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Abstract—In the present manuscript we analyzed the influence of hypoxic response in Caco-2 cells on the
expression of genes and miRNAs involved in the mechanisms of intracellular transport of SARS-CoV-2 viral
particles, especially endocytosis and transcytosis. With the use of RNA sequencing of Caco-2 cells treated
with hypoxia-inducing oxyquinoline derivative, we showed two-fold increase in the expression of the main
SARS-CoV-2 receptor ACE2. Expression of the non-canonical receptor TFRC was also elevated. We also
observed a significant increase in the expression levels of genes from the low-density lipoprotein (LDL)
receptor family, which play a crucial role in the transcytosis: LDLR, LRP1, LRP4, and LRP5. Upregulation
of LDLR was coupled with the downregulation of hsa-miR-148a-3p, which can directly bind to LDLR
mRNA. Thus, the hypoxic response in Caco-2 cells includes upregulation of genes involved in the mecha-
nisms of endocytosis and transcytosis of SARS-CoV-2 viral particles.
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Active replication of the SARS-CoV-2 virus in the
intestine may be the cause of gastrointestinal symp-
toms in patients with COVID-19 [1]. It is known that,
in the intestines of a significant proportion of those
who have recovered from COVID-19, viral RNA is
stored in the interval from one week to several months.
Moreover, the long-term presence of viral RNA cor-
relates with digestive disorders, which may be one of
the factors of post-COVID syndrome [2, 3]. Hypoxia
is one of the main inducers of intestinal pathologies,
including inflammation and colorectal cancer [4].
The role of hypoxia in the interactions between SARS-
CoV-2 and intestinal cells has not yet been established.

The main “entrance gate” into the cell for the
SARS-CoV-2 virus particle is the ACE2 receptor,
which is expressed on the surface of epithelial cells in
many organs, including the lungs and intestines [5].
The further fate of the virus may include transcytosis,
allowing the virus to cross the intestinal barrier, which
may have important clinical implications. Previously,
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it was found that one of the most suitable cell models
for studying endocytosis and transcytosis of SARS-
CoV-2 viral particles are Caco-2 cells, which express
all the necessary factors [6].

MicroRNAs are a class of short noncoding RNAs
that downregulate gene expression. Binding of the
microRNA seed region (nucleotides 2–7 from the
5' end of the molecule) to the 3'-untranslated region
(3'-UTR) of the target mRNA leads to mRNA degra-
dation or translation arrest [7, 8]. We have previously
shown that the miR-200 miRNA family suppresses
ACE2 expression [9]. The search for the regulatory
mechanisms for other genes involved in the interac-
tions between SARS-CoV-2 and cells is of great inte-
rest.

In this work, using next-generation sequencing, we
analyzed the expression profile of genes and miRNAs
of differentiated Caco-2 cells under the influence of
an oxyquinoline derivative, which is an inhibitor of
HIF prolyl hydroxylase and mimics hypoxia by stabi-
lizing HIF1A, the main transcription factor induced
by hypoxia [10].

The experiments were performed as described in
[11]. Briefly, Caco-2 cells were obtained from the Rus-
sian Cell Culture Collection (Institute of Cytology of
the Russian Academy of Sciences, St. Petersburg,
Russia) and incubated for 21 days under differentia-
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Table 1. Primers used in real-time PCR and their efficiency

Gene Forward primer Reverse primer Efficiency

ACE2 AGAGAAGTGGAGGTGGATGGTCTTTT GCGGGGTCACAGTATGTTTCATCA 2.10
TFRC GTCCAGACAATCTCCAGAGCTGC TCTGTTTTCCAGTCAGAGGGACAGT 1.97
LDLR CATTGTCTCCCCATCGTGCTC AGCTGTAGCCGTCCTGGTTG 2.06
LRP1 GGCGTCACTTGCTTGGCGAA TGAATCGGTCCGAGGGGCAG 2.08
LRP4 GGGAGTGTGAGGAGGACGAGT TGGCACTGCTGAGGGACAGTTC 1.98
LRP5 TGCGATGACCAGAGCGACGA GCAGGCAGATGGCGTCACAG 1.97
ACTB CTGGAACGGTGAAGGTGACA AAGGGACTTCCTGTAACAACGCA 2.03
tion conditions. The cells were exposed to the oxy-
quinoline derivative 4896–3212 (Research Institute of
Chemical Diversity, Khimki, Russia), 7-((4-(tert-
butyl)phenyl)((4-methylpyridin-2-yl)amino)methyl)qui-
noline-8-ol (for details, see [12]), at a concentration of
5 μM. After 24 h of incubation, the cells were lysed for
further analysis. Three biological replicates were used
in each group (exposure and control). RNA was iso-
lated using the Qiagen miRNeasy Mini Kit (Qiagen,
Hilden, Germany). Libraries for mRNA and
microRNA sequencing were prepared using the Illu-
mina Stranded mRNA Library Prep Kit and the NEB-
Next Multiplex Small RNA Library Prep Kit for Illu-
mina (Illumina, San Diego, United States), respec-
tively. An Illumina NextSeq 550 sequencer was used.

The quality of the original FASTQ sequencing files
was assessed using the FastQC software version 0.11.9
(Babraham Bioinformatics, Cambridge, England),
read adapters were trimmed using cutadapt version 2.10.
Unnormalized mRNA and miRNA expression tables
were generated by mapping sequencing reads with
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Fig. 1. Fold changes in expression levels of ACE2, TFRC,
LDLR, LRP1, LRP4, and LRP5 genes during hypoxic
response in Caco-2 cells. The vertical bars show the stan-
dard deviations calculated with DESeq2 using three exper-
imental and three control samples (FDR < 0.05 for all
genes).
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STAR version 2.7.5b and miRDeep2 version 2.0.1.2,
respectively. The resulting tables were normalized and
filtered using edgeR version 3.30.3, yielding fragments
per kilobase of transcript per million mapped reads
(FPKM) and reads per million mapped reads (RPM)
scales for mRNA and miRNA sequencings, log base 2,
respectively. Analysis of the differential expression of
mRNA and miRNA was performed using DESeq2
version 1.28.1. Changes in expression with a fold
change of at least 1.5 and a false discovery rate (FDR) <
0.05 were considered significant (FDR was calculated
using the Benjamini–Hochberg procedure).

Validation of changes in the expression of key
mRNAs was performed using real-time polymerase
chain reaction with reverse transcription (RT-PCR) as
described in [13]. The sequences of primers used in
experiments are shown in Table 1. Differential expres-
sion according to real-time PCR data was analyzed
using the ΔΔCt method and Student’s t test. ACTB was
used as a reference gene.

The genes involved in the processes of endocytosis
and transcytosis were taken from the Gene Ontology
(GO) database. Functionality enrichment analysis
was performed with the use of the DAVID web service
version 2021 using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) biological pathway database.
MicroRNA targets were predicted using the miRDB
web portal version 6.0.

As a result of comparison of mRNA expression
profiles between the samples with induced hypoxia
and the control cells, 6309 differentially expressed
genes were found. Analysis of the enrichment of the
differentially expressed genes by functional affiliation
revealed a distinct activation of the HIF1A signaling
pathway (KEGG hsa04066, FDR < 0.05) and anaer-
obic glycolysis (KEGG hsa00010, FDR < 0.05),
which is evidence of the induction of a hypoxic
response when Caco-2 cells were treated with oxy-
quinoline. The same analysis did not reveal activation
of pathways associated with possible toxic effects on
cells (in particular, apoptosis and DNA repair). A two-
fold increase in the expression of the ACE2 gene
(FDR < 0.05), which encodes the main receptor for
the SARS-CoV-2 virus, was observed (Fig. 1). In addi-
tion to the canonical receptor, a twofold increase in
6  2022
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Fig. 2. Binding sites for hsa-miR-148a-3p in the 3'-untranslated region of LDLR mRNA. The expanded miRNA seed regions and
the corresponding sites in the mRNA targets are shown in bold.
the expression of mRNA of the TFRC transferrin 1
receptor, which is also capable of binding the SARS-
CoV-2 S protein with subsequent endocytosis of the
viral particle, was detected [14].

When analyzing the differentially expressed genes
encoding the proteins involved in endocytosis and
transcytosis, a statistically significant increase in the
expression level of the genes for the low-density lipo-
protein receptor (LDL) family, including LDLR (fold
change 3.0), LRP1 (fold change 1.6), LRP4 (fold
change 3.7), and LRP5 (fold change 1.5) (see Fig. 1).
One of the well-studied functions of these receptors is
LDL transcytosis through various barriers [15, 16]. It
was previously shown that an increased expression of
the LDLR receptor is a severe course factor in patients
with COVID-19 [17, 18]. The changes in the expres-
sion of ACE2, TFRC, LDLR, LRP1, LRP4, and LRP5
genes were confirmed by real-time PCR: a statistically
significant increase in expression levels (p < 0.05) was
observed for all genes (the fold change in expression,
according to real-time PCR data, was 1–1.7 times
higher than according to RNA sequencing data).

To search for the possible causes for the changes in
gene expression at hypoxic response, we analyzed the
differentially expressed microRNAs whose expression
levels were assessed by sequencing. Two highly
expressed microRNAs with a significant (FDR <
0.05) difference in expression between oxyquinoline-
treated and control cells were hsa-miR-210-3p and
hsa-miR-148a-3p. The expression of hsa-miR-210-3p
increased 1.7 times under the influence of oxyquino-
line, which is another evidence of successful induction
of the hypoxic response: increased expression of hsa-
miR-210-3p is a generally accepted marker of the cel-
lular response to hypoxia [19].

The next microRNA, hsa-miR-148a-3p, ranked
fourth in the absolute expression level among all
microRNAs of the control Caco-2 cells, accounting
for 7% of all sequencing reads. A 1.5-fold decrease in
the hsa-miR-148a-3p microRNA expression level as a
result of the treatment with oxyquinoline was a possi-
ble cause for the increase in the LDLR gene expres-
sion. Namely, the 3′-untranslated region of LDLR
mRNA contained two binding sites for the seed
regions of hsa-miR-148a-3p miRNA of types 7mer-
m8 (complementarity of nucleotides 2–8 from the
DOKLADY
5' end of miRNA) and 8mer (7mer-m8, as well as ade-
nine is located opposite the first nucleotide from the
5' end of the microRNA) (see Fig. 2). Interaction of
hsa-miR-148a-3p and LDLR was confirmed previ-
ously using luciferase reporter constructs [20].

Thus, it was shown that the simulation of hypoxia
with an oxyquinoline derivative in Caco-2 cells is
accompanied by an increased expression of ACE2 and
TFRC genes, encoding receptors capable of binding to
the S-protein of the SARS-CoV-2 virus, as well as an
increased expression of genes for the receptors of the
LDL family, which are involved in the mechanisms of
endocytosis and transcytosis. One of the causes for the
increase in the LDLR gene expression might be a
decrease in the expression level of hsa-miR-148a-3p
miRNA, which can directly bind to LDLR mRNA.
Therefore, intestinal hypoxia may be an unfavorable
factor in COVID-19.

Abbreviations: RT-PCR, real-time polymerase
chain reaction, GO, gene ontology, FDR, false dis-
covery rate, FPKM, fragments per kilobase of tran-
scripts per million mapped, HIF, hypoxia-inducible
factor, KEGG, Kyoto Encyclopedia of Genes and
Genomes, RPM, reads per million mapped reads.
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