R(σ, εr) is not in the sequence of resolutions considered by the
algorithm and we may introduce additional error when approximating R(σ, εr) with R. However, using the techniques we previously
used this can be easily accounted for. We omit this in our proof sketch.

Fu et al. Page 21

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

δℓmin = 2−lℓ max ⋅ δℓmax, δθmin = 2−lθ max ⋅ δθmax .

(C3) The radius dsim used to reject similar nodes satisfies

0 < dsim < min δℓmin,
τ Ls − 1

2 LsH − 1
,

where H = ⌈ℓmax/δℓmin⌉.

(C4) There exists a traceable solution plan σ with τ
2 goal tolerance and strong γ-clearance

(Def. 3) for γ >
τ + δℓmin

2 .

The proof of Thm. 2 uses Thm. 1 and then follows Cheng and LaValle [11, Thm. 5.2]. We

include it here for completeness.

Proof. According to Thm. 1, RCS_NR terminates in finite time, thus RCS_BASIC also

terminates in finite time since more nodes are rejected. We now prove that RCS_BASIC can

find a solution plan if conditions (C1)–(C4) are satisfied.

Since σ is traceable, there exists some fine resolution R(σ, ε) can be explored by

RCS_BASIC (as discussed in Thm. 1), with which we can construct an ε-approximation

of σ. Denote the decomposable approximation σ′, and the sequence of motion primitives

to compose it Mσ′ = ℳ1, …, ℳn . When Mσ′ is sequentially applied to xstart, we obtain a

sequence of configurations {x0, x1, …, xn}, where x0 = xstart, xi = xi − 1 ⊕ ℳi, i ∈ [1, n]. For

the rest of the proof, we use Mσ[i, j] = ℳi, …, ℳj to denote a subsequence of Mσ′. We also

use x+Mσ′[i, j] to denote the configuration after sequentially applying ℳi, …, ℳj to x.

If we run RCS_NR, every xi will be explored and σ will be constructed when the search

terminates. However, if we run RCS_BASIC, we prune nodes using duplicate detection (Sec.

IV-F). Thus, we need to show that even with pruning, RCS_BASIC will still find a plan.

This will be done by showing that the same sequence of motion primitives can be applied to

configurations that are “similar” to x0 … xn and the resultant plan σ exists using the fact that

σ is “similar” to σ and that σ has γ-clearance. The rest of this proof formalizes this idea.

Recall that (C3) ensures that dsim < δℓmin which guarantees that any motion primitive will

end up at a non-similar configuration. Now, let xi be the first configuration that is pruned

because of a similar configuration (see Alg. 1, line 7). We will say that xi is replaced by

the similar configuration xi′. As i ≥ 1, in the worst case we have i = 1. We then apply

Mσ′[2, n] to x1′ . According to (C1), the maximal error accumulated to xn′ = x1′ + Mσ′[2, n]

is ε1 = ρ xn′ , xn = Ls
n − 1 ⋅ dsim. Similarly, when x2′ is replaced by x2′′, we apply Mσ′[3, n]

to x2′′ and for xn′′ = x2′′ + Mσ′[3, n], the accumulated error is ε2 = ρ xn′′, xn′ = Ls
n − 2 ⋅ dres. The

Fu et al. Page 22

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

same analysis applies for {x3, …, xn}. According to (C3), the total accumulated error then

becomes:

ε = ρ xn(n), xn ≤ ρ xn′ , xn + ⋯ + ρ xn(n), xn(n − 1)

= ε1 + ⋯ + εn =
Lsn − 1
Ls − 1 ⋅ dres < τ

2 ⋅
Lsn − 1
LsH − 1

≤ τ
2 .

According to (C4), we have that Prog xn − ggoal 2 ≤ τ
2 . Thus,

Proj xn(n) − pgoal 2
≤ Proj xn(n) − Proj xn 2 + Proj xn − pgoal 2
≤ τ /2 + τ /2 = τ .

This implies that even in the worst case where all possible replacements happen, the final

configuration xn(n) still satisfies the required goal tolerance (see Fig. 11).

Fig. 11.
A 2D illustration of configuration pruning. σ is shown as black nodes, the plan after x1′

prunes x1 is shown as red nodes, the plan after x2′′ prunes x2′ is shown as green nodes,

the plan after x3
(3) prunes x3′′ is shown as yellow nodes, the plan after x4

(4) prunes x4
(3) is

shown as blue nodes, and the pruning configuration x5
(5) is shown as a purple node. The

solid circular arrows represent elements in Mσ, and the dashed circular arrows represent

connections to predecessors of the pruning configurations. In this particular example, as

Fu et al. Page 23

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

long as we guarantee that Proj x5 − pgoal 2 ≤ τ
2 and that ε = ∑i = 1

5 εi ≤ τ
2 , the resultant plan

which ended at x5
(5) still satisfies the required goal tolerance.

Additionally, we prove that when pruning happens for xi
(j), the motion plan constructed with

Mσ′[i, n] is still collision-free. We have shown above that ρ xn(n), xn < τ
2 . Moreover, we have

that ∀i ∈ [0, n], ρ xi
(n), xi < τ

2 since less error is accumulated for i < n. Thus we have that

∀k ∈ [i, n], ‖Proj((xk
(j)) − Proj((xk)‖2 ≤ ρ(xk

(j), xk) < τ
2 .

And for any configuration x along edge xk
(j), xk + 1

(j) , we have that

min Proj(x) − Proj xk 2 Proj(x) − Proj xk + 1 2 <
τ + δℓmin

2 .

According to (C4), γ >
τ + δℓmin

2 , there always exist a small value ε = γ −
τ + δℓmin

2 . Thus,

as long as σ′ is an ε-approximation of σ, σ is then guaranteed to be a γ-approximation

of σ. σ’s strong γ-clearance guarantees that the motion plan constructed with Mσ′[i, n] is

collision-free.

To summarize, as long as the required conditions are satisfied, RCS_BASIC still finds a

motion plan. ■

F. Resolution completeness while incorporating implementation details

Corollary 2. RCS and RCS_PARA will also find a solution in finite time, if the conditions
in Thm. 2 are satisfied. In other words, none of the implementation details hinder the
resolution completeness guarantees.

Proof sketch. For RCS, goal reachability checks only reject invalid nodes, direct goal

connection only provides early terminations without affecting the search tree, and

equivalent-node pruning provides an efficient way to reject identical configurations early.

For RCS_PARA, parallelization may change the order of processing nodes, but does not

change the essence of the proofs. Thus, RCS and RCS_PARA also find a motion plan as

RCS_BASIC does. ■

Appendix B.: Planner parameters for evaluation

In this section we describe the parameters used by each planner. For the precise definition

of the different parameters, the reader is referred to the original papers describing the

RRT-based algorithm [40] and AFT [41].

Fu et al. Page 24

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

i. RRT: We set goal biasing: 5% and direct goal connecting ratio: 100%. The

multi-threaded version of RRT, denoted as RRT_PARA, was implemented with

Motion Planning Templates (MPT) [22] and used 60 threads.

ii. AFT: We used two tree refinements and used the cost function defined in Eq.

5. Additionally, we used five levels of increments of the fractal structure, a tree

density of 17, and we rotated the tree around the root axis 10 times, each time

with a step of π
5 rad (these values were chosen according to the analysis provided

by Pinzi et al. [41]).

iii. RCS: The system cutoff resolution is computed for control frequency 40Hz,

which corresponds to a time interval of 0.025s: δℓmin = 5(mm/s) · 0.025s

= 0.125mm, δθmin = 2π(rad/s) · 0.025s ≈ 0.157rad. The value of insertion

and rotation velocities are taken from [45] and the control frequency is the

measurement rate of the NDI Aurora tracking system [1]. Maximum length step:

δℓmax = 20mm. Distance metric weighting parameter: α = 0.05. In addition, we

empirically determined that dsim = 5.5e − 5. We use 60 threads for RCS_PARA,

the multi-threaded version of RCS.

As is mentioned in Sec. III, for RCS, we determine the finest resolution by considering the

hardware’s ability to measurably change the steerable needle tip’s position and orientation

in tissue. We use conventional constant insertion and rotational velocities (as are commonly

used in steerable needle robots) and the magnetic tracker reading frequency (commonly

used for tracking steerable needle tips) to determine the minimal motions. These real-world

minimal motions of the steerable needle tip are the minimal motions explored by the search.

TABLE I

Planner Performance Comparison

RRT_PARA AFT RCS_PARA

Success rate 91.2% 65.8% 97.6%

Avg. relative length 0.998 1.003 1.0

Avg. targeting error 0.053mm 0.207mm 0.051mm

Appendix C.: Additional experiments

In this section we present additional experiments evaluating the quality of the plans

produced by each planner. More specifically, we focus on the trajectory length ℓ(σ) and

the final targeting error ∥σ(1) − pgoal∥2.

For AFT, both are considered in the cost function. For RCS and RRT, although the plan

quality is not explicitly optimized, as more running time is given, there is a chance to

improve the plan quality. For both planners, we use the same cost function defined in Eq.

5 to pick a plan with the lowest cost from all motion plans generated. Since RCS and

RRT only consider a plan to be valid if it satisfies the required targeting error, the final

resulting plan is guaranteed to satisfy the targeting error. Similar to the previous comparison,

Fu et al. Page 25

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RRT_PARA and RCS_PARA are allotted a running time of 100 seconds, and the planner

keeps running after the first solution is found to generate more plans. We pick as the

final result the solution with minimal cost among all solutions found. AFT uses two tree

refinements. The results are shown in Table I. Since different test cases have different ranges

of plan length, we take the best plan produced by RCS_PARA as the baseline, and compute

the plan length relative to it. Values in Table I are averaged over all test cases that are

successfully solved by all planners.

Due the limited insertion length and the maximum curvature constraint, all three planners

produced plans with (roughly) similar lengths. RRT_PARA computed the lowest-cost

trajectory on average. This may due to the steer function in RRT always trying to connect

to a sampled point with the shortest arc. For the two search-based methods, RCS_PARA

achieved better plan length since the resolution in RCS can be much finer than that of

AFT. As for the targeting error, because RCS_PARA and RRT_PARA both try to connect

to the goal point directly, they can efficiently reduce the targeting error and achieve average

targeting errors much smaller than AFT.

References

[1]. Aurora - NDI. https://www.ndigital.com/products/aurora/. Accessed: 2021-02-28.

[2]. Abolhassani Niki, Patel Rajni, and Moallem Mehrdad. Needle insertion into soft tissue: A survey.
Medical Engineering & Physics, 29(4):413–431, 2007. [PubMed: 16938481]

[3]. Alterovitz Ron, Goldberg Ken, and Okamura Allison. Planning for steerable bevel-tip needle
insertion through 2D soft tissue with obstacles. In IEEE Int. Conf. Robotics and Automation
(ICRA), pages 1640–1645. IEEE, 2005.

[4]. Alterovitz Ron, Siméon Thierry, and Goldberg Ken. The stochastic motion roadmap: A sampling
framework for planning with markov motion uncertainty. In Robotics: Science and Systems
(RSS), 2007.

[5]. American Cancer Society. Cancer Facts & Figures. Technical report, American Cancer Society,
2016.

[6]. Asadian Ali, Kermani Mehrdad R, and Patel Rajni V. Robot-assisted needle steering using a
control theoretic approach. J. Intelligent and Robotic Systems, 62(3):397–418, 2011.

[7]. Barraquand Jerome and Latombe Jean-Claude. Robot motion planning: A distributed
representation approach. Int. J. Robotics Research (IJRR), 10(6):628–649, 1991.

[8]. Barraquand Jérôme and Latombe Jean-Claude. Nonholonomic multibody mobile robots:
Controllability and motion planning in the presence of obstacles. Algorithmica, 10(2):121–155,
1993.

[9]. Bentley Michael, Rucker Caleb, Reddy Chakravarthy, Salzman Oren, and Kuntz Alan. A novel
shaft-to-tissue force model for safer motion planning of steerable needles. Computing Research
Repository (CoRR), abs/2101.02246, 2021.

[10]. Bernardes Mariana C, Adorno Bruno V, Poignet Philippe, and Borges Geovany A. Semi-
automatic needle steering system with robotic manipulator. In IEEE Int. Conf. Robotics and
Automation (ICRA), pages 1595–1600. IEEE, 2012.

[11]. Cheng Peng and LaValle Steven M. Resolution complete rapidly-exploring random trees. In IEEE
Int. Conf. Robotics and Automation (ICRA), volume 1, pages 267–272. IEEE, 2002.

[12]. Cowan Noah J, Goldberg Ken, Chirikjian Gregory S, Fichtinger Gabor, Alterovitz Ron, Reed
Kyle B, Kallem Vinutha, Park Wooram, Misra Sarthak, and Okamura Allison M. Robotic needle
steering: design, modeling, planning, and image guidance. In Rosen Jacob, Hannaford Blake,
and Satava Richard M, editors, Surgical Robotics: System Applications and Visions, chapter 23,
pages 557–582. Springer, 2011.

Fu et al. Page 26

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ndigital.com/products/aurora/

[13]. DiMaio Simon P and Salcudean Septimiu E. Needle insertion modeling and simulation. IEEE
Trans. Robotics and Automation, 19(5):864–875, 2003.

[14]. Du Wei, Kim Sung-Kyun, Salzman Oren, and Likhachev Maxim. Escaping local minima in
search-based planning using soft duplicate detection. In IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS), pages 2365–2371. IEEE, 2019.

[15]. Duindam Vincent, Xu Jijie, Alterovitz Ron, Sastry Shankar, and Goldberg Ken. Three-
dimensional motion planning algorithms for steerable needles using inverse kinematics. Int. J.
Robotics Research (IJRR), 29(7):789–800, 2010.

[16]. Favaro Alberto, Cerri Leonardo, Galvan Stefano, Baena Ferdinando Rodriguez Y, and De Momi
Elena. Automatic optimized 3D path planner for steerable catheters with heuristic search and
uncertainty tolerance. In IEEE Int. Conf. Robotics and Automation (ICRA), pages 9–16. IEEE,
2018.

[17]. Frazzoli Emilio, Dahleh Munther A, and Feron Eric. Real-time motion planning for agile
autonomous vehicles. Journal of Guidance, Control, and Dynamics, 25 (1):116–129, 2002.

[18]. Fu Mengyu, Kuntz Alan, Webster Robert J III, and Alterovitz Ron. Safe motion planning for
steerable needles using cost maps automatically extracted from pulmonary images. In IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS), pages 4942–4949. IEEE, 2018.

[19]. Fu Mengyu, Salzman Oren, and Alterovitz Ron. steerable-needle-planner. https://github.com/
UNC-Robotics/steerable-needle-planner, 2021. Accessed: 2021-6-9.

[20]. Hauser K, Alterovitz R, Chentanez N, Okamura A, and Goldberg K. Feedback control for
steering needles through 3D deformable tissue using helical paths. In Proceedings of Robotics:
Science and Systems, Seattle, USA, June 2009.

[21]. Hauser Kris. Lazy collision checking in asymptotically-optimal motion planning. In IEEE Int.
Conf. Robotics and Automation (ICRA), pages 2951–2957, 2015.

[22]. Ichnowski Jeffrey and Alterovitz Ron. Motion planning templates: A motion planning framework
for robots with low-power CPUs. In IEEE Int. Conf. Robotics and Automation (ICRA), pages
612–618. IEEE, 2019.

[23]. Islam Fahad, Salzman Oren, and Likhachev Maxim. Provable indefinite-horizon real-time
planning for repetitive tasks. In Int. Conf. Automated Planning and Scheduling (ICAPS), volume
29, pages 716–724, 2019.

[24]. Islam Fahad, Vemula Anirudh, Kim Sung-Kyun, Dornbush Andrew, Salzman Oren, and
Likhachev Maxim. Planning, learning and reasoning framework for robot truck unloading. In
IEEE Int. Conf. Robotics and Automation (ICRA), pages 5011–5017. IEEE, 2020.

[25]. Karaman Sertac and Frazzoli Emilio. Sampling-based algorithms for optimal motion planning.
Int. J. Robotics Research (IJRR), 30(7):846–894, 2011.

[26]. Kirkpatrick David G., Kostitsyna Irina, and Polishchuk Valentin. Hardness results for two-
dimensional curvature-constrained motion planning. In Canadian Conference on Computational
Geometry (CCCG), 2011.

[27]. Kleinbort Michal, Solovey Kiril, Littlefield Zakary, Bekris Kostas E, and Halperin Dan.
Probabilistic completeness of RRT for geometric and kinodynamic planning with forward
propagation. IEEE Robotics and Automation Letters, 4(2):x–xvi, 2018.

[28]. Ko Seong Young, Frasson Luca, and Baena Ferdinando Rodriguez y. Closed-loop planar motion
control of a steerable probe with a “programmable bevel” inspired by nature. IEEE Trans.
Robotics, 27(5):970–983, 2011.

[29]. Kuntz A, Swaney PJ, Mahoney A, Feins RH, Lee YZ, Webster Robert J III, and Alterovitz
Ron. Toward transoral peripheral lung access: Steering bronchoscope-deployed needles through
porcine lung tissue. In Hamlyn Symposium on Medical Robotics, pages 9–10, 2016.

[30]. Kuntz Alan, Torres Luis G, Feins Richard H, Webster Robert J III, and Alterovitz Ron. Motion
planning for a three-stage multilumen transoral lung access system. In IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), pages 3255–3261. IEEE, 2015.

[31]. LaValle Steven M. Rapidly-exploring random trees: A new tool for path planning. 1998.

[32]. LaValle Steven M. Planning algorithms. Cambridge university press, 2006.

Fu et al. Page 27

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/UNC-Robotics/steerable-needle-planner
https://github.com/UNC-Robotics/steerable-needle-planner

[33]. Lindemann Stephen R and LaValle Steven M. Multiresolution approach for motion planning
under differential constraints. In IEEE Int. Conf. Robotics and Automation (ICRA), pages 139–
144. IEEE, 2006.

[34]. Liu Fangde, Garriga-Casanovas Arnau, Secoli Riccardo, and Baena Ferdinando Rodriguez y. Fast
and adaptive fractal tree-based path planning for programmable bevel tip steerable needles. IEEE
Robotics and Automation Letters, 1(2):601–608, 2016.

[35]. Ljungqvist Oskar, Evestedt Niclas, Cirillo Marcello, Axehill Daniel, and Holmer Olov. Lattice-
based motion planning for a general 2-trailer system. In IEEE Intelligent Vehicles Symposium
(IV), pages 819–824. IEEE, 2017.

[36]. Mandalika Aditya, Choudhury Sanjiban, Salzman Oren, and Srinivasa Siddhartha S.. Generalized
lazy search for robot motion planning: Interleaving search and edge evaluation via event-based
toggles. In Int. Conf. Automated Planning and Scheduling (ICAPS), pages 745–753, 2019.

[37]. Minhas Davneet S, Engh Johnathan A, Fenske Michele M, and Riviere Cameron N. Modeling
of needle steering via duty-cycled spinning. In Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), pages 2756–2759. IEEE, 2007.

[38]. Okazawa Stephen, Ebrahimi Richelle, Chuang Jason, Salcudean Septimiu E, and Rohling Robert.
Hand-held steerable needle device. IEEE/ASME Trans. Mechatronics, 10(3):285–296, 2005.

[39]. Park Wooram, Kim Jin Seob, Zhou Yu, Cowan Noah J, Okamura Allison M, and Chirikjian
Gregory S. Diffusion-based motion planning for a nonholonomic flexible needle model. In Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), pages 4611–4616, April 2005.

[40]. Patil Sachin, Burgner Jessica, Webster Robert J III, and Alterovitz Ron. Needle steering in 3D via
rapid replanning. IEEE Trans. Robotics, 30(4):853–864, 2014. [PubMed: 25435829]

[41]. Pinzi Marlene, Galvan Stefano, and Baena Ferdinando Rodriguez y. The adaptive hermite fractal
tree (AHFT): a novel surgical 3D path planning approach with curvature and heading constraints.
Int. J. Computer Assisted Radiology and Surgery, 14(4):659–670, 2019.

[42]. Pivtoraiko Mihail and Kelly Alonzo. Kinodynamic motion planning with state lattice motion
primitives. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pages 2172–2179.
IEEE, 2011.

[43]. Qi Peng, Liu Hongbin, Seneviratne Lakmal, and Althoefer Kaspar. Towards kinematic modeling
of a multi-DOF tendon driven robotic catheter. In Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), pages 3009–3012. IEEE, 2014.

[44]. Reed Kyle B, Majewicz Ann, Kallem Vinutha, Alterovitz Ron, Goldberg Ken, Cowan Noah
J, and Okamura Allison M. Robot-assisted needle steering. IEEE Robotics and Automation
Magazine, 18(4):35–46, 2011. [PubMed: 23028210]

[45]. Rucker D Caleb, Das Jadav, Gilbert Hunter B, Swaney Philip J, Miga Michael I, Sarkar Nilanjan,
and Webster Robert J III. Sliding mode control of steerable needles. IEEE Trans. Robotics,
29(5):1289–1299, 2013. [PubMed: 25400527]

[46]. Secoli Riccardo and Baena Ferdinando Rodriguez y. Adaptive path-following control for
bio-inspired steerable needles. In IEEE International Conference on Biomedical Robotics and
Biomechatronics (BioRob), pages 87–93. IEEE, 2016.

[47]. Seiler Konstantin M, Singh Surya PN, Sukkarieh Salah, and Durrant-Whyte Hugh. Using
Lie group symmetries for fast corrective motion planning. Int. J. Robotics Research (IJRR),
31(2):151–166, 2012.

[48]. Solovey Kiril. Complexity of planning. arXiv preprint arXiv:2003.03632v2 [cs.RO], 2020.

[49]. Sun Wen, Patil Sachin, and Alterovitz Ron. High-frequency replanning under uncertainty using
parallel sampling-based motion planning. IEEE Trans. Robotics, 31(1):104–116, 2015. [PubMed:
26279645]

[50]. Swaney Philip J, Mahoney Arthur W, Hartley Bryan I, Remirez Andria A, Lamers Erik, Feins
Richard H, Alterovitz Ron, and Webster Robert J III. Toward transoral peripheral lung access:
Combining continuum robots and steerable needles. Journal of Medical Robotics Research,
2(01):1750001, 2017. [PubMed: 28480335]

[51]. Van Den Berg Jur, Patil Sachin, Alterovitz Ron, Abbeel Pieter, and Goldberg Ken. LQG-based
planning, sensing, and control of steerable needles. In Workshop on the Algorithmic Foundations
of Robotics (WAFR), pages 373–389. Springer, 2010.

Fu et al. Page 28

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[52]. Webster Robert J III, Kim Jin Seob, Cowan Noah J, Chirikjian Gregory S, and Okamura Allison
M. Nonholonomic modeling of needle steering. Int. J. Robotics Research (IJRR), 25(5–6):509–
525, 2006.

[53]. Xu Jijie, Duindam Vincent, Alterovitz Ron, and Goldberg Ken. Motion planning for
steerable needles in 3D environments with obstacles using rapidly-exploring random trees and
backchaining. In IEEE Int. Conf. Automation Science and Engineering, pages 41–46. IEEE,
2008.

[54]. Yershov Dmitry S and LaValle Steven M. Sufficient conditions for the existence of resolution
complete planning algorithms. In Workshop on the Algorithmic Foundations of Robotics
(WAFR), pages 303–320. Springer, 2010.

Fu et al. Page 29

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Top: A medical steerable needle (cyan) used to reach a nodule (green) in the lung

parenchyma for biopsy or cancer treatment while avoiding critical anatomical structures

such as the bronchial tubes (brown) and major blood vessels (red). Bottom: Our resolution-

complete motion planner uses search trees built using different resolutions, illustrated here in

2D. A valid motion plan goes from the start configuration (blue dot) to the goal point (green

dot), while avoiding obstacles (red) and satisfying kinematic constraints. The left search tree

uses a coarse resolution and failed to find a plan while the right one uses a finer resolution

and successfully generated a motion plan (yellow).

Fu et al. Page 30

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
The kinematics of a bevel-tip steerable needle. The needle can be inserted (characterized by

ℓ) and axially rotated at its base (characterized by θ).

Fu et al. Page 31

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
A motion primitive is a circular arc defined as ℳ = (κ, δℓ, δθ). The circular arc (dark green)

lies in the curving plane (light green) that contains the Z-axis (blue) at the start configuration

xv. κ is the curvature of the arc, δθ is the angle between the curving plane and the XZ-plane,

and δℓ is the length of the arc. The figures show step-by-step how the child configuration

xu = xv ⊕ ℳ is generated.

Fu et al. Page 32

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4. Visualization of length and angle levels.
Left: Visualization of length levels. Smaller node sizes correspond to higher length levels.

The first length level (lℓ = 0) corresponds to motion primitives of maximal length (δℓmax).

As lℓ increases, the resolution of length becomes higher. The gray arrows illustrate how

motion primitives with the first 4 length levels are generated during refinement. Right:
Visualization of angle levels. Nodes with angle levels 0, 1, 2 are shown in red, yellow,

and blue, respectively. The first angle level (lθ = 0) corresponds to motion primitive of

δθ = 0, π
2 , π, 3π

2 . As lθ increases, the resolution of orientation becomes higher. The circular

arrows illustrate how nodes with the first three angle levels are generated during refinement.

Middle: 3D visualization of length and angle levels.

Fu et al. Page 33

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Nodes of the first four ranks. We use motion primitives with k = 0 (straight lines) and k =

kmax (arcs with maximum curvature).

Fu et al. Page 34

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
(a) An illustration of reachable and unreachable regions in 2D. The case in 3D is similar.

The unreachable region can be generated by rotating the circles around the Z-axis (blue

vector), which creates a donut-like shape in 3D that is unreachable. It also visualizes how

we check goal-reachability when considering tolerance τ. We reject a configuration if the

relative position of pgoal falls in the inner region (darker orange). (b) The algorithm creates

a direct connection to the goal when pgoal is outside but still close to the boundary of the

reachable region. We use a circular arc with curvature κmax to steer towards pgoal and the

arc stops at the closest point to pgoal. (c) An example of valid nodes with rank 0–3 after

checking goal reachability.

Fu et al. Page 35

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Three views of the the lung environment. The needle steers to targets (green) while avoiding

anatomical obstacles including large blood vessels (red), bronchial tubes (brown), and the

lung boundary (gray). We also show 10 of the 500 test cases in which the steerable needle

must deploy from the bronchoscope’s tip in the bronchial tube to the nodule in the lung

parenchyma. For these example test cases, we show plans computed by RCS (cyan).

Fu et al. Page 36

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Success rate as a function of time for RCS and RRT.

Fu et al. Page 37

Robot Sci Syst. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Introduction
	Related Work
	Motion planning for steerable needles
	Resolution-complete motion planners

	Problem Definition
	Method
	Overview
	Motion Primitives
	Motion Primitive Hierarchy
	Algorithm Description
	Cutoff Resolution
	Duplicate Detection
	Implementation Details
	Early pruning by testing for goal reachability:
	Direct goal connection:
	Equivalent node pruning:
	Parallelism:

	Theoretical Guarantees
	General resolution-related definitions
	Proof overview

	Results
	Conclusion & future work
	Resolution Completeness
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Planner parameters for evaluation
	TABLE I
	Additional experiments
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.

