Table 5. Summary of results utilising the load at zero velocity prediction method.
Study (year) | Device (Make) | Velocity variable | Exercise (modality) | Point method; loads (%1RM) | Validity | Reliability |
---|---|---|---|---|---|---|
Hughes et al.(2019) [36] | LPT (GymAware Powertool; Kinetic Performance Technology) | MCV | Back squat (FW) | 5; 20, 40, 60, 80, 90 4a; 20, 40, 60, 80 4b; 40, 60, 80, 90 |
5; d = 0.01, r = NS 4a; d = 0.01, r = –0.50 4b; d = 0.04, r = NS |
5; d = 0.05 (95% CI:–0.57, 0.67), CV = 8.2% (95% CI:6.4, 11.6), ICC = 0.82 (95% CI:0.63, 0.90) 4a; d = –0.03 (95% CI:–0.65, 0.59), CV = 8.5% (95% CI:6.6, 12.1), ICC = 0.78 (95% CI:0.57, 0.90) 4b; d = 0.10 (95% CI:–0.52, 0.72), CV = 8.6% (95% CI:6.7, 12.3), ICC = 0.81 (95% CI:0.62, 0.91) |
Jidovtseff et al.(2011) [12] | LPT (PT5DC, Celesco Transducer Products) | MCV | Bench Press (SM) | 4a**; 35, 50, 70, 90 4b**; 30, 50, 70, 95 3**; 40, 60, 80 2a**; 30 to 35, 70 2b**; 40, 60 |
Pooled†: d = –0.49 (95% CI: –0.11, –0.75); SEE = ≤5.0kg 4a; r = 0.96 4b; r = 0.95 3; r = 0.95 2a; r = 0.96 2b; r = 0.96 |
NS |
Sayers et al.(2018) [44] | LPT (WS17KT, ASM) |
MCV PCV | Bench press throw (SM) | 3a; 30, 40, 50 3b; 40, 50, 60 3c; 50, 60, 70 |
MCV: 3a; ICC = 0.868(95% CI:0.558, 0.966), R2 = 0.96, SEE = 4.4kg 3b; ICC = 0.855(95% CI:0.521, 0.962), R2 = 0.52, SEE = 18.9kg 3c; ICC = 0.849(95% CI:0.506, 0.960), R2 = 0.78, SEE = 11.0kg PCV: 3a; ICC = 0.967(95% CI:0.890, 0.990), R2 = 0.87, SEE = 10.4kg 3b; ICC = 0.680(95% CI:0.204, 0.896), R2 = 0.89, SEE = 10.5kg 3c; ICC = 0.867(95% CI:0.604, 0.960), R2 = 0.85, SEE = 11.6kg |
NS |
Note: 1RM = one repetition maximum, CI = confidence interval, ICC = intraclass correlation coefficient, LPT = linear position transducer, MCV = mean concentric velocity, NS = not specified, PCV = peak concentric velocity, SEE = standard error of estimate, SM = Smith machine. **Independent samples for models 4a/2a, 4b/2a, 3/2b. †Exact effect size and SEE values per prediction model are unspecified.