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Abstract

Background

To date, no specific therapy or vaccination is available for West Nile virus (WNV) infections
in humans; preventive strategies represent the only possibility to control transmission. To
focus these strategies, detailed knowledge of the virus dynamics is of paramount impor-
tance. However, several aspects of WNV transmission are still unclear, especially regarding
the role of potential vertebrate host species.

Whereas mosquitoes’ intrinsic characteristics cause them to favour certain hosts (host
preference), absolute selection is impossible in natural settings. Conversely, the selection
carried out among available hosts and influenced from hosts’ availability and other ecologi-
cal/environmental factors is defined as host selection.

Methodology/Principal findings

In July 2022, we searched PubMed database for original articles exploring host selection
among WNV-transmitting Culex mosquitoes, the main WNV vector. We considered only
original field studies estimating and reporting forage ratio. This index results from the ratio
between the proportion of blood meals taken by mosquitoes on potential host species and
the hosts’ relative abundance.

From the originally retrieved 585 articles, 9 matched the inclusion criteria and were
included in this review. All but one of the included studies were conducted in the Americas,
six in the United States, and one each in Mexico and Colombia. The remaining study was
conducted in ltaly.

American Robin, Northern Cardinal, and House Finch were the most significantly pre-
ferred birds in the Americas, Common Blackbird in Italy.

Conclusions/Significance

Although ornithophilic, all observed WNV-transmitting mosquitoes presented opportunistic
feeding behaviour. All the observed species showed potential to act as bridges for zoonotic
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diseases, feeding also on humans. All the observed mosquitoes presented host selection
patterns and did not feed on hosts as expected by chance alone.

The articles observe different species of mosquitoes in different environments. In addi-
tion, the way the relative host abundance was determined differed. Finally, this review is not
systematic. Therefore, the translation of our results to different settings should be conducted
cautiously.

Author summary

West Nile virus (WNV) is a mosquito-borne virus that can cause a neuroinvasive and
potentially deadly disease in vertebrates (including humans). The disease is transmitted
from vectors (mostly Culex mosquitoes) during the blood meal. As no specific therapy or
vaccination are available, the control of human cases centres on mosquitoes—-humans con-
tact prevention. For these reasons, deep knowledge of WNV transmission dynamics is
considered paramount to focus preventive strategies. Nevertheless, WNV transmission
dynamics are still unclear, especially regarding the role of potential hosts. Mosquitoes are
intrinsically attracted from one host over another. However, in natural settings, absolute
selection is often impossible. Therefore, in this review, we aimed at summarising knowl-
edge on WNV-transmitting mosquitoes’ host selection in natural settings. We specifically
considered original scientific publications calculating forage ratio for Culex mosquitoes.
The forage ratio is the proportion of the relative abundance of blood meals taken from a
potential host in trapped mosquitoes and that host’s relative abundance. Our results sug-
gest that all observed Culex mosquitoes presented an opportunistic feeding behaviour and
the potential to transmit zoonotic pathogens, since they all fed also on humans. Moreover,
all the observed mosquitoes fed on hosts with a certain degree of selection, rather than
what might be expected by host abundance alone.

Introduction

West Nile virus (WNV) infections in humans are largely asymptomatic (ca. 80%), although
15% to 20% of infected humans develop the so-called West Nile fever, with unspecific symp-
toms such as headache, fever, and myalgia; and ca. 1% of infected humans develop the so-
called West Nile neurological disease, with neurological conditions such as meningitis,
encephalitis, and flaccid paralysis [1]. Among individuals who develop the neurological dis-
ease, mortality can be present, ranging from 4% to 14% [1]. Due to this high proportion of
asymptomatic cases, low mortality rates, and initially limited geographic distribution to the
Middle Eastern and Central African regions, WNV has been a largely neglected public health
concern [1-5]. However, recent WNV outbreaks recorded since the mid- and late 1990s,
together with the increasing number of confirmed human cases, have called for a different per-
spective on the pathogen [2,6-8]. Because of this rise in confirmed cases, WNV is now consid-
ered the most globally widespread arbovirus, and a major public health threat [3,9], with
52,532 confirmed human cases recorded in the United States (US) between 1999 and 2020
[10] and 2,663 cases in Europe between 2014 and 2019 [11-16].

Nevertheless, several aspects of the dynamics of the transmission of WNV are yet unclear,
especially in terms of which vertebrate species are involved as hosts and to which extent [17].
WNYV is maintained in nature in an enzootic cycle between mosquitoes (mainly from genus
Culex) as vectors and certain birds as primary amplifying hosts [18,19]. Other vertebrates,
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especially mammals, can develop WNYV infections. However, most of mammal hosts (e.g.,
most commonly humans and horses)—alongside several bird species—usually do not develop
sufficient viremia to reinfect susceptible mosquitoes, thus presenting with low host compe-
tence for WNV infection (also known as dead-end hosts) [20,21].

Another key aspect, which influences the ability of vertebrate species as hosts, or their verte-
brate host capacity, is the rate of contact with the vectors. The rate of contact is influenced
both from feeding patterns of the mosquitoes, which are, in turn, based on specific characteris-
tics, which the mosquitoes implement to find potential hosts, but also on the availability of the
hosts [22-24]. More in detail, when defining feeding patterns of mosquitoes, two aspects are
often considered: host preference and host selection [25,26]. The first is defined as the process
of favouring and choosing a host among other equally available hosts, and it is based on intrin-
sic characteristics of the mosquitoes. The second is defined as the selection of hosts carried out
from mosquitoes in nature, where not all hosts are equally available, and other factors such as
climatic or environmental factors might play a role. This selection is still based on mosquitoes’
preferences but at the same time also on other ecological aspects (e.g., the availability of the
hosts and the interactions with the mosquitoes) [25,26].

Whereas in order to prove host preference, experimental settings must be considered (e.g.,
baited traps) and equal access to different hosts must be provided, host selection has been
tested in field conditions considering—among other strategies—the ratio between the blood
meals and the availability of potential hosts, also called “forage ratio,” “feeding index,” “feeding
preference,” “Index2,” or “selection index” [23]. In the case of studies on mosquito population,
the forage ratio (often referred to as w; or P;) for species i is defined as the ratio between the
proportion of blood meals originated on the specie i and the relative abundance of the specie i
in the environment.

This index is then interpreted as follows: a value equal to 1 shows no selection but rather
the feeding pattern that could be expected if feeding was a function of chance alone. Con-
versely, a value greater than 1 can be interpreted as feeding on the species i more than what
might be expected by chance alone (preference), whereas a value lower than 1 as the opposite
(avoidance) [22,26].

The knowledge of the host selection patterns of the different mosquito species in a given
geographical area can help—on one side—to identify which hosts are more important in the
transmission of the virus, while on the other side, it can help to evaluate the potential of the
specific mosquito species to act as a bridge between different vertebrate species—in this case,
also humans—allowing the transmission of zoonotic and pandemic pathogens [27-29]. In
fact, as the virus is transmitted with the blood meal, feeding or not on a specific host will deter-
mine the risk of this host to develop the disease. For this reason, understanding which mos-
quito species feed on humans, and to which extent, would allow to better evaluate the risk of
transmission of a certain disease to humans, in specific geographical areas and different cli-
matic conditions. Similarly, identifying host species with major amplification role in the trans-
mission of the disease might allow for more focused control strategies [24,30].

We considered these aspects to be relevant as, to date, no vaccination or specific therapy is
avaijlable for human WNYV infections. Hence, preventive strategies are the only tool at disposal
to control the incidence of the disease in humans. In addition, considering the role that cli-
matic factors exercise on the mosquitos” abundance and vector ability, prevention strategies
are crucial also in addressing the future risk of transmission in geographical areas, which are
affected from changes in climatic conditions. Therefore, in order to focus these preventive
strategies, gaining more understanding of the specific aspects of the WNV transmission
dynamics should be considered of paramount importance, especially in relation to which vec-
tors and hosts are involved and to which extent [23,24,31,32].
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In this article, we aimed to explore the patterns of host selection of WNV-transmitting
Culex mosquitoes. We summarized the scientific evidence of preference or avoidance of avian
and mammalian hosts by Culex mosquitoes, in the different geographical settings. The results
of this review suggest that WNV-transmitting Culex mosquitoes, even when largely ornitho-
philic, present with opportunistic feeding behaviour, feeding both on avian and mammals host
(including humans). The presence of blood meals taken on human suggests that all observed
mosquitoes have the potential of transmitting zoonotic pathogens to humans. In addition, all
the observed mosquitoes showed a certain degree of selection of the potential hosts, not feed-
ing as it would have been expected from the relative abundance of potential hosts alone.

Methods

Search strategy

In July 2022, we searched the PubMed online database for original studies with the following
search strategy:

((blood[Title/Abstract]) OR (host*[Title/Abstract]) OR (selection[Title/Abstract]) OR (pre-
ference* [Title/Abstract]) OR (feed" [Title/Abstract])) AND ((Culex[MeSH Terms]) OR (Culex
[Title/Abstract])) AND ((West Nile virus[MeSH Terms]) OR (West Nile [Title/Abstract]) OR
(WNV/[Title/Abstract])).

The resulting articles were exported for further screening to EndNote X9 (Clarivate Ana-
Iytic, Philadelphia, PA, USA).

Inclusion/exclusion criteria

We screened the articles first on a title-and-abstract level and after on a full-text level. In order
to correctly represent host selection, the screening was conducted based on the following
inclusion criteria:

o Original field studies and
« Studies estimating forage ratio

Based on these criteria, we excluded non-original studies (e.g., reviews, comments, and let-
ters to the editors) and non-field studies (e.g., models, laboratory-based studies). In addition,
we excluded studies, which did not consider birds (due to their major role in WNV transmis-
sion), aimed to estimate mosquitoes” host preferences (e.g., using selected species), considering
only large groups of possible hosts (e.g., “avian,” “human,” or “mammals”), as well as a single
host species versus all the other pooled ones. Finally, we excluded studies that aimed to explore
the presence of WNV-specific antibodies in potential host species.

Furthermore, in order to obtain comparable results, studies that reported out-of-date tech-
niques for blood meal analysis (e.g., precipitin test) were excluded.

No limitations in terms of year of publication or language of the article were considered.

Data extraction and presentation

Considering the explorative nature of this study as well as the intrinsic level of difference
among studies on host selection and forage ratio, no systematic approach to the review was
conducted. One author (NR) screened the articles retrieved by the search and extracted the
ones to include. The following information on the included studies were extracted: first author
and year of publication, country, urban/rural settings, time frame, number of study sites,
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strategy to collect mosquitoes, mosquitoes species observed, number of collected mosquitoes,
success of blood meals identification, identified host species (inclusive humans), and strategy
to evaluate host abundance.

The relative proportion of blood meals taken on the 10 most common host species in each
of the observed mosquito species in the included articles was reported. When the proportion
of blood meals taken was reported only separately for different host subgroups (e.g., “avian”
and “non-avian”), we calculated and reported the proportion over all observed hosts. In addi-
tion, the estimated forage ratios (which we reported as w; or P;, based on the original defini-
tion in each article) were reported alongside the specific standard error (SE), confidence
interval (CI), or p-value (p) calculated in each paper, for statistical significance of the esti-
mate. To enhance readability, forage ratios were presented stratified for taxonomic order of
the observed hosts. The order Passeriformes was presented independently from the others
for two main reasons: first, the absolute abundance of bird species within the order and, sec-
ond, the specific impact in the transmission of WNV. In fact, birds from the order Passeri-
formes are often considered to be particularly involved in WNV enzootic cycle, both for their
availability as hosts and for their assumed level of WNV viremia, and, therefore, host compe-
tence [20].

Results
Included articles

The research retrieved overall 585 records, while title and abstract screening returned 92 arti-
cles. After full-text screening, 9 articles matched our inclusion criteria and were considered for
this review [22,33-40]. One article was retrieved, which calculated forage ratio for a single
potential host species (American Robin) together with the pooled forage ratio for all other spe-
cies [41]. For this reason, the article was not included in the main review.

All but one of the nine selected studies were conducted in the Americas. Six were conducted
in the US (two in the urban area of Chicago, IL; one in the urban area of Las Vegas, NV; one in
East Baton Rouge Parish, LA; one in the rural area of Davis, CA; and one in Maryland and
Washington, DC) [22,33,36,37,39,40]. The other two were conducted in Colombia and Mexico
[34,38]. The remaining study was conducted in the Northern Italian region Veneto [35].

Three studies considered multiple mosquito species (Kothera and colleagues [37]: Cx.
pipiens complex and Cx. restuans; and both Hamer and colleagues [22] and Kilpatrick and col-
leagues [36]: Cx. pipiens and Cx. restuans, althought the latter study calculated a pooled forage
ratio). Three studies considered a single species of mosquitoes (Hannon and colleagues [33]:
Cx. quinquefasciatus; Thiemann and colleagues [39]: Cx. tarsalis; Mendenhall and colleagues
[34]: Cx. erraticus). The study by Mackay and colleagues [40] collected data on three Culex spe-
cies (Cx. quinquefasciatus, Cx. Nigripalus, and Cx. salinaris) but calculated the forage ratio
only for Cx. quinquefasciatus. Similarly, the study by Rizzoli and colleagues [35] collected data
on different species of mosquitoes but calculated the feeding index only for Cx. pipiens. The
study by Estrada-Franco and colleagues [38] calculated the forage ratio for Ae. aegypti and Cx.
quinquefasciatus. However, as our search focussed specifically on Culex mosquitoes, we
reported only the results for the latter species. Conversely, the study by Thiemann and col-
leagues [39] calculated forage ratios only for Cx. tarsalis, but in two different seasons (late sum-
mer and winter) (Table 1).

Blood meal analysis

American Robin (Turdus migratorius) was the most common blood meal host in the studies
by Kothera and colleagues [37] (41.5% of blood meals taken by Cx. pipiens complex
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mosquitoes) and by Hamer and colleagues [22] (39.2% and 37.6% of blood meals taken by Cx.
pipiens and Cx. restuans, respectively). In addition, it was the second most common blood
meal host in the study by Thiemann and colleagues [39] (16% of blood meals taken by Cx. tar-
salis in winter) and the third in the study by Hannon and colleagues [33] (7.9% of blood meals
taken by Cx. quinquefasciatus). Although the article did not present a list of the most common
blood meal hosts, American Robin accounted for the 43% + 9% of blood meals taken by Cx.
pipiens and Cx. restuans in the work by Kilpatrick and colleagues [36].

House Sparrow (Passer domesticus) was the most common blood meal host in the study by
Kothera and colleagues [37] (38.9% of blood meals taken by Cx. restuans). In addition, it was
the second most common in the studies by Kothera and colleagues [37] (26.3% of all blood
meals taken by Cx. pipiens complex) and Thiemann and colleagues [39] (16% of all blood
meals taken by Cx. tarsalis in winter). Blood meals from House Sparrows were among the 10
most common blood meals in the studies by Hamer and colleagues [22] (11.9% and 14.0% of
blood meals taken by Cx. pipiens and Cx. restuans, respectively), Hannon and colleagues [33]
(6.7% of blood meals taken by Cx. quinquefasciatus), and Thiemann and colleagues [39] (1%
of blood meals taken by Cx. tarsalis in late summer). In the paper by Kilpatrick and colleagues
[36], House Sparrow accounted for 11% + 4% of the mosquito feedings.

House Finch (Haemorhous mexicanus) was the most common blood meal host in the study
by Hannon and colleagues [33] (38.4% of blood meals taken by Cx. quinquefasciatus). In addi-
tion, it was among the 10 most common blood meal host in the studies by Kothera and col-
leagues [37] (7.4% and 2.8% of blood meals taken by Cx. pipiens complex and Cx. restuans,
respectively), Thiemann and colleagues [39] (7% of blood meals taken by Cx. tarsalis in win-
ter), and Hamer and colleagues [22] (5.3% and 3.6% of blood meals taken by Cx. pipiens and
Cx. restuans, respectively).

Other commonly reported blood meal hosts were Cedar Waxwing (Bombycilla cedrorum)
[37], Mourning Dove (Zenaida macroura) [22,33,38-40], and Northern Cardinal (Cardinalis
cardinalis) [22,40].

Although the majority of blood meals reported were taken on birds, opportunistic feeding
behaviour from the mosquitoes—in the form of blood meals taken also on mammals—was
reported in all the included studies [22,33-40]. Furthermore, the potential of acting as bridge
for zoonotic diseases—in the form of blood meals taken on humans—was reported in all the
included studies. Blood meals taken on humans were especially common in the studies by
Hamer and colleagues [22], Mendenhall and colleagues [34], and Estrada-Franco and col-
leagues [38] (15.7% and 14.0% of blood meals taken by Cx. pipiens and Cx. restuans, respec-
tively; and 17.3% of blood meals taken by Cx. erraticus; 3.5% of blood meals taken by Cx.
quinquefasciatus) (Table 2).

Preference and avoidance of hosts

Among Passeriformes, American Robin (Turdus migratorius) was significantly preferred by
Cx. pipiens complex (w; = 3.40, SE = 0.43; [37]), Cx. pipiens (w; = 2.26, SE = 0.39; [22]), and Cx.
restuans in Chicago, IL (USA) (w; = 1.80, SE = 0.39 according to Kothera and colleagues [37];
and w; = 1.92, SE = 0.36 according to Hamer and colleagues [22]); by Cx. pipiens and Cx. rest-
uans in Maryland and Washington, DC (USA) (w; = 16.7 + 4.4; [36]); by Cx. quinquefasciatus
in Las Vegas, NV (USA) (forage ratio = 38.42, 95% CI 16.90, 82.09); and by Cx. tarsalis in
Davis, CA (USA) (w; =27.71, SE = 13.66 in winter; [39]). In the only non-American article,
the Common Blackbird (Turdus merula) was preferred by Cx. pipiens in North-Eastern Italian
region Veneto (P; = 8.25, p < .001) [35].
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In addition, Northern Cardinal (Cardinalis cardinalis) was also significantly preferred by
Cx. pipiens complex (w; = 3.85, SE = 2.37; [37]), Cx. pipiens (w; = 5.5, SE = 3.87; [22]), and Cx.
restuans in Chicago, IL (USA) (w; = 7.38, SE = 5.33 according to Kothera and colleagues [37];
and w; = 6.20, SE = 4.48 according to Hamer and colleagues [22]); and by Cx. quinquefasciatus
in Reynosa, Tamaulipas (Mexico) (w; = 2.90, 95% CI 2.50, 3.30; [38]).

House Finch (Haemorhous mexicanus) in Chicago, IL, and Las Vegas, NV (USA) [22,33],
Northern Mockingbird (Mimus polyglottos) in Las Vegas, NV (USA) and in Reynosa, Tamauli-
pas (Mexico) [33,38], Brown Trasher (Toxostoma rufum) in Reynosa, Tamaulipas (Mexico)
[38], and Yellow-billed Magpie (Pica nuttalli) in Davis, CA (USA) [39] were all significantly
preferred by at least one species of mosquitoes. Similarly, Magpies (Pica pica) were preferred
by Cx. pipiens in Veneto (Italy) [35].

Conversely, American Crow (Corvus brachyrhynchos) was avoided by Cx. pipiens complex
(w; =0.05, SE = 0.05; [37]) and Cx. restuans in Chicago, IL (USA) (w; = 0.37, SE = 0.38; [37]).
American Goldfinch (Spinus tristis) was avoided by Cx. pipiens complex (w; = 0.02, SE = 0.02;
[37]), Cx. pipiens (w; = 0.09, SE = 0.01; [22]), and Cx. restuans in Chicago, IL (USA) (w; = 0.16,
SE = 0.16 according to Kothera and colleagues [37]; and w; = 0.22, SE = 0.25 according to
Hamer and colleagues [22]). Similarly, European Starling (Sturnus vulgaris) was avoided by
Cx. pipiens complex (w; = 0.04, SE = 0.02; [37]) and Cx. restuans in Chicago, IL (USA) (w; =
0.09, SE = 0.09; [37]); by Cx. pipiens (w; = 0.39, SE = 0.17 in Chicago, IL (USA), according to
Hamer and colleagues [22]; and P; = 0.09, p < .001 in Veneto (Italy), according to Rizzoli and
colleagues [35]), and by Cx. tarsalis in winter in Davis, CA (USA) (w; = 0.05, SE = 0.05; [39]).

House Sparrow (Passer domesticus) was significantly avoided by Cx. pipiens complex (w; =
0.90, SE = 0.08; [37]), Cx. pipiens (w; = 0.32, SE = 0.05; [22]), and Cx. restuans in Chicago, IL
(USA) (w; = 0.33, SE = 0.06; [22]); by Cx. pipiens and Cx. restuans in Maryland and Washing-
ton, DC (USA) (w; = -7.9 % 2.5; [36]); by Cx. tarsalis in Davis, CA (USA) (w; = 0.13, SE = 0.09
and w; = 0.44, SE = 0.10 in late summer and winter, respectively; [39]), and Cx. quinquefascia-
tus in Reynosa, Tamaulipas (Mexico) (w; = 0.50, 95% CI 0.30, 0.60; [38]). However, according
to Hannon and colleagues [33], House Sparrow was significantly preferred by Cx. quinquefas-
ciatus in Las Vegas, NV (USA) (w; = 4.74, 95% CI 2.37, 9.19), while according to Rizzoli and
colleagues [35], it was utilized in the same proportion as if feeding was based on chance alone
in Veneto (Italy) (P; = 1.01, p < .05). Similarly, Common Grackle (Quiscula quiscula) was sig-
nificantly avoided by Cx. pipiens complex (w; = 0.29, SE = 0.35; [37]), Cx. pipiens (w; = 0.06,
SE = 0.05; [22]), and Cx. restuans in Chicago, IL (USA) (w; = 0.24, SE = 0.16; [22]), but signifi-
cantly preferred by Cx. quinquefasciatus in Reynosa, Tamaulipas (Mexico) (w; = 1.60, 95% CI
1.20, 2.00; [38]) (Table 3).

Among non-Passeriformes, Turkey Vulture (Cathartes aura) and Limpkin (Aramus gua-
rana) were significantly preferred (w; = 4.01, 95%CI 1.06, 15.17 and w; = 13.31, SE = 1.64 for
Cx. quinquefasciatus in Las Vegas, NV [USA] and Cx. erraticus in Sonso Lake, Cauca Valley
[Colombia], respectively; [33,34]). Black-crowned Night-Heron (Nycticorax nycticorax) was
preferred by Cx. tarsalis in Las Vegas, NV (USA) and Cx. erraticus in Sonso Lake, Cauca Valley
(Colombia) (w; = 1.32, SE = 0.07, and w; = 21.88, SE = 3.21, respectively; [34,39]). Conversely,
Canada Goose (Branta canadensis; w; = 0.03, SE = 0.04 and w; = 0.26, SE = 0.27 for Cx. pipiens
complex and Cx. restuans, respectively, in Chicago, IL [USA]; [22,37]) and Chimney Swift
(Chaetura pelagica; w; = 0.04, SE = 0.04 and w; = 0.32, SE = 0.33 for Cx. pipiens complex and
Cx. restuans, respectively, in Chicago, IL [USA]; [37]) were both avoided. In addition, Ring-
billed Gull (Larus delawarensis; w; = 0.10, SE = 0.10 for Cx. pipiens complex in Chicago, IL
[USAJ; [37]) and Rock Pigeon (Columba livia; w; = 0.01, SE = 0.01 and w; = 0.11, SE = 0.11 for
Cx. pipiens complex and Cx. restuans in Chicago, IL [USA]J; [37]; and w; = 0.20, 95% CI 0.08,
0.46 for Cx. quinquefasciatus in Las Vegas, NV [USA] [33]; w; = 0.19, SE = 0.25 and P; = 0.34, p
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< .001 for Cx. pipiens according to Hamer and colleagues [22] in Chicago, IL [USA] and Riz-
zoli and colleagues [35] in Veneto [Italy], respectively) were also avoided. Similarly, Monk Par-
akeet (Myopsitta monachus; w; = 0.29, SE = 0.35 for Cx. pipiens complex in Chicago, IL [USAJ;
[37]), Red-bellied Woodpecker (Melanerpes carolinus; w; = 0.29, SE = 0.35 for Cx. pipiens com-
plex in Chicago, IL [USA]J; [37]), and Downy Woodpecker (Picoides pubescens; w; = 0.29,

SE = 0.35 for Cx. pipiens complex in Chicago, IL [USA]; [37]) were all avoided. Snowy Egret
(Egretta thula) was avoided by Cx. tarsalis in Sonso Lake, Cauca Valley (Colombia) and Cx.
erraticus in Davis, CA (USA) (w; = 0.32, SE = 0.10 and w; < 0.08, SE = 0.08, respectively;
[34,39]) (Table 4).

Among non-avian species, Domestic Cows (Bos taurus) and Domestic Dogs (Canis lupus
familiaris) were significantly preferred by Cx. tarsalis in late summer in Davis, CA (USA) (w; =
52.57, SE = 24.82; and w; = 9.86, SE = 8.50, respectively; [39]). Domestic Dogs and Virginia
Opossum (Didelphis virginiana) were preferred by Cx. quinquefasciatus in Reynosa, Tamauli-
pas (Mexico), but no level of significance was estimated in the study [38]. Domestic Cows were
avoided by Cx. erraticus in Sonso Lake, Cauca Valley (Colombia) (w; = 0.45, SE = 0.16) [34].

Humans were preferred by Cx. erraticus in Sonso Lake, Cauca Valley (Colombia) (w; =
5.08, SE = 0.70) [34] and avoided by Cx. quinquefasciatus in Reynosa, Tamaulipas (Mexico),
again with no level of significance estimated [38] (Table 5).

Discussion

A thorough understanding of virus transmission dynamics is paramount to focus prevention
strategies and the control of human infections. In the specific case of WNV, a major aspect is
the role of the different potential host species. Within this review of the literature, we aimed to
summarise the existing knowledge on host selection among WNV-transmitting Culex mosqui-
toes. Our research found and reported nine studies that considered forage ratio as index of
host selection [22,33-40].

In the analysis of the proportion of blood meals taken, American Robin (Turdus migrator-
ius), House Sparrow (Passer domesticus), and House Finch (Haemorhous mexicanus)—all pas-
serine species—were the most common blood meals, throughout the different studies. These
results are comparable to previous findings [27,42,43]. Molaei and colleagues [42] reported
that 38% and 10% of blood meals taken by Cx. pipiens derived from American Robin and
House Sparrow, respectively. Similarly, 37% of blood meals taken by Cx. restuans derived from
American Robin [42]. Moreover, Savage and colleagues [43] found that throughout different
species of Culex mosquitoes (Cx. pipiens, Cx. restuans, Cx. erraticus, and Cx. quinquefasciatus),
the most common blood meals were derived from American Robin, Common Grackle, and
Northern Cardinal. Molaei and colleagues [27] reported that the majority of blood meals taken
by Cx. quinquefasciatus derived from Columbiformes (Mourning Dove, White-winged Dove)
and Passeriformes birds (House Sparrow, House Finch, Gray Catbird, and American Robin).
In the specific case of Cx. pipiens, the predilection for American Robin was also proved in
experimental settings [44]. Cx. pipiens mosquitoes significantly chose American Robin over
European Starling and House Sparrow, also after accounting for weight, age, and sex of the
animal and environmental parameters [44]. This distribution of favourite blood meals might
have been expected when considering that the majority of the studies were conducted in the
US. WNV first entered the Americas in 1999 [45]. The first outbreak is considered to be the
result of the amplification effect of House Sparrows, while different species such as American
Robin gained a major role as WNV spread in the Continent [18]. These avian species are con-
sidered to have had a paramount role in the transmission of WNV in the Americas, due to
their ability to develop higher levels of WNV viremia for longer times, compared to other
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avian species. Komar and colleagues [20] reported both species were infectious in average for
4.5 days. The level of viremia in American Robin ranged between 5.8 plaque-forming units
[PFUs]/ml of serum on the first day since the infection, 8.9 PFU/ml on the second, and 7.3
PFU/ml of the third. This higher viremia allowed—in turn—for the development of a principal
vector role for Cx. pipiens and Cx. quinquefasciatus, which need higher titres to become
infected, compared to other Culex mosquitoes [18,20]. Similarly, the level of viremia in House
Sparrow ranged between 7.8 PFU/ml on the first day since the infection to 10.3 PFU/ml on the
fourth day. However, following Del Amo and colleagues [46], House Sparrow present with
higher host competency for North American WNV strains (NY99) compared to Southern
European strains. The specific evolution of WNV in North America can be also seen in our
results when considering the studies that were conducted in Meso- or South America. The rel-
ative abundance of blood meals in the studies by Mendenhall [34] and by Estrada-Franco and
colleagues [38], conducted in Colombia and Mexico, respectively, included different species.
This could be explained considering that the feeding patterns of Culex mosquitoes differ based
on the host availability in the specific setting, which might change drastically when moving rel-
ative small distances [23,47]. This aspect is present also in the result of the study by Thiemann
and colleagues [39], which was conducted in the vicinity of a breeding site for herons. In this
study, the larger proportions of blood meals derived from herons. However, before heron’s
breeding season, passerine birds (especially American Robin and Yellow-billed Magpie) and
Columbiformes (Mourning Dove) were significantly preferred by Cx. tarsalis. Besides poten-
tial bias in the study (e.g., nonrandom selection of mosquitoes collection sites, which would
hinder the effect of common roosting), this shift in feeding patterns during herons’ breeding
season might then be influenced by the presence of herons’ nestlings. Nestlings—when not
sheltered by parents—are easier to fed on for mosquitoes, due to their lower mobility and
plumage. This higher sensitivity to mosquito bites extends also to the parents, especially in spe-
cies that spend long time in the nest without moving. Studies that observed changings in feed-
ing patterns over time reported higher proportion of blood meals taken from several species
such as Cooper’s Hawk (Accipiter cooperii) and American Crow during their nesting period
[47,48]. This aspect was highlighted in the work by Egizi and colleagues [48], who speculated
that the shift in mosquitoes’ feeding patterns might be the result not of avian species being less
available (e.g., due to migration) but rather of avian species being more available (e.g., due to
their nesting behaviour) during nesting season. This speculation seems to be in line with what
was observed in the study by Thiemann and colleagues [39], which reported a preference for
American Robin, Yellow-billed Magpie, and Mourning Dove from Cx. tarsalis during the
early season, before the herons’ breeding period. The finding of the preference for American
Robin in the early season was confirmed also by Kent and colleagues [49], by Kilpatrick and
colleagues [50], and by Molaei and colleagues [42]. The latter study reported a decreasing
trend of the proportion of blood meals taken on American Robin from June to October. Con-
versely, a different trend for blood meals taken on American Robin was reported by Mont-
gomery and colleagues [31] for Cx. pipiens complex. In this study, no blood meals were
detectable in May, while June, July, and August presented with constantly growing proportion
of blood meals taken on American Robin. Nevertheless, the subsequent shift in feeding pat-
terns after herons’ breeding season towards mammalian-derived blood meals reported by
Thiemann and colleagues [39] could generate speculation of a combined effect of higher avail-
ability (e.g., breeding and nesting behaviour) and lower availability (e.g., migration) in shaping
feeding patterns.

More generally, our results support the presence of host selection towards Passeriformes
birds. American Robin, Northern Cardinal (Cardinal cardinalis), House Finch, Northern
Mockingbird (Mimus polyglottos), Brown Trasher (Toxostoma rufum), Magpie (Pica pica), and
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Yellow-billed Magpie (Pica nuttalli) were all significantly preferred by at least one species of
mosquitoes. Similarly, House Sparrow and Common Grackle (Quiscula quiscula) were signifi-
cantly preferred from certain mosquito species and avoided from others. Northern Cardinal
was already reported as common blood meal for Cx. pipiens and Cx. restuans by Patrican and
colleagues [51]. Moreover, similar to other studies, no significant preference but rather an
avoidance was found throughout the studies included in this review for American Crows (Cor-
vus brachyrhynchos). Due to their high mortality rates during the first WNV outbreaks in
North America, corvids, in general, and American Crows, in particular, have been often cred-
ited a major role in WNV dynamics [20]. Corvids showed the potential to act as competent
hosts for WNV, in experimental studies [20,52,53]. Komar and colleagues [20] reported that—
among other birds experimentally infected with the North American WNV strain (NY99)—
American Crows, Fish Crows (Corvus ossifragus), and Black-billed Magpies (Pica hudsonia)
presented with a viremia lasting between 3.8 and 5 days, with level of viremia ranging between
5.8 and 10.2, 1.3 and 8.9, and 4.0 and 8.8 PFU/ml of serum, respectively. Moreover, both Car-
rion Crows (Corvus corone) [53] and Magpies [52] were reported to be competent hosts for
WNV lineages 1 and 2. However, in blood meal analysis, corvids, in general, and American
Crows, in particular, are often underrepresented [27,42,51]. A possible explanation was pro-
vided by Wheeler and colleagues [47], wherein the authors reported that American Crows
might play an important role as early-amplifying hosts for WNV, because of their nesting sea-
son and characteristics, as well as high viremia titres. Another specific aspect for which Ameri-
can Crows were considered important in WNV dynamics is the potential bird-to-bird
transmission in communal roosting sites [54]. However, the frequency with which they are fed
upon from Culex mosquitoes was significantly associated with the proximity of the nest to the
mosquitoes’ capture site [47]. This could explain the results by Kilpatrick and colleagues [36]
on Fish Crows. They reported Fish Crows to be fed upon by Cx. pipiens and Cx. restuans more
than what would be expected if feeding was based on chance alone (25 and 11 times as much,
respectively, at 2 different sites). However, the authors questioned their effective impact on
WNYV transmission dynamics, based on their rarities at each site. They concluded that Fish
Crows were responsible for 2% of infected mosquitoes, compared to, e.g., 59% of mosquitoes
infected by American Robin [36]. The role of Crows and American Crows—in particular—
and of bird-to-bird transmission—in general—presents therefore still with a lack of clarity and
could benefit from further research.

In all the included studies, WNV-transmitting Culex mosquitoes, although to various extent
ornithophilic, presented with opportunistic feeding behaviour. The proportion of avian- and
mammal-derived blood meals in the included studies ranged from approximately 100% avian
(Cx. restuans, Cx. quinquefasciatus, Cx. pipiens according to Kothera and colleagues [37]; Cx.
quinquefasciatus according to Hannon and colleagues [33]; and Cx. tarsalis in early season
according to Thiemann and colleagues [39]) to 30% to 40% of mammal-derived blood meals
(Cx. quinquefasciatus according to Mackay and colleagues [40]; and Cx. erraticus according to
Mendenhall and colleagues [34]). Previous studies on the topic reported Cx. pipiens and Cx.
restuans to be largely ornithophilic, Cx. erraticus largely mammalophilic, and Cx. quinquefas-
ciatus and Cx. tarsalis to exhibit the broadest opportunistic behaviour [28,42,43,55,56]. More
in detail, Molaei and colleagues [42] reported 93%, 2%, and 4% of blood meals taken by Cx.
pipiens to be avian-, mammal-derived, and mixed, respectively, while 100% of blood meals
taken by Cx. restuans were avian-derived. Apperson and colleagues [55] reported a ratio 23:1
for blood meals taken on birds and on humans, respectively, by Cx. pipiens. Similarly, Camp-
bell and colleagues [56] reported Cx. pipiens feeding on 17 avian species and 1 mammal species
(humans). Thiemann and colleagues [28] reported at different sites a proportion of single-
source blood meals taken on mammals that ranged between 0% and 9%, while the
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corresponding proportion of blood meals taken on birds ranged between 91% and 98%. Savage
and colleagues [43] observed a slightly more opportunistic feeding behaviour from Cx. pipiens.
The authors reported 73%, 14%, and 4% of blood meals having avian, mammal, or mixed ori-
gin, respectively [43]. In our results, this tendency of Cx. pipiens to feed largely on birds was
reported by Kothera and colleagues [37]. In this study, 3 blood meals out of 840 taken by Cx.
pipiens were from mammals (2 from humans). Conversely, the study from Hamer and col-
leagues [22] reported a significant percentage of blood meals taken on mammals and predomi-
nantly humans. A potential explanation for this discrepancy is the absence of control for the
genetic ancestry of the form of the observed Cx. pipiens (Cx. pipiens form pipiens, Cx. pipiens
form molestus, or hybrids). According to Kilpatrick and colleagues [57], the probability of
blood meals taken on mammals (including humans) was proportional to the fraction of
genetic ancestry with Cx. pipiens from molestus. This difference in host preferences between
Cx. pipiens form pipiens (more ornithophillic) and Cx. pipiens form molestus (more mamma-
lophilic) was observed also in experimental setting in the work by Fritz and colleagues [58].

Cx. quinquefasciatus presented the widest feeding spectrum among the observed mosqui-
toes, with mammal-derived blood meals ranging from 2% according to Hannon and col-
leagues [33] to 39% according to Mackay and colleagues [40]. This result might seem to
disagree with previous works. Zinser and colleagues [59] reported a 50% and 32% of blood
meals to be human- and bird-derived, respectively. Similarly, Molaei and colleagues [27]
reported 39% and 52% of blood meals to be bird- and mammal-derived, respectively. How-
ever, in this study, only 3 human blood meals were collected. A potential explanation for this
difference in results might be in the heterogeneous host availability in the different studies.
This was also suggested in the study by Zinser and colleagues [59], who contextualised the
observed results in light of an elevated variability in host utilisation among Cx.
quinquefasciatus.

In the study by Kothera and colleagues [37], Cx. restuans blood meals were exclusively from
avian species. Conversely, in the work by Hamer and colleagues [22], Cx. restuans exhibited a
tendency to ornithophilic feeding behaviour (80% and 15% of blood meals were avian- and
mammal-derived, respectively). Previous works on Cx. restuans agreed on this high variability
of blood meals composition [43,48]. Egizi and colleagues [48] reported that early-season blood
meals from Cx. restuans were almost entirely avian-derived (although human-derived blood
meals were present). Conversely, Savage and colleagues [43] reported 62% of Cx. restuans
blood meals to be avian-derived (most commonly American Robin, Common Grackle, and
Northern Cardinal).

In the study by Thiemann and colleagues [39], Cx. tarsalis presented with exclusively avian-
derived blood meals in the early season, which shifted to 12% of mammal-derived blood meals
in the late summer season. A similar shift in blood-meals composition was reported also from
Kent and colleagues [49]. The authors considered Cx. tarsalis to feed on both avian (especially
Mourning Dove and American Robin) and mammals (especially Domestic Cow). Human
blood tended to be more present in late summer [49]. Similarly, Molaei and colleagues [30]
reported that Cx. tarsalis fed significantly more often on Mourning Dove and House Finch.
Campbell and colleagues [56] reported that Cx. tarsalis fed on 30 avian and 11 mammal species
(most commonly American Robin, Domestic Cow, and Yellow-billed Magpie). A preference
for Mourning Dove and Yellow-billed Magpie is present also in the included study by Thie-
mann and colleagues [39]. However, both Thiemann and colleagues [28] and Campbell and
colleagues [56] agreed that feeding patterns of Cx. tarsalis are highly different based on hosts
availability. Mammal-derived blood meals ranged from 3% to 29% in the different sampling
sites [28].
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As previously mentioned, all observed mosquitoes fed on humans as well. Thus, our results
suggest that all observed mosquitoes could have the potential to transmit to humans zoonotic
pathogens, even if to different degrees. For some mosquitoes, this aspect has been already doc-
umented. Molaei and colleagues [27] reported that blood meal patterns from Cx. quinquefas-
ciatus were compatible with human cases in Harris County, TX. Similarly, Molaei and
colleagues [30] considered Cx. quinquefasciatus the primary WNV vector in Southern Califor-
nia. For other mosquitoes, even if percentage of blood meals taken on humans might be negli-
gible, the fact that their opportunistic feeding behaviour includes human blood meals retains
some level of potential to act as a vector for zoonotic pathogens. Conversely, Thiemann and
colleagues [28] discussed that few blood meals from Cx. pipiens complex and Cx. tarsalis ana-
lysed in the metropolitan area of Los Angeles, CA, were human derived. The authors, there-
fore, considered the two mosquito species to have a marginal role as bridge vector, as the study
area recorded several WNV outbreaks. Nevertheless, considering the density of the population
in the aforementioned areas, even such a marginal vector role could lead to significant
amounts of cases each season.

Implications for further research

All but one, which was conducted in Italy, of the included studies took place in the Americas.
As observable in our results and other works on the topic, mosquitoes’ host selection can be
largely influenced by the immediate environment and hosts availability [47,60]. In addition to
this, several studies have observed that Palearctic and Nearctic birds present with different sen-
sitivity to WNV, especially in terms of clinical symptoms and mortality [61,62]. It is still
unclear whether this aspect can be explained by differences in the viral strains, coevolution
with WVN or cross-immunization with different Flavivirus of Palearctic birds, or different
vector ability of the mosquitoes [61]. However, for these reasons, together with the different
avian population in the European regions, the bulk of the results of the study summarised in
this review cannot be directly extended to other settings. In recent years, WNV has been
severely present in Southern Europe [8]. However, even if studies on potential host compe-
tence of common avian species (e.g., Red-Legged Partridge [Alectoris rufa]) [63] as well as on
host selection in Europe and United Kingdom are present [64-66], the ones considering forage
ratio are rare. Hence, such a study based in the different European regions (e.g., other than
Italy, for which a study already exists; [35]) could help to further disentangle the relation
between mosquitoes and Palearctic birds. In addition, another study exploring the role and the
host competence in different European Regions of avian host, which were observed to be pre-
ferred (e.g., Common Blackbird, Magpie) or avoided (e.g., European Sterling, Rock Pidgeon),
should be considered.

Implications for clinicians and policy makers

Our results suggest that even if within a host selection strategy, feeding patterns of Culex mos-
quitoes vary based on the environment and the host availability. In a biodiverse environment,
in which mosquitoes are presented with high density of potential hosts, a so-called “dilution
effect hypothesis” (DEH) might occur [67]. DEH is based on the presence of incompetent res-
ervoir hosts (e.g., non-passerine birds). The WNV inoculated after a blood meal on these
incompetent hosts would not generate sufficient viremia to reinfect mosquitoes, de facto not
taking part in the amplification cycle. However, to date, controversial results are present on
whether a richer biodiverse environment could result in a protective effect on the transmission
of arthropod-borne diseases or the opposite [67-70].
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As we observed, mosquito feeding patterns are influenced from host availability. Hence, the
presence of several incompetent hosts might indeed lead to blood meals being taken out of the
amplification cycle. In the specific case of WNV, this speculation has been studied by Ezenwa
and colleagues [71], who observed a negative association between the density of non-passerine
bird species and the WNV infection prevalence as well as density of infected Culex mosquitoes.
Thus, further studies on the specific applicability of DEH on WNV for policy making could be
considered.

Limitations

When interpreting the results of this analysis, it is important to consider also its limitations.
The included studies considered different Culex species, with different distributions and habi-
tats, both in terms of geographical and climatic areas they are present in, as well as whether
they prefer living in urbanized, rural, or semirural environments. These aspects have been
observed to deeply influence the composition, diversity, and abundance of potential hosts the
mosquitoes can feed upon [60]. Similarly, it was not possible to assess the role of aggregates of
vertebrate hosts (e.g., communal roosting sites) to attract WNV-transmitting Culex mosqui-
toes. For these reasons, the results should not focus on the single host species per se, but rather
on the characteristics of the hosts selected in the different settings. Moreover, the studies con-
sidered different strategies to evaluate the population of possible hosts in the selected environ-
ment: The majority of studies considered point surveys at the considered location, while
Mackay and colleagues [40] used the North American Breeding Bird Atlas and Hannon and
colleagues [33] used online repository of birdwatching checklists. This heterogeneity in evalu-
ating the relative abundance of potential hosts might lead to noncomparable results. Neverthe-
less, this limitation has been already reported in studies that considered forage index [23].

As previously mentioned, these results might not be directly translated to other settings
than the ones in which were developed. In addition, even if this review was conducted with a
clear methodological structure, only one reviewer extracted the included studies and their
information, rendering the review not systematic and therefore—by definition—more prone
to reporting bias. However, considering the small number of studies retrieved and their intrin-
sic differences such as different countries, vector, and host availability, we considered that a
more systematic approach to this review would not have allowed this study to draw stronger
conclusions.

Finally, when interpreting the results of this review, it is important to consider that the pref-
erence or avoidance of a certain host species does not immediately translate to a major role in
the WNV transmission dynamics. This is because, besides the role as a potentially favourite
host, there must be also the host competency of the single species. For this reason, the capacity
of each species to reinfect mosquitoes, both in terms of sufficient level of viremia as well as
availability of the host, should be observed in detail also with specific studies. This approach
could help disentangling the role of the different hosts in WNV transmission dynamics and,
thus, to focus preventive strategies.

Conclusions

We aimed to summarise existing knowledge on host selection in WNV-transmitting Culex
mosquitoes. Our results suggest that all observed mosquitoes present opportunistic feeding
behaviours, having taken blood meals both of avian and mammal species. In addition, the con-
stant presence of human blood meals suggests that all the observed mosquitoes have the poten-
tial to act as bridge vectors for WNV infection to humans. WNV-transmitting Culex
mosquitoes presented in all the included studies a pattern of preference and avoidance. This
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result suggests that they do not take blood meals solely based on the hosts’ availability, but still
operate a certain level of selection, independently from the different settings.

Whereas some level of generalization can be inferred from the included articles, they pres-
ent with sensitive differences, among which the species of mosquito observed, the study set-
tings (e.g., geographical area, population of hosts) and design (e.g., strategy to collect
mosquitoes and evaluate abundance of hosts, time frame of the vector collection). These differ-
ences disallow for generalization of the results in settings others than the ones of each study
and suggest caution when interpreting them.
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Key Learning Points

o All observed West Nile virus (WNV)-transmitting Culex mosquitoes present with
opportunistic feeding behaviours.

o All observed WNV-transmitting Culex mosquitoes can potentially have a role in bridg-
ing the infection to humans.

o All observed WNV-transmitting Culex mosquitoes present patterns of selection and
avoidance of potential hosts
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Advantages

1.

The results of this review provide a summary of the existing knowledge and gaps on host
selection and forage ratio in West Nile virus (WNV)-transmitting Culex mosquitoes.

These results could foster further research on the role of the different potential host species
in the transmission cycle of WNV.

In addition, these results could support the development of research projects and public
health interventions to disentangle and limit the transmission cycle of WNV at the local level.

Disadvantages

L.

Generalization of the results of this review is challenging because of observed local differ-
ence in host selection patterns.

Similarly, the different studies used different techniques to define the population of poten-
tial hosts (point count surveys, citizen science data, etc.), and for this reason, the compari-
son of the results between different studies should be conducted with care.

In addition, the preference or avoidance of a potential host species does not necessarily
translate in implications for WNV transmission cycle.
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