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Abstract

Mobility is the key factor in promoting tourism economic growth (TEG), and the transporta-

tion infrastructure has essential functions for maintaining an orderly flow of tourists. Based

on the theory of fluid mechanics, we put forward the indicator of tourism mobility (TM). This

study is the first to measure the level of TM in China and analyze the spatiotemporal evolu-

tion characteristics of TM. Applying the Exploratory Spatial Data Analysis method, we ana-

lyze the global and local spatial correlation characteristics of TM. Moreover, we further

estimate the contribution of TM to TEG by econometric models and the LMDI method. The

results show that (1) the TM in China has maintained rapid growth for a long time. However,

there are differences in the rate of growth in different regions. The TM in each region only

showed a significant positive spatial correlation in 2016–2018. The space-time pattern is

constantly changing over time. The local spatial autocorrelation results of TM are stable,

and various agglomeration states are stably distributed in some provinces. (2) The regres-

sion results of the traditional panel data model and spatial panel data model both show that

TM has a significant positive effect on TEG. Moreover, TM has a negative spatial spillover

effect on neighboring regions. (3) The result from the decomposition of LMDI shows that the

overall contribution of TM to TEG is 15.76%. This shows that improving TM is a crucial way

to promote the economic growth of tourism.

Introduction

In recent years, the tourism industry has maintained rapid development. By 2019, the total

number of global tourist trips exceeded 12.3 billion, an increase of 4.6% over the previous year.

The total global tourism revenue was US$5.8 trillion, equivalent to 6.7% of global GDP (World

Tourism Economy Trends Report [1]). Tourism has made important contributions to eco-

nomic growth by increasing employment, improving infrastructure, and accumulating foreign

exchange earnings for destinations [2]. Due to the impact of COVID-19, People’s travel is

restricted. The total number of international tourists in 2021 decreased by 72% compared with

2019, and international tourism consumption dropped by nearly half compared with 2019 [3].

The above facts remind us that mobility has become an essential feature of tourism activities

[4, 5]. Tourists from origins to destinations result in a series of mobility of information,
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material, and capital. These mobilities have a great influence on tourist destinations [6–9]. If

tourism mobility (TM) stagnates, tourist attractions, reception facilities and transportation

facilities built for tourists will be idle. Tourism workers will lose their jobs and tourism eco-

nomic growth (TEG) will also stagnate. Therefore, studying the impact of TM is necessary and

important.

As one of the important tourist destinations in the world, China’s domestic tourism and

inbound tourism are developing rapidly. In 2019, the total contribution of China’s tourism

industry to GDP reached 10.94 trillion yuan, accounting for 11.05% of the total GDP, exceed-

ing the proportion of international tourism in the global GDP. A total of 28.25 million people

were directly employed in tourism, and 51.62 million people were indirectly employed in tour-

ism. The total employment in tourism accounts for 10.31% of the total employed population

in the country [10]. However, due to the impact of COVID-19, the development level of Chi-

na’s tourism industry has not recovered to the level of 2019. In 2021, the total number of

domestic tourists in China was 3.246 billion, which is only 54% of that in 2019, and directly

leads to a total tourism revenue of 2.92 trillion yuan, which is only 51% of that in 2019. This

shows that TM is more important to China’s tourism industry. Therefore, we decide to focus

on the TM in this study and take China as the research sample.

The top priority of this study is to obtain the right measurement of TM. Transportation

infrastructure is an important carrier for the exchange of factors in tourism. Existing studies

have confirmed that transportation is a key factor in promoting TEG [11–13]. The establish-

ment of the transportation system has an obvious effect on improving the accessibility of tour-

ist destinations and promoting the inflow of the tourist population [14]. However, most

existing studies only take tourist arrivals to characterize TM [15–21]. They ignore that the

transportation infrastructure is also an important factor affecting the TEG. Therefore, this

study redefines TM, which considers both transport infrastructure and tourist arrivals.

Another important purpose of this study is to explore the effect of TM on TEG. Existing lit-

erature analyzes the links between TM and international trade [22, 23] or focuses on the rela-

tionship between economic growth [24, 25]. However, less literature has focused on the

relationship between TM and TEG. There are two possible reasons for the lack of attention.

First, the positive and significant impact of the tourist arrivals and TEG no longer needs to be

verified. It is common sense that the more tourists the destination receive, the higher the tour-

ism income. Second, tourist arrivals, as a single indicator to measure TM, are able to affect the

TEG. Our measurement of the TM concludes both transport infrastructure and tourist arrivals

in this study. Therefore, we decide to explore the contribution of TM to the TEG based on the

new measurement for TM.

We first use econometric methods to test whether there is a significant impact of TM on

TEG. Considering the positive impact of transport infrastructure on China’s TEG [26], we

hypothesize that TM has a positive impact on TEG. Previous studies have also shown that the

spatial spillover effect of tourism may significantly affect the TEG [27–29]. Therefore, we fur-

ther apply the spatial Durbin model to test the impact of TM on TEG.

Moreover, we also use the LMDI (Logarithmic Mean Divisia Index) method to further ana-

lyze the contribution of TM to TEG in more detail. The LMDI method is often used to study

environmental issues such as energy consumption and carbon emissions [30, 31]. In the field

of tourism research, the LMDI method is mostly used to decompose tourism carbon emissions

or energy consumption [32, 33]. Few studies are using the LMDI to analyze TEG. Therefore,

we further use the LMDI method to decompose TEG into five influencing factors including

the tourism mobility effects (TM), the cumulative traffic effects (Traffic), the effects of the ter-

tiary industry (Industry), the structural effects of the tourism industry (Structure) and the

reception effects (Reception), and examine the contribution of TM to TEG.

PLOS ONE The contribution of tourism mobility

PLOS ONE | https://doi.org/10.1371/journal.pone.0275605 October 27, 2022 2 / 24

The data on TOURISM REVENUE and VISITORS

are from the CEIC database (https://insights.

ceicdata.com). The data on TRAFFIC, TOURISM

MOBILITY, RECPTION, INDUSTRY, and

STRUCTURE were calculated by the authors.

Please see the paper for details.

Funding: This work was supported by grants from

National Social Science Foundation of China [grant

number 17CJY051].

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0275605
https://insights.ceicdata.com
https://insights.ceicdata.com


Different from previous studies, this study makes two contributions to the literature. First,

we introduce the related concepts of fluid mechanics to construct the indicator TM. We also

consider the superposition effect of tourist arrivals and transportation infrastructure. This

deepens the understanding of TM and promotes the integration of interdisciplinary knowl-

edge. Second, we are the first to examine the impact of TM on TEG using econometric models

and the LMDI method. This deepens the understanding of the mechanisms that influence

TEG. The results of this study also provide a reference for tourism-related policy makers.

Regions wishing to develop tourism can achieve TEG by expanding the size of the source mar-

ket and promoting the construction of transportation infrastructure.

The rest of this study is organized as follows. Section 1 summarizes the relevant literature.

Section 2 presents the theoretical framework, methods, and data. Section 3 introduces the spa-

tiotemporal pattern and evolutionary trend of TM. Section 4 analyzes the contribution of TM

to TEG from two different perspectives. Section 5 discusses and analyzes the research results.

The last section concludes this study.

Literature review

As the core of tourism activities, TM refers to the mobility of tourists from the origin to the

destination, and the stay of tourists in the region [34]. It is often associated with tourism

demand and is measured by tourist arrivals [35]. Since the 1970s, many studies have paid

attention to the influencing factors and the spatial structure of TM [15, 16]. The existence of

regional heterogeneity makes TM affected by many factors, such as infrastructure, income,

GDP, and cultural distance [17, 18, 20]. Moreover, it also makes the spatial structure of TM

different. Therefore, TM prediction has become one of the research hotspots [36]. A large

body of research has focused on TM forecasting [21], including using a combination and inte-

gration of forecasts, using nonlinear methods for forecasting, and extending existing methods

to better model the changing nature of tourism data [37]. The gravity model is an earlier

method used to analyze international TM [38]. Due to its effectiveness in explaining TM [22],

gravity models are often used to analyze international tourism service trade. Although the use

of gravity models to predict bilateral TM still lacks a corresponding theoretical explanation

mechanism, empirical evidence supports the applicability and robustness of gravity models for

TM [23]. Existing research focuses on examining the movement patterns and spatial structure

of international TM in destinations [39], such as the transfer of inbound TM within regions

and the influencing factors of inbound TM within destinations [40]. There are still few studies

on the overall spatial characteristics of TM within destination countries, and the only literature

is mainly based on digital footprints or questionnaire data to analyze the spatial structure of

TM [41, 42].

Unlike the tourist arrivals indicator, which focuses more on the mobility of people, TM

examines a wider range of content, including the mobility of people, the mobility of materials,

the mobility of ideas (more intangible thoughts and fantasies), and the mobility of technology

[8]. The early tourist movement focused more on tourist travel decisions and the resulting

movement patterns. Lue et al. [43] summarized five travel patterns of tourists between destina-

tions. Li et al. [44] revealed the spatial patterns of TM and tourism propensity in the Asia-

Pacific region over the past 10 years. McKercher and Lau [45] took Hong Kong as an example

and identified 78 movement patterns and 11 movement styles of TM within the destination. In

recent years, with the help of technologies such as GPS, GIS, and RFID, the movement of tour-

ists within scenic spots has attracted attention [46]. Research on visitor movement in national

parks, theme parks, protected areas, etc. continues to increase [47–49], and explore the influ-

encing factors of visitor movement [50], broadening the microscale visitor mobility research
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content. TM also has economic, social, and cultural impacts on destinations through the

movement of tourists. Numerous empirical studies have shown that tourist arrivals have a pos-

itive impact on economic growth [51]. Tourism is an important driver of economic growth

[52]. However, some studies have shown that tourist arrivals do not directly lead to economic

growth, but promote TEG through regional economic development [53–55]. The mobility of

tourism will also bring about changes in destination transportation facilities. Transportation is

not only an important carrier of TM but also an important part of tourists’ travel experience

[8]. It also has a positive impact on destination company value together with TM [26].

There are many theoretical discussions and empirical studies on the factors influencing

TEG. From the perspective of suppliers, resource endowment [56–58] and environmental

quality [59–62] are the fundamental factors determining tourism development. Simulta-

neously, as a typical service industry, human capital and physical capital in the tourism indus-

try [63, 64] and service level [65] will impact tourism economic efficiency. From the

perspective of demanders, the rise of per capita income and consumption upgrading continue

to drive the transformation in the tourism industry [66], which in turn leads to an increasing

scale of market demand [67], which provides the possibility of increasing the foreign exchange

earnings, local capital accumulation, and consumption spillovers. From the perspective of sup-

porters, scholars have verified the significant effects of factors on TEG, including the transpor-

tation facilities and accessibility [68–71], the basis of the economy and marketization [72],

industrial structure [73], public policy [74–76], and technological progress [77].

In summary, the research on TM has paid attention to its impact on the regional economy,

but they both ignored the role of TM on TEG. Studies of TEG based on static factors have pri-

marily relied on econometric models [78]. Although the spatial spillover effects of influencing

factors have gradually gained attention, its depth is limited and fails to explore the impact of

TM and other related factors on the TEG. TM is becoming central to tourism activities and

understanding the capital mobility of tourism will have implications for tourism development

under the new mobility paradigm [79]. This study proposes the concept of TM based on the

theory of fluid mechanics, explores its impact on TEG, and analyzes the contribution of each

influencing factor to TEG.

Theoretical framework, research methods, and data sources

Theoretical framework

Traditionally, tourism research considers the tourism system as tourist sources, tourist desti-

nations, and tourist corridors (transportation systems) [80, 81]. Under the new mobility para-

digm, this study regards the spatial transfer of tourists from the source to the destination as a

mobility process. Tourist mobility is the fundamental reason for the existence of tourism. If

tourists stop flowing, tourism will cease to exist.

It is known that the fluid will be affected by a variety of factors, such as viscosity, density,

resistance coefficient, and altitude. As shown in Fig 1, the total mobility of tourists from a tour-

ist origin to a tourist destination is the number of tourists (Q). The spatial transfer of tourists,

on the other hand, requires the use of transportation infrastructure as well as means of deliv-

ery. As an essential vehicle to support tourism development, transportation infrastructure

directly reflects regional accessibility and relevance and is a crucial factor influencing TM [82–

84], and its construction level has different effects on TEG in different regions [11, 85–87].

According to the equations in fluid mechanics, the average velocity is equal to the flow rate

ratio to the cross-sectional area. It can be deduced that TM = Q/TL. TM is determined by the

number of tourists (Q) and the length of transportation infrastructure (TL). According to the

definition, this indicator considers both tourist arrivals and flow rate, and its significance lies
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in its ability to characterize the mobility of tourism factors relying on tourists and physical

transportation. This paper also connects the factor decomposition method to determine the

importance of TM to TEG and presents theoretical implications for identifying essential fac-

tors to enhance tourism efficiency and stimulate tourism industry development.

Research methods

Measurement of tourism mobility. The basic principle of fluid mechanics is that the

average velocity is proportional to the flow rate and inversely proportional to the cross-sec-

tional area. This paper characterizes the flow rate by the number of tourist inflows, and the

length of transportation infrastructure represents the cross-sectional area, with the equation as

(1)

TMt
i ¼ Qt

i=TL
t
i ð1Þ

where TMt
i represents the TM in province i and year t; Qt

i is the number of tourists in province

i and year t; and TLt
i is the length of the weighted transportation infrastructure in province i

and year t, including railroads, highways, primary roads, secondary roads, and other grades of

roads. China’s railway and road passenger traffic accounts for the vast majority of the total pas-

senger traffic. Furthermore, we were unable to calculate weighted air and water transportation

infrastructure lengths, so we only consider the land transportation infrastructure data. The

length of transportation infrastructure is weighted according to Chen et al. [88].

Exploratory spatial data analysis. It is generally believed that tourism has a spatial spill-

over effect and spatial correlation [28]. Therefore, we use Exploratory Spatial Data Analysis

(ESDA) to detect spatial correlation among the variables. ESDA is used to analyze spatial char-

acteristics through global and local spatial autocorrelation measurements [42, 89].

The global Moran’s I is an indicator of whether factors are spatially correlated and its value

ranges from -1 to 1. When 0<I�1, it indicates a positive spatial correlation; when -1�I <0, it

indicates a negative spatial correlation; when I = 0, there is no spatial relationship. The equa-

tion is as in (2).

I ¼
n
Pn

i¼1

Pn
j¼1

WijjTEGi � TEGjjTRj � TEGj
Pn

i¼1

Pn
j¼1

Wij

Pn
i¼1
jTRi � TEGj2

ð2Þ

Where TEGi and TEGj denote the tourism revenue of provinces i and j, respectively; n is

the number of provinces; TEG denotes the average value of tourism revenue of each province;

Wij represents the spatial weight matrix of provinces i and j. We choose the adjacency matrix

and use Guangdong and Guangxi as the neighboring provinces of Hainan.

Fig 1. The influence of TM on TEG.

https://doi.org/10.1371/journal.pone.0275605.g001
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Local spatial autocorrelation is used to explore cluster patterns and spatial patterns [90, 91].

We analyze the local spatial autocorrelation characteristics through cluster and outlier analy-

ses. The calculation process is expressed as Formula (3):

Ip ¼
ðn � 1Þ

Pn
q¼1;q6¼p WpqðTEGp � TEGÞðTEGq � TEGÞ
Pn

q¼1;q6¼p ðTEGq � TEGÞ2
ð3Þ

With a Z statistical test as in Formula (4), the cluster and outlier analyses can identify H_H

(High_High) clusters, L_L (Low_Low) clusters, L_H (low value surrounded by high values)

clusters, and H_L (high value surrounded by low values) clusters at a 95% confidence level.

ZIp
¼

Ip � E½Ip�
ffiffiffiffiffiffiffiffiffiffi
V½Ip�

q ð4Þ

Econometric model. The econometric model, including tourism economic growth

(TEG), tourism mobility (TM), physical capital in the tourism industry (TP), and human capi-

tal in the tourism industry (TH), is constructed according to economic growth theory without

considering spatial spillover effects. Besides, since the measurement of TM only considers land

transportation infrastructure data, the passenger traffic by the airport (TA) is introduced in

the model to characterize the air capacity. Eq (5) represents the econometric model (TEGit) in

province i and year t, where α is the constant term, β is the parameter to be estimated, μi

denotes the spatial effect, and εit denotes the random error term.

LnðTRÞit ¼ aþ bLnðTMÞit þ b1LnðTPÞit þ b2LnðTHÞit þ b3LnðTAÞit þ mi þ εit ð5Þ

However, the spatial correlation of TEG will lead to biased parameter estimates of tradi-

tional econometric models. If the test results of global Moran’s I indicate that TEG is signifi-

cantly spatially correlated, a spatial econometric model should be introduced to solve the bias-

variance problem. The spatial Durbin model (Eq 6) is developed according to Eq 5. The spatial

weight matrix used in the spatial Durbin model is an adjacency matrix. yit represents the TEG

in province i and year t; xit represents the TM, TP, TH, and TA in province i and year t; and

Wijyjt and Wijxjt are the TEG and lagged terms of each influencing factor, respectively. ρ and φ
are spatial lagging coefficients, and vt denotes the time effect.

yit ¼ r
Pn

j¼1
Wijyjt þ bxit þ

Pn
j¼1
φWijxjt þ mi þ vt þ εit ð6Þ

LMDI decomposition. The LMDI decomposition method is widely used because it can

effectively solve the residual problem in the decomposition and zero and negative values in the

data. LMDI In this study, TEG is decomposed according to Eq (7). The influencing factors of

TEG are decomposed into tourism mobility effects (TE), cumulative traffic effects (Traffic),
effects of the tertiary industry (Industry), structural effects of the tourism industry (Structure),
and reception effects (Reception). The equations are shown in (8) to (11). Traffic indicates the

weighted road length; GDP (service) intimates the value added of the tertiary industry; Popula-

tion represents the population in each province, and Visitors is the number of tourists. Intro-

ducing the log-average function L(x,y) defined in Eq (12). Eq (7) is decomposed into Eq (13)

by LMDI, where ΔTEG denotes the amount of change in TEG from initial time 0 to period t,

and ΔTM, ΔT, ΔI, ΔS, ΔW represent the contribution of each influencing factor to TEG. The
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equations are shown in (14) to (18).

TEG ¼ TE � Traffic � Industry � Structure � Reception ð7Þ

TM ¼ Visitors=Traffic ð8Þ

Industry ¼ GDPðserviceÞ=Population ð9Þ

Structure ¼ TEG=GDPðserviceÞ ð10Þ

Reception ¼ Population=Visitors ð11Þ

L x; yð Þ ¼

x � y
lnx � lny

; x 6¼ y

x; x ¼ y

0; x ¼ y ¼ 0

ð12Þ

8
>><

>>:

DTEG ¼ DTEGðtÞ � DTEGð0Þ ¼ DTMþ DTþ DIþ DSþ DW ð13Þ

DTM ¼
DTEGðtÞ � DTEGð0Þ
lnTEGðtÞ � lnTEGð0Þ

� ln
TMðtÞ
TMð0Þ

� �

ð14Þ

DT ¼
DTEGðtÞ � DTEGð0Þ
lnTEGðtÞ � lnTEGð0Þ

� ln
TrafficðtÞ
Trafficð0Þ

� �

ð15Þ

DI ¼
DTEGðtÞ � DTEGð0Þ
lnTEGðtÞ � lnTEGð0Þ

� ln
IndustryðtÞ
Industryð0Þ

� �

ð16Þ

DS ¼
DTEGðtÞ � DTEGð0Þ
lnTEGðtÞ � lnTEGð0Þ

� ln
StructureðtÞ
Structureð0Þ

� �

ð17Þ

DW ¼
DTEGðtÞ � DTEGð0Þ
lnTEGðtÞ � lnTEGð0Þ

� ln
ReceptionðtÞ
Receptionð0Þ

� �

ð18Þ

Data sources

The study area is 31 provinces of China (excluding Hong Kong, Macao, and Taiwan), which is

divided into seven regions according to the geographical divisions of China. The provinces

included in each region are listed in supporting information. Since data availability varies

widely across regions, the research period of TM and LMDI decomposition is from 2000 to

2018. As the National Bureau of Statistics of China (NBS) started to collect the employment

data of private enterprises and individuals by sector in 2004 and the data for 2018 has not been

updated yet, the research period of the spatial econometric model only covers the period from

2004 to 2017.

The data sources involved in the paper are as follows: the transportation infrastructure data

come from the China Statistical Yearbook; the number of tourists is obtained from the Statisti-

cal Bulletin on National Economic and Social Development. Air passenger traffic data is col-

lected from Civil Aviation Airport Production Statistics Bulletin. We employ the social fixed

asset investment in transportation, storage, and postal services, wholesale and retail trade,
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accommodation and catering, and culture, sports, and entertainment as proxies for physical

capital in the tourism industry (TP). This is because various aspects influence tourism develop-

ment. Considering that only direct tourism investment does not reflect the total investment in

tourism by society, we choose the four industries closely related to tourism development as

physical capital in the tourism industry.

In this paper, private and individual employees in the transport, storage, and postal indus-

try, wholesale and retail trade, and accommodation and catering industries are used to repre-

sent the human capital in the tourism industry (TH). The main reason for this is that, on the

one hand, most studies only consider the number of employees in travel agencies, scenic spots,

and star hotels, which differs significantly from the actual number of direct and indirect

employees in tourism. On the other hand, since private enterprises and individual employ-

ment solve more than 80% of the urban employment problem, the number of private enter-

prises and individual employment in the three industries related to the tourism industry is

chosen to represent the human capital. All the above data are collected from the NBS (http://

data.stats.gov.cn). In the LMDI decomposition, the value added of the tertiary industry and

the population in each province come from the China Statistical Yearbook.

Analysis of tourism mobility measurement results

Spatiotemporal evolution characteristics of tourism mobility

Limited by space, Table 1 only shows the results of TM over five years. During the study

period, TM increased from 56~12745 p visitors /km to 382~18865 p visitors /km, with an aver-

age annual growth rate between 2.20% and 13.46%. According to the average value of TM (Fig

2), the study areas are divided into the following three types.

1. “Leading Area”, including East China and North China, ranked first and second in all

regions. Their TM increased from 2679.39 and 1884.34 p visitors/km in 2000 to 5859.93

and 5209.94 p visitors/km in 2018. However, their annual average growth rates were 5.07%

and 6.43%, respectively, ranking first and second from the bottom in all regions. East China

is located on the coast, relying on superior natural conditions and an economic foundation,

and its regional transportation system is relatively complete. Therefore, it has formed many

advantageous tourist resource gathering areas and has become the main tourist destination

of inbound tourists in China, and its mobility has long ranked first in the country. As a

political and economic center, Beijing has become a tourist attraction for domestic and

inbound tourism with a large number of historical and cultural tourism resources. It also

drives the joint development of the tourism industry in North China with the Beijing-Tian-

jin-Hebei urban agglomeration as the core, making North China the second largest core

area of TM after East China.

2. “Stable Area”, including South China, Southwest China, Central China, and Northeast

China, ranked third to sixth in all regions. Their TM increased from 903.57p visitors/km,

695.15p visitors/km, 632.06p visitors/km, 493.33 p visitors/km in 2000 to 2626.11p visitors/

km, 2754.97p visitors/km, 2857.88p visitors/km, 2244.68 p visitors/km in 2018. The average

annual growth rates were 6.58%, 8.81%, 9.06%, and 9.38%, respectively. TM in South China

grew rapidly during 2005~2015, while it has gradually slowed down in recent years. This is

mainly due to the construction of the early transportation system in South China, which

increased tourist mobility. After the basic construction of facilities, the incremental tourist

inflows decreased, and the overall growth remained stable. Central China has become one

of the core transportation hubs under its location and has driven regional tourism develop-

ment, becoming a central province in the second echelon of TM. Due to geographical
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Table 1. Evaluation of TM (unit: p visitor/km).

Provinces 2000 2005 2010 2015 2018

Beijing 5815.61 6244.13 6396.40 8802.59 9749.22

Tianjin 2423.53 3244.66 2806.19 7044.53 9087.30

Hebei 643.89 861.74 808.73 1635.52 2808.76

Shanxi 442.66 751.96 848.94 2084.30 3911.71

Inner Mongolia 95.99 221.08 248.93 380.48 492.70

Liaoning 686.93 1284.09 2478.02 2269.75 4008.91

Jilin 385.53 441.30 627.62 1202.56 1710.53

Heilongjiang 407.54 532.26 1093.06 760.01 1014.61

Shanghai 12745.08 8117.20 13246.92 15309.97 18864.86

Jiangsu 1992.54 1819.48 2047.88 3226.98 4053.52

Zhejiang 1347.43 2177.08 2358.99 3762.31 4609.22

Anhui 573.09 576.14 951.49 2089.90 3015.35

Fujian 639.86 1001.07 1339.40 2378.62 3825.36

Jiangxi 703.39 866.53 879.65 2419.10 4047.48

Shandong 754.32 1269.68 1317.57 2116.74 2603.69

Henan 701.00 974.92 1182.94 2121.21 2715.03

Hubei 922.82 807.60 977.49 1811.08 2295.51

Hunan 1086.90 1183.50 1001.53 1922.76 2876.79

Guangdong 694.74 863.53 1941.69 3419.35 1874.52

Guangxi 744.77 1013.08 1404.58 2434.53 4532.18

Hainan 645.95 987.93 1007.22 1648.52 1858.19

Chongqing 1214.23 1552.96 1798.32 3056.53 3919.89

Sichuan 654.32 1346.55 1176.15 1966.18 2027.73

Guizhou 878.41 710.70 1540.86 2521.01 5206.88

Yunnan 357.47 567.94 804.54 1465.18 2753.10

Tibet 55.86 159.35 178.99 326.26 381.81

Shaanxi 671.95 944.96 918.24 2108.71 3256.66

Gansu 198.24 279.20 428.90 1089.77 1925.55

Qinghai 165.60 194.06 216.32 284.30 474.31

Ningxia 191.20 277.46 349.91 416.67 704.38

Xinjiang 183.04 175.42 253.72 354.96 777.00

https://doi.org/10.1371/journal.pone.0275605.t001

Fig 2. Mean value of regional TM from 2000 to 2018.

https://doi.org/10.1371/journal.pone.0275605.g002
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restrictions, Northeast and Southwest China are less connected to the transportation net-

work than coastal areas, resulting in relatively low levels of TM. Northeast China focuses on

the development of heavy industry but pays little attention to the tertiary industry, and

tourism infrastructure construction and resource development are relatively weak, which

leads to low TM. There are many mountains in Southwest China, and its early traffic devel-

opment level lags. With the opening of the Chengdu-Chongqing high-speed railway and

Chengdu-Guizhou high-speed railway, and the development of the air transportation

industry, the land and air transportation layout in Southwest China is becoming increas-

ingly mature. Southwest China actively developed its resources, and the tourist inflow

increased from 145 million (2000) to 2.994 billion (2018), with an average value of TM

catching up with that of southern China during 2016~2018.

3. “Potential Area”, including Northwest China, ranks last in terms of average tourist mobility.

Its TM increased from 282.01 p visitors/km in 2000 to 1427.58 p visitors/km in 2018, but its

average annual growth rate was 10.01%, ranking first among all regions. As less developed

region, Northwest China has a poor foundation in economic development and openness to

the outside world, and TM has long been at the bottom of the list. Although TM in North-

west China has long been at the bottom of the list, its mobility growth rate leads other

regions as tourism infrastructure construction and resource development levels have

improved under the active promotion of Western Development policies, the Five-Year

Plan, and the Territorial Tourism Strategy.

To more intuitively observe the temporal and spatial change characteristics of TM during

the study period, we apply the method of natural breaks to classify the 31 provinces. Natural

breaks classes are based on natural groupings inherent in the data. Class breaks are identified

that best group similar values and maximize the differences between classes. The features are

divided into classes whose boundaries are set where there are relatively big differences in the

data values. The natural breaks classification method is a data classification method designed

to determine the best arrangement of values into different classes. This is done by seeking to

minimize each class’s average deviation from the class mean while maximizing each class’s

deviation from the means of the other groups [92]. We divided the 31 provinces into five cate-

gories, highest-value area, higher-value area, medium-value area, lower-value area, and lowest-

value area, according to the TM in 2000, 2005, 2010, 2015, and 2018. As shown in Fig 3, (1)

Shanghai and Beijing have long been in the highest-value area and higher-value area of TM.

Tibet, Qinghai, Ningxia, Xinjiang, Inner Mongolia, Gansu, Jilin, Heilongjiang, Hubei, and

Hainan have long been in the lowest-value and lower-value areas. (2) Over time, the number

of provinces in the highest-value area and the higher-value area increased significantly, from 2

provinces in 2000 to 12 provinces in 2018. The number of provinces in the lowest-value area

and lower-value area significantly decreased, from 26 provinces in 2000 to 12 provinces in

2018; the number of provinces in the medium-value area fluctuated randomly, with the fewest

3 in 2000 and the most 13 in 2015. (3) Except for Shanxi, Northwest China has been in the low-

est-value area and the lower-value area for a long time; The TM values in Southwest China

have changed greatly. Chongqing and Guizhou have jumped from the lower-value area to the

higher-value area, and Yunnan has jumped from the low-value area to the medium-value area.

Tibet is relatively stable and has been in the lowest-value area for a long time; South China is

relatively stable, but the average value TM in Guangxi has changed greatly, jumping from the

lower-value area to the higher-value area; The average TM in Central China has been in the

low-value area for a long time. Central China is also relatively stable, and its average TM has

long been located in the lower-value area and the medium-value area. Except for Shanghai,

which has always been in the highest-value area, the initial value of TM in other provinces in
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East China has jumped upward. In the Northeast, Liaoning’s TM has always been in a leading

position, and it has gradually transitioned from a lower-value area to a higher-value area.

However, Jilin and Heilongjiang have always been in the lowest-value area and the lower-value

area, respectively. Changes in TM in North China are diverse. Beijing has long been located in

the highest-value area and higher value area. Inner Mongolia has been in the lowest-value area

for a long time. Hebei is in the lower-value area most of the time. Tianjin and Shanxi changed

greatly and finally jumped to the highest-value area and the higher-value area, respectively.

We use the standard deviation ellipse to identify the direction of TM in each province. As

shown in Fig 3, the lengths of the minor semiaxis and major semiaxis of the ellipse increased

significantly. The growth of the short semiaxis reveals that the degree of dispersion of TM in

China’s provinces is gradually increasing. This result is consistent with the previous analysis

conclusions that TM in some provinces shows a more obvious transition trend, which makes

the overall dispersion of TM increase.

Spatial correlation characteristics of tourism mobility

Global spatial autocorrelation of tourism mobility. We use ArcGIS 10.8 to calculate the

global Moran’s I of TM for 2000–2018, and the results are shown in the table below (Table 2).

The global Moran’s I values from 2000 to 2018 were all positive, and the results from 2000 to

2015 were not significant, and the results from 2016 to 2018 were all significant at the 90%

level. TM presents a significant positive spatial correlation. This shows that provinces with

high TM in China have relatively high TM in their surrounding areas. From the overall trend,

Fig 3. The spatiotemporal pattern and direction distribution of provincial TM. a. 2000, b. 2005, c. 2010, d. 2015, e. 2018.

https://doi.org/10.1371/journal.pone.0275605.g003

Table 2. Global Moran’s I index of TM.

Year Moran’s I Z- value P-value Year Moran’s I Z -value P-value

2000 0.015 0.876 0.381 2010 0.005 0.662 0.508

2001 0.009 0.710 0.478 2011 0.021 0.889 0.374

2002 0.024 0.948 0.343 2012 0.021 0.878 0.380

2003 0.035 1.139 0.255 2013 0.027 0.968 0.333

2004 0.062 1.430 0.153 2014 0.058 1.413 0.158

2005 0.075 1.615 0.106 2015 0.071 1.601 0.109

2006 0.026 0.874 0.382 2016 0.083 1.783 0.075�

2007 0.052 1.239 0.215 2017 0.081 1.745 0.081�

2008 0.063 1.409 0.159 2018 0.076 1.671 0.095�

2009 0.020 0.796 0.426

https://doi.org/10.1371/journal.pone.0275605.t002
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the spatial correlation degree of China’s TM has gradually increased, but its value has not

exceeded 0.1, indicating that the spatial agglomeration effect of China’s TM is still weak.

Local spatial autocorrelation cluster of tourism mobility. The global Moran’s I cannot

reflect the spatial correlation exhibited by local regions or individual provinces. We further use

ArcGIS 10.8 to draw the LISA cluster diagram for 2000, 2005, 2010, 2015, and 2018 (Fig 4).

The research samples are divided into four types of agglomeration: provinces with high TM

are surrounded by provinces with high TM (H-H agglomeration), provinces with high TM are

surrounded by provinces with low TM (H-L agglomeration), provinces with low TM are sur-

rounded by provinces with high TM (L-H agglomeration), and provinces with low TM are sur-

rounded by provinces with low TM (L-L agglomeration).

The results show that (1) provinces with H-H aggregation of TM in different periods are rel-

atively stable; L-L and L-H aggregation types are stable but mixed with changes; The H-L aggre-

gation type does not appear, which indicates that there is no "darkness under the light" area for

China’s provincial TM. Provinces with high TM can improve the TM of weekly provinces to a

certain extent. (2) The H-H agglomeration is mainly concentrated in Jiangsu and Zhejiang.

These regions are economically developed and have high per capita discretionary income.

Moreover, the tourism infrastructure in these regions is more complete than that in other

regions, and the tourist reception scale is also higher, so their TM shows a high local concentra-

tion. (3) The L-L agglomeration types are mainly distributed in geographically remote areas

such as Qinghai, Tibet, Gansu, and Xinjiang in inland China. Moreover, Xinjiang and Gansu

temporarily withdraw from the L-L agglomeration area. The main reason for this pattern is that

the transportation infrastructure in the areas above mentioned is relatively underdeveloped.

The "space-time compression effect" brought about by the rapid development of China’s trans-

portation is not significant. Furthermore, due to the distance from the main tourist source mar-

kets, although the TM shows a high growth rate, it is still in the lowest-value area and the lower-

value area for a long time. (4) L-H agglomeration is mainly transferred in Anhui, Shandong and

Hebei, and these provinces are located in the “Leading Area”. The average value of TM in the

surrounding provinces is generally high, forming a "collapse area" for TM.

The impact of tourism mobility on tourism economic growth

Spatial autocorrelation of tourism economic growth

In this study, a Monte Carlo simulation was selected to analyze the spatial autocorrelation of TEG

(Table 3). Moran’s I was positive from 2000 to 2018. They passed the significance test of different

Fig 4. LISA clustering results of TM. a. 2000, b. 2005, c. 2010, d. 2015, e. 2018.

https://doi.org/10.1371/journal.pone.0275605.g004
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degrees except in 2006, indicating that TEG has a significant positive spatial correlation. Therefore, a

spatial econometric model should be selected to analyze the influencing factors of TEG.

Traditional panel data model

The unit root test using LLC and Fisher showed no unit root for TEG, TM, TH, TP, and TA

(Table 4). The Kao test, Pedroni test, and Westerlund test were used to determine the cointe-

gration relationship between the variables. The test results showed a cointegration relation-

ship, indicating that the data can be used for modeling.

In terms of the regression model, the BP Lagrangian test results show the rejection of the

mixed model. Wooldridge and Wald’s test indicates the presence of heteroskedasticity and

autocorrelation in the data. The presence of heteroskedasticity would lead to an increase in the

variance of the model parameters and invalidate the Hausman test results. If the regression is

still performed using the method without heteroskedasticity, it will undermine the validity of

the t-test and F-test, while autocorrelation will exaggerate the significance of the parameters.

Therefore, the panel model is selected by the over-identification test (Hausman test result is

significant), and the result shows that the Sargan-Hansen statistic is 14.32 and significant, so

fixed effect modeling should be selected.

Table 3. Moran’s I index of TEG.

Year Moran’s I Z-Score P-Score Year Moran’s I Z-Score P-Score

2000 0.117 1.405 0.086� 2010 0.317 3.177 0.005���

2001 0.113 1.406 0.087� 2011 0.307 2.989 0.007���

2002 0.110 1.233 0.083� 2012 0.241 2.401 0.009���

2003 0.109 1.428 0.080� 2013 0.215 2.312 0.017��

2004 0.117 1.335 0.086� 2014 0.234 2.273 0.006���

2005 0.118 1.455 0.082� 2015 0.249 2.535 0.008���

2006 0.105 1.188 0.101 2016 0.262 2.666 0.007���

2007 0.101 1.210 0.100� 2017 0.324 3.147 0.002���

2008 0.111 1.302 0.096� 2018 0.349 3.506 0.001���

2009 0.281 2.793 0.008���

Note

���, ��, � indicate passing the significance test at the 1%, 5%, and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0275605.t003

Table 4. Results of stationarity test.

Unit root test TEG TM TP TH TA
LLC test -4.6610��� -19.0978��� -4.1181��� -6.8463��� -9.0320���

Fisher test 139.3618��� 86.8109�� 88.8039�� 98.7588��� 92.5520���

Cointegration tests

Kao test Pedron test Westerlund test

Modified Dickey-Fuller t -2.0376�� Modified Phillips-Perron t 5.6168�� Variance ratio 2.6208���

Dickey-Fuller t -3.5593��� Phillips-Perron t -7.6942���

Augmented Dickey-Fuller t -2.2142��

Unadjusted modified Dickey-Fuller t -2.6291��� Augmented Dickey-Fuller t -4.7115���

Unadjusted Dickey-Fuller t -3.8579���

Note

���, ��, � indicate passing the significance test at the 1%, 5%, and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0275605.t004
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To further address heteroskedasticity and autocorrelation, this study uses Driscoll-Kraay

standard errors for regression. The results in Table 5 show a significant positive effect of each

variable on TEG, where each 1% increase in TM will promote 0.62% growth in the tourism

economy.

Spatial panel data model

In this paper, the specific form of the spatial panel data model was determined by LM-LAG

and LM-ERROR tests. If the result of LM-lag is significant and LM-error is not significant,

then SLM should be used, and vice versa, SEM should be used. If LM-lag and LM-error statis-

tics are significant, it indicates that the spatial correlation of the lag term and the spatial corre-

lation of the residuals should be considered. In this case, the SDM can be used to set the

model. Subsequently, this study determined whether the SDM model would degenerate into

SLM or SEM by Wald and LR tests, and the results showed that all passed the significance test.

Meanwhile, the test results of LM-lag, LM-error, LM-lag (robust), and LM-error (robust) were

significant (Table 6), indicating that the model set using SDM has a certain rationality.

We selected the regression model through the Hausman test, and the result showed that the

value was 19.31, and the corresponding probability value was 0.007, which indicated that the

null hypothesis of random effect was rejected. Therefore, the fixed-effect model was selected

for regression analysis. Table 7 shows the estimation results, where ρ rejects the original

hypothesis only in the Spatio-temporal fixed-effects model. Therefore, this paper provides a

Table 5. Regression test results.

Variables Fixed effects model Random effects model

Coefficients Driscoll-Kraay standard errors Coefficients Driscoll-Kraay standard errors

LnTM 0.6186��� 0.0341 0.4525 0.3299

LnTP 0.2341��� 0.0308 0.5849��� 0.0370

LnTH 0.3276��� 0.0526 0.4335��� 0.0625

LnTA 0.5250��� 0.0197 0.0102 0.0230

_cons –9.3119��� 0.1385 –3.0771�� 1.2723

R-squared 0.9441 0.9234

F-score 6982.81��� Wald test 5040.52���

F-test 25.25��� Hausman Test 26.68���

Wooldridge test 5.692�� Wald test 19391.36���

Sargan–Hansen test 14.32��� BP Lagrange multiplier test 433.09���

Note

���, ��, � indicate significance at the 1%, 5%, and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0275605.t005

Table 6. Tests of the spatial panel data model.

Statistical quantities Value Statistical quantities Value

LM-lag 1355.52��� LR-lag 42.17���

LM-error 3519.48��� LR-error 126.61���

LM-lag (robust) 6294.22��� Wald-lag 42.58���

LM-error (robust) 8458.17��� Wald-error 48.83��

Note

���, ��indicate passing the significance test at the 1% and 5% levels, respectively.

https://doi.org/10.1371/journal.pone.0275605.t006
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specific analysis of the Spatio-temporal fixed-effects model. The regression results indicate that

TM shows a significant positive effect on regional TEG.

According to the results and spatial effect decomposition (Table 8), ρ is -0.559, indicating

that the growth of the tourism economy in neighboring provinces will have a negative impact

on the local area. The direct effect of TM is significant, indicating that TM will promote TEG.

However, the indirect effect results show that the increase in TM in neighboring provinces will

have a negative impact on the local TEG.

Decomposition of the influencing factors by LMDI. We decompose the influencing fac-

tors and analyze their contribution trend. Table 9 shows the specific contribution of each influ-

encing factor to the TEG in the seven regions.

ΔT increases from 15.41% in 2000~2005 to 22.55% (2005~2010), and then decreases to

9.35% in 2010~2015 and 7.01% in 2015~2018. Overall, the ΔT showed a downward trend, but

it is still an important factor in promoting TEG. The average contribution rate of the ΔT from

2000 to 2018 reached 14.82%.

ΔI maintained an overall downward trend during 2000 ~2018. It gradually decreased from

31.42% (2000~2005) to 22.94% (2015~2018). In contrast, the added-value of tertiary industry

per capita increases from 3653 yuan to 34,969 yuan in the same period, indicating that the con-

tribution of tertiary industry to TEG continues to decline, and tourism is gradually decoupled

from the development of the tertiary industry.

ΔS maintained an overall upward trend during 2000~2018, from 7.09% (2000~2005) to

14.67% (2015~2018). The overall contribution rate was 11.50%, indicating that increasing the

proportion of the tertiary industry in tourism can promote TEG.

Table 7. Estimation results of SDM.

Variables Spatial fixed effects Temporal fixed effects Spatio-temporal fixed effects

LnMobility 0.512��� 0.352��� 0.482���

LnTP –0.020 0.635��� –0.032

LnTH 0.114 0.348��� 0.140��

LnTA 0.263��� 0.055� 0.264��

Wx LnTM –0.400�� 0.843��� –0.449

Wx LnTP 0.506� 0.286 0.993���

Wx LnTH 1.081��� 0.577�� 1.693���

Wx LnTA –0.129 –0.655��� –0.215

R2 0.9604 0.900 0.9602

Spatial rho –0.102 –0.641 –0.559���

Variance sigma2_e 0.030��� 0.100��� 0.031���

Note

���, ��, � indicate significance at the 1%, 5%, and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0275605.t007

Table 8. Decomposed spatial effects of SDM.

Variables Direct effect Indirect effect Total effect

LnTM 0.497��� –0.486� 0.011

LnTP –0.051 0.685��� 0.634���

LnTH 0.104� 1.100��� 1.204���

LnTA 0.275��� –0.241 0.035

Note

���, � indicate passing the significance test at the 1% and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0275605.t008
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ΔR shows a negative effect on TEG, and the degree of adverse effect increases slowly from

26.22% to 27.67%. The overall contribution rate was 28.67%. Reception is defined as the ratio

of the resident population to the number of tourists. This shows that on the premise that the

permanent resident population remains basically unchanged, the contribution to TEG can be

effectively increased by expanding the scale of tourists.

Discussion

Regression results of tourism mobility on tourism economic growth

This study briefly analyzes the regression results of the traditional and spatial panel data

model. However, the spatial autocorrelation test results of TEG show an overall trend of fluctu-

ating and increasing spatial correlation, especially with 2009 as the abrupt change point and a

significant increase in the degree of agglomeration. Therefore, the article discusses the results

of the spatial panel data model in detail, and the primary purpose of analyzing the traditional

panel data model is to compare it with the spatial econometric results.

Table 9. Contribution rate of factors influencing regional TEG.

Time period Factors North

China

Northeast

China

East

China

Central

China

South

China

Southwest

China

Northwest

China

Nationwide

2000~2005 ΔTM 15.76% 14.84% 6.35% 3.95% 21.23% 17.87% 11.19% 12.54%

ΔT 10.16% 11.75% 21.44% 20.95% 7.01% 11.58% 19.95% 15.41%

ΔI 35.89% 26.88% 29.48% 36.28% 37.86% 28.57% 28.48% 31.42%

ΔS 1.76% 20.29% 9.02% 3.99% -6.94% 10.16% 8.99% 7.09%

ΔR -23.09% -26.24% -25.13% -25.52% -26.12% -28.71% -28.88% -26.22%

2005~2010 ΔTM –0.49% 17.41% 7.13% 3.21% 13.33% 7.27% 8.46% 7.35%

ΔT 26.00% 14.29% 23.40% 24.65% 18.20% 24.22% 22.53% 22.55%

ΔI 38.57% 23.43% 28.61% 21.69% 30.61% 24.63% 28.97% 28.66%

ΔS 0.08% 13.68% 10.29% 20.83% 0.64% 10.78% 10.37% 9.15%

ΔR -17.25% -31.18% -28.49% -27.56% -29.49% -31.09% -29.26% -27.49%

2010~2015 ΔTM 26.47% -1.81% 22.39% 24.67% 21.74% 18.64% 16.93% 19.38%

ΔT 5.98% 10.47% 7.47% 7.27% 9.43% 12.45% 12.77% 9.35%

ΔI 23.73% 36.18% 28.55% 29.36% 25.01% 25.94% 26.25% 27.46%

ΔS 14.19% –3.96% 5.48% 6.77% 14.38% 12.42% 16.08% 9.79%

ΔR -28.85% -8.71% -28.48% -31.15% -29.45% -29.85% -27.98% -27.12%

2015~2018 ΔTM 25.19% 27.07% 25.66% 21.80% 0.42% 16.34% 28.53% 21.87%

ΔT 4.86% 5.34% 4.73% 8.61% 9.44% 13.65% 4.32% 7.01%

ΔI 24.02% 13.12% 30.57% 28.73% 19.70% 23.41% 15.06% 22.94%

ΔS 13.49% 21.26% 9.39% 10.02% 10.73% 18.48% 20.61% 14.67%

ΔR -29.64% -33.20% -28.61% -29.39% -7.86% -28.11% -31.48% -27.67%

Overall contribution through

2000~2018

ΔTM 17.53% 16.99% 14.66% 11.96% 17.92% 15.58% 15.98% 15.76%

ΔT 12.01% 12.19% 16.15% 17.44% 13.85% 15.75% 15.40% 14.82%

ΔI 31.15% 26.95% 28.89% 28.00% 33.53% 25.03% 25.00% 28.18%

ΔS 7.33% 14.84% 11.69% 13.60% 5.56% 13.22% 13.97% 11.50%

ΔR -25.30% -29.03% -28.61% -29.01% -29.14% -30.43% -29.64% -28.67%

ΔTM declined from 12.54% (2000~2005) to 7.35% (2005~2010), increased to 19.38% (2010~2015), and then reached 21.87% (2015~2018). The contribution of TM to

TEG is stable at 14.66%~17.92%, except for Central China (11.96%), with an overall contribution of 15.76%, indicating that TM has a catalytic effect on TEG, and

enhancing TM is a crucial way to promote tourism development.

https://doi.org/10.1371/journal.pone.0275605.t009
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The regression results of the spatial econometric model show that both TM and TA have a

significant positive impact on TEG, which verifies the hypothesis we proposed above. This

result is also consistent with Wu et al. [93] and Perboli et al. [94]. In contrast, TP and TH have

no significant impact on TEG. However, previous studies have also shown that the spatial spill-

over effect of tourism can significantly affect the TEG [27–29]. Therefore, the impact of TP

and TH on TEG remains to be further confirmed.

According to the decomposition results, TM will promote the growth of the local tourism

economy but will have a negative impact on neighboring provinces, which indicates a more

obvious competition in tourism development among provinces. The increase in mobility in a

particular place under a given number of tourists will lead to a diversion of tourists, which will

have a negative impact on neighboring regions. Therefore, the tourism industry should also

pay attention to the competitive situation in the surrounding areas. The development of tour-

ism focus not only on improving local tourism mobility but also on neighboring areas. Both

TP and TH manifest substantial spatial spillover effects. The increase in TP and TH in neigh-

boring areas will produce positive effects, making local areas attach importance to the develop-

ment of tourism resources and enhancing tourism attraction. TA has a significant positive

contribution to TEG, which is consistent with the conclusion of Yang and Wong [27]. How-

ever, the spatial spillover effects of TA on TEG are not significant, which may be related to the

fact that air traffic does not depend on adjacent spaces.

Analysis of influencing factors’ contribution rate to tourism economic

growth

TM and ΔTM. The ΔTM in North, Central, Southwest, and South China all show a trend

of "falling and rising." It should be noted that the ΔTM in North China was negative from 2005

to 2010, mainly due to the significant decline in TM in Tianjin and Hebei. The improvement

in the transportation infrastructure has a significant impact on TM in Central and Southwest

China. The opening of high-speed railroads is a fundamental reason for the fluctuation in

ΔTM. For South China, due to the implementation of the overnight visitor count statistics in

the tourism statistics system of Guangdong in 2015~2018, the number of tourists decreased

significantly compared to 2010~2015, which in turn led to a significant weakening of the

ΔTM. In contrast to the regions mentioned above, the ΔTM in Northeast China shows a trend

of "rising and falling" changes. From 2010 to 2015, the contribution of TM to TEG in North-

east China declined and was negative. The main reason is the overall decline of the regional

economy in the Northeast region at this stage. In 2014 and 2015, the GDP growth rates of

Northeast China were 4.23% and -0.84%, respectively, ranking second and last among the

seven regions in China during the same period. At the same time, the Northeast region began

to carry out statistical "squeeze water" at this stage, which caused obvious fluctuations in the

scale of tourists. Therefore, the downturn in the regional economic environment and stricter

tourism statistics have negatively affected the contribution of tourism mobility to tourism eco-

nomic growth. However, since 2016, China has put forward the " all-for-one tourism" policy.

Provinces began to pay more attention to the role of tourism in regional economic growth.

All-for-one tourism policies and new management systems have led to the continuous

improvement of TM in Northeast China from 2015 to 2018, and the contribution to TEG has

increased significantly compared with 2010–2015. The ΔTM in East China gradually increased

from 6.35% to 25.66%, which is related to the opening of the high-speed railroad network in

2010, leading to a significant increase in TM. Northwest China has made the tourism industry

a key point for economic growth, and its tourist reception and transportation construction lev-

els have been rapidly improved under the impetus of the all-for-one tourism strategy.
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Traffic and ΔT. The contribution of ΔT to TEG generally shows a downward trend. How-

ever, during the same period, Traffic showed a gradual upward trend. In 2018, it increased by

258.72% compared with 2000. Among them, it increased by 35.61% from 2000 to 2005,

increased by 91.36% from 2005 to 2010, increased by 24.83% from 2010 to 2015, and increased

by 10.73% from 2015 to 2018. From this, it can be judged that there may be a "threshold" in the

transportation infrastructure. When the stock of transportation infrastructure in China

reaches a certain level, the accumulation of transportation infrastructure cannot improve the

contribution to the TEG. The role of transportation infrastructure in influencing tourists’ deci-

sions and determining TM cannot be ignored. However, its contribution rate gradually

decreases as transportation facilities are gradually improved and regional accessibility differ-

ences narrow. The ΔT is 14.82% during the examination period, in which the contribution rate

of Traffic to TEG in East China (16.15%), Central China (17.44%), Southwest China (15.75%),

and Northwest China (15.40%) is higher than that in North, Northeast and South China. This

is mainly because Central China and East China are the regions with the largest passenger

turnover in China. From 2000 to 2018, the average passenger turnover in Central China and

East China was 118.988 billion person-kilometers and 84.595 billion person-kilometers,

respectively. The Southwest China and Northwest China are among the regions with the fastest

growth in passenger turnover in China, increasing by 3.13 times and 1.77 times respectively,

ranking first and second in all regions.

Industry and ΔI. The tertiary industry consists of transportation, warehousing and postal

industry, information transmission, real estate industry, financial industry, wholesale and

retail industry, accommodation and catering industry, etc. Tourism is only a part of it. The per

capita added value of the tertiary industry reflects the degree of development of the service

industry in various regions, and this indicator has achieved a relatively large increase in terms

of changing trends. It increased from 3,653 yuan in 2000 to 34,969 yuan, an increase of 8.57

times. The contribution of ΔI to TEG has gradually declined, mainly due to the slowdown in

the growth rate of the per capita added value of the tertiary industry. The growth rate dropped

from 91.30% in 2000–2005 to 34.35% in 2015–2018. The contribution of ΔI to TEG in North

China, South China, Northwest China, and Southwest China is consistent with the national

trend. Northeast China, East China, and Central China show different trends. Especially in the

Northeast region, the contribution of ΔI to TEG has dropped significantly. The overall contri-

bution rate of Industry reached 28.18%, indicating that the quality of tertiary industry develop-

ment has a vital role in promoting TEG. ΔI is generally stable in East and Central China and

declines significantly in Northeast China, which may be related to the deceleration of tertiary

industry development, as the data show that the added-value of tertiary industry per capita in

Liaoning, Heilongjiang, and Jilin increased by 93.04%, 75.15% and 90.43% from 2010 to 2015,

while it only grew by 0.63%, 39.88% and 23.18% from 2015 to 2018. Central China was incon-

sistent with the overall national trend from 2005 to 2010. This is mainly due to the slow

increase in the per capita added value of the tertiary industry during this period, ranking last

in all regions. During this period, the industrial structure of Central China was still dominated

by industry. In 2010, the average industrial added value accounted for 56.37% of GDP, the

highest in all regions of the country. East China was inconsistent with the overall national

trend in 2015–2018. The main reason is that the proportion of the tertiary industry in Fujian

and Jiangxi in the region has not exceeded 50%, and there is a large room for optimization and

improvement of the industrial structure. Therefore, the growth rate of the added value of the

tertiary industry per capita exceeds the previous stage, and the contribution of ΔI to TEG is

still rising.

Structure and ΔS. The share of tertiary industry in tourism in Beijing and Tianjin

increased significantly from 2010 to 2018 compared to 2000, leading to the rapid growth of ΔS
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in North China. The ΔS in Northeast China was -3.96% from 2005 to 2010, mainly since the

growth rate of tertiary industry in Heilongjiang and Liaoning lagged behind that of the tour-

ism industry. The ΔS in East, Central, and Southwest China is relatively stable, indicating that

tourism and tertiary industry maintain a coordinated development. The ΔS in South China

has achieved a shift from negative to positive growth. As the economic volume of Guangdong

accounts for a large proportion in South China and the growth rate of tourism significantly

lags behind the development rate of the tertiary industry, it leads to a low ΔS in South China

from 2000 to 2010. The opening of high-speed rail provides new opportunities for tourism

development, and the ΔS in South China gradually increased to 14.38% and 10.73% in

2010~2018. The ΔS in Northwest China has been increasing, which suggests that the tourism

economy is the primary driver of tertiary industry growth. The continuous growth of the ΔS

contribution to TEG is partially consistent with the findings of Chang et al. [95], De Vita and

Kyaw [96], and Zuo and Huang [97]. The higher Structure is, the greater the contribution of

ΔS to TEG. However, the literature above mentioned also pointed out that ΔS has a turning

point. For example, Zuo and Huang [97] found that this value in China is 8.25%.

Reception and ΔR. The ΔR has a negative impact on TEG. Zuo and Huang [97] used the

ratio of tourist arrivals to the permanent resident population to characterize tourism speciali-

zation in a study evaluating China’s tourism-oriented economic growth. Before reaching the

inflection point of 30.34 (that is, the tourism reception effect value is 0.03), this indicator has a

significant positive impact on TEG. From 2000 to 2018, the tourism reception effect value

dropped from 1.47 to 0.11, still less than 0.03. Therefore, the results of our study also partially

confirm the research of Zuo and Huang [97]. While expanding the scale of tourists, various

regions should also pay attention to the "inflection point" of the Reception value. When the

inflection point is reached, the larger the scale of tourists is, the smaller the contribution to the

TEG. However, the ratio of regional population to tourist decreases from 1.47 to 0.11 during

the period from 2000 to 2018, indicating that not only the number of tourists should be taken

into account, but also the quality of the tourism and the per capita tourism consumption

should be attached importance to the TEG. ΔR is relatively stable, among which the southwest

and northwest China have the most significant negative contribution to the TEG, indicating

that the growth rate of the number of tourists received in the above regions is higher than that

of other regions.

Conclusions

This paper proposes the concept of TM based on the hydrodynamic equation, constructs an

econometric model of TEG with TM as the core explanatory variable, explores the direct and

indirect effects of TM on TEG, measures the specific contribution of each influencing factor

using the LMDI decomposition, and draws the following conclusions.

1. The TM in China has maintained rapid growth for a long time. However, there are differ-

ences in the rate of growth in different regions. East China and North China are Leading

Area, with the highest average tourism mobility, but the smallest average annual growth

rate; Central China, South China, Northeast China, and Southwest China are Stable Area,

with the middle average TM and average annual growth rate; Northwest China is Potential

Area, which has the smallest average TM, but the largest average annual increase. The TM

in each region only showed a significant positive spatial correlation in 2016–2018. The

space-time pattern is constantly changing over time. The high-value areas and high-value

areas of TM increased significantly, while the low-value areas and low-value areas decreased

significantly. The local spatial autocorrelation results of TM are stable, and various agglom-

eration states are stably distributed in some provinces.
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2. The regression results of the traditional panel data model and the spatial panel data model

both show that TM has a significant positive effect on TEG. Under the premise of consider-

ing the spatial effect, the improvement of TEG in a province by TM will have a negative

impact on the adjacent province.

3. Applying the LMDI decomposition method, the TEG is decomposed into TM, Traffic,
Industry, Structure, and Reception. The results show that the contribution of TM and Struc-

ture to TEG showed an upward trend, with average annual contribution rates of 15.76%

and 11.50%, respectively. It indicates that improving TM is a crucial way to promote tour-

ism development. The contribution of the Traffic and Industry to TEG generally showed a

downward trend, with average annual contribution rates of 14.82% and 28.18%, respec-

tively. The Reception has a negative impact on the TEG, but it is still a positive contribution,

with an average annual contribution rate of 28.67%. The five types of effects of TEG decom-

position were different due to regional differences.

The main contributions of this study are as follows: (1) Based on fluid mechanics, we con-

structed an indicator of TM. We comprehensively consider the impact of tourist arrivals and

transportation infrastructure on TEG, which is rarely proposed by scholars in the literature.

Our research enriches the research on the influencing factors of TEG. (2) We analyze the influ-

ence of TM on TEG based on the econometric model, which highlights the importance of TM.

Moreover, we found that TM has negative spatial overflow.(3) Based on the LMDI method, we

decompose TEG into five major effects, rather than just considering traditional variables such

as human input, capital input, and tourism resource input. Our study further enriches the

research on the influencing factors of TEG.

Based on our findings above, we draw the following policy implications. To improve TEG,

late-developing regions should improve TM by building large-scale tourism transportation

infrastructure, promoting destination marketing to attract tourists, and paying attention to the

possible negative effects of increased TM in neighboring regions. At the same time, the

improvement of TM should be emphasized at different stages. The threshold effect of tourism

transportation infrastructure should also be fully considered. After the transportation infra-

structure reaches a certain stock, its contribution to TEG will decrease. At this time, expanding

the scale of tourists should become the main tourism development policy.

There are still some limitations in this study. It is difficult to directly collect data on the

inflow and outflow of tourist between certain provinces. Therefore, we only select inflow of

tourists as the primary data and do not consider the influence of the tourists’ outflow on TM.

In fact, increased transport accessibility will not only expand the inflow of tourists but also

affect the outflow of tourists. Therefore, the superposition effect of traffic and tourist inflow/

outflow should be considered comprehensively to improve the scientific rationality of TM

measurement. This study lacks comparative studies across multiple countries. The research in

our study may show differentiated findings for developed or less developed countries. When

constructing the econometric model, we mainly consider TM as the core explanatory variable,

and only select human input and capital input, and air traffic related to traffic as control vari-

ables from the perspective of the economic growth model. In the future, the theory and prac-

tice of TM will be further explored with multivariate data to form a more rigorous and

systematic cognitive framework.
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