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Abstract

Pancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic

shift. That change in metabolism is part of the process of glucose-stimulated insulin secre-

tion and is of particular interest in the context of diabetes. However, we do not fully under-

stand how the coordinated changes in metabolic pathways and metabolite products

influence insulin secretion. In this work, we apply systems biology approaches to develop a

detailed kinetic model of the intracellular central carbon metabolic pathways in pancreatic β-

cells upon stimulation with high levels of glucose. The model is calibrated to published meta-

bolomics datasets for the INS1 823/13 cell line, accurately capturing the measured metabo-

lite fold-changes. We first employed the calibrated mechanistic model to estimate the

stimulated cell’s fluxome. We then used the predicted network fluxes in a data-driven

approach to build a partial least squares regression model. By developing the combined

kinetic and data-driven modeling framework, we gain insights into the link between β-cell

metabolism and glucose-stimulated insulin secretion. The combined modeling framework

was used to predict the effects of common anti-diabetic pharmacological interventions on

metabolite levels, flux through the metabolic network, and insulin secretion. Our simulations

reveal targets that can be modulated to enhance insulin secretion. The model is a promising

tool to contextualize and extend the usefulness of metabolomics data and to predict dynam-

ics and metabolite levels that are difficult to measure in vitro. In addition, the modeling

framework can be applied to identify, explain, and assess novel and clinically-relevant inter-

ventions that may be particularly valuable in diabetes treatment.

Author summary

Diabetes is among the most common chronic illnesses, occurring when the β-cells in the

pancreas are unable to produce enough insulin to properly manage the body’s blood sugar
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levels. β-cells metabolize nutrients to produce energy needed for insulin secretion in

response to high glucose, and there is a potential to harness β-cell metabolism for treating

diabetes. However, β-cell metabolism is not fully characterized. We have developed a

computational modeling framework to better understand the relationship between cellu-

lar metabolism and insulin production in the pancreatic β-cell. With this modeling frame-

work, we are able to simulate metabolic perturbations, such as the knockdown of the

activity of a metabolic enzyme, and predict the effect on the metabolic network and on

insulin production. This work can therefore be applied to investigate, in a time- and cost-

efficient manner, β-cell metabolism and predict effective therapies that target the cell’s

metabolic network.

1. Introduction

Pancreatic β-cells, the predominant cell type in the pancreatic islets of Langerhans, respond to

and tightly regulate the body’s blood glucose levels through insulin secretion. The process of

glucose-stimulated insulin secretion (GSIS) is heavily dependent on the cells’ intracellular

metabolism [1, 2]. Upon stimulation with high glucose levels, glucose is transported into the

cell, causing an increase in glycolysis and oxidative phosphorylation, which lead to an increase

in the cellular ATP/ADP ratio [3]. Increased ATP causes the closure of potassium (K+) chan-

nels and the opening of calcium (Ca2+) channels, which promote the release of insulin. In

order to accomplish this cascade of events, the β-cell has several key glucose-sensing metabolic

steps that are widely considered to be vital to insulin secretion, including a specialized glucose

transporter and the glucokinase reaction [4, 5]. However, there are many additional pathways,

metabolites, and reactions that are purported to be impactful in insulin secretion, depending

on the context [6–10]. Additionally, the way coordinated changes in metabolic pathways and

resulting metabolite pools influence insulin secretion is not fully understood. For these rea-

sons, there is a need to study pancreatic β-cell metabolism at a systems-level, identifying how

sets of metabolic pathways work together to cause the observed biological properties of insu-

lin-secreting pancreatic β-cells.

Given that appropriate secretion of insulin is vital to the successful maintenance of blood

glucose homeostasis, an impaired metabolic state of the β-cell is closely linked to disease pro-

gression [11]. Lowered insulin secretion is correlated with the emergence and severity of Type

2 diabetes [12, 13]. There is significant value in developing a deeper understanding of β-cell

metabolic activity to determine underlying biological processes driving disease progression

and to find novel potential mechanisms to treat the disease. Mass spectrometry-based metabo-

lomics, which enables quantitative measurements of cellular metabolites, has emerged as a way

to analyze the cell’s metabolic condition and thereby elucidate metabolic processes, in both

healthy and diseased conditions. Because measurements of metabolite pool sizes alone do not

give holistic insight into cellular behavior, their utility may be extended by integrating the data

into frameworks that predict transient dynamics, thus linking experimental measurements

with phenotypic understanding [14]. Computational modeling of metabolism is one such

technique that can leverage metabolomics data to predict dynamic behavior. Especially

because the GSIS system is inherently time-dependent, it is valuable to use nonlinear ordinary

differential equation (ODE) models, trained and refined with metabolomics data, to further

our understanding of the mechanisms driving insulin secretion.

Several mathematical models have been developed to understand the relationship between

β-cell metabolism and insulin production. Topp et al. developed a simple three-equation
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model describing the relationships between glucose, insulin, and β-cell mass [15]. Modeling

work by Bertram et el. focused primarily on ATP synthesis from pyruvate [16]. Magnus and

Keizer studied the underlying mechanisms driving calcium cycling in β-cells, while Yugi and

Tomita focused on mitochondrial metabolic activity [17–19]. Fridyland focused on the link

between cellular metabolism and energetic processes such as the maintenance of a mitochon-

drial membrane potential [20]. Jiang et al. built upon many of these works to develop a detailed

kinetic model of glucose-stimulated metabolism in β-cells [21]. However, the Jiang model

lacked several glycolytic metabolites and pathways that may contribute to the activity of pan-

creatic β-cells, and it did not link insulin secretion to the modeled metabolic processes. Thus,

while computational modeling has been used, there is a current need for greater understand-

ing of core central carbon metabolic pathways and how their dynamics correlate to insulin

secretion.

To address this gap in knowledge, we develop a kinetic model of pancreatic β-cell intracel-

lular metabolism, including key β-cell-specific metabolic pathways. We refine and train the

model with published in vitro metabolomics data and assess the impact of metabolic perturba-

tions on the entire network. We also pair predictions from the kinetic model with linear

regression analysis to link metabolic processes with insulin secretion. Our integrative model-

ing approach is therefore a valuable tool to understand the dynamics of GSIS and may inform

future research aimed at treating β-cell dysfunction.

2. Materials and methods

2.1 Model structure and metabolic pathways

We constructed a kinetic model of the central carbon metabolism of the INS1 832/13 pancre-

atic β-cell line by building upon previously published models of intracellular metabolism (Fig

1) [21–23]. The model consists of 56 metabolites and 65 enzyme-catalyzed metabolic reactions

in six primary metabolic pathways: glycolysis, glutaminolysis, the pentose phosphate pathway

(PPP), the tricarboxylic acid (TCA) cycle, the polyol pathway, and electron transport chain

(ETC). These reactions occur in two cellular sub-compartments (cytosol and mitochondria).

By including these central carbon metabolic pathways, the model is significantly more detailed

and expansive than other published models of pancreatic β-cell metabolism. The model is rep-

resented as a series of nonlinear ODEs, characterized with Michaelis-Menten or bi-bi reaction

kinetics, that describe how the concentrations of intracellular metabolites evolve over time in a

pancreatic β-cell [24, 25]. Thus, there is a single ODE for each metabolite included in the

model. Metabolites that are found in both cytosol and mitochondria have separate equations,

allowing for the comparison of concentrations between the two cellular sub-compartments.

The ODEs are implemented in MATLAB and solved with the built-in ode15s differential equa-

tion solver [26]

Glycolysis pathway. Pancreatic β-cells respond to high blood glucose levels by metaboliz-

ing the extracellular glucose, triggering an increase in ATP production, which drives the clo-

sure of K+ channels and the opening of Ca2+ channels, leading to the secretion of insulin [27].

The glycolytic pathway is therefore the primary pathway modulating insulin secretion, as it ini-

tiates the steps allowing for insulin release. The pathway begins with the GLUT2 glucose trans-

porter, which, due to an estimated high Michaelis constant (Km) value, acts as a glucose sensor

[28]. Specifically, the rate of glucose uptake by the GLUT2 enzyme is proportional to extracel-

lular glucose levels, thus modulating the glycolytic flux inside of the cell and the amount of

insulin released [20]. β-cells also express the glucokinase (gk) enzyme (called hexokinase type

IV), which furthers contributes to the cells’ sensitivity to glucose and acts as the rate-control-

ling step in GSIS [29]. The cells show low expression of the lactate dehydrogenase (ldh) enzyme

PLOS COMPUTATIONAL BIOLOGY Computational modeling of pancreatic β-cell metabolism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010555 October 17, 2022 3 / 30

https://doi.org/10.1371/journal.pcbi.1010555


and compensate for the need to manage NAD and NADH levels by increasing the activity of

mitochondrial hydrogen shuttles, which are included in this model [30]. We also include

downstream glycolytic intermediates, such as 2-phosphoglyceric acid (2PG), which have not

previously been incorporated into kinetic models of pancreatic β-cell metabolism. In total, gly-

colysis is represented in the cytosol with 12 metabolites (2PG, 3PG, BPG, DHAP, F6P, FBP,

G3P, G6P, GLC, LAC, PEP, PYR) and 13 reactions (aldo, eno, gapdh, gk, glut, hpi, ldh, mct,
pfk1, pgam, pgk, pyk, and tpi). The glucose transport reaction (glut) and lactate transport reac-

tion (ldh) are metabolic sources or sinks for the model, connecting the intracellular metabo-

lites with the extracellular condition.

Fig 1. Metabolic network. The network of pancreatic beta cell central metabolism consists of 56 metabolites connected via 65 enzyme-

catalyzed reactions, making up glycolysis, glutaminolysis, PPP, TCA Cycle, polyol pathway, the electron transport chain, and shuttles between

the cytoplasm and mitochondria (denoted by the shaded rectangle). For clarity, some metabolites are shown as multiple nodes within a

subcompartment (for example, mitochondrial AKG is shown as two nodes, though they represent the same metabolic species). As part of

model training, we performed a sensitivity analysis, and the reactions whose Vmax values were significantly impactful are colored green. We

compared model predictions of metabolite levels after 60 minutes of stimulation with 2.8 mM glucose, relative to metabolite levels following

60 minutes of stimulation with 16.7 mM, to qualitative shifts in metabolism as reported in the literature, provided in the supplemental

material (S1 Table). The experimental observations are indicated by the left half of the metabolite nodes, and the model predictions are shown

on the right. The model can differentiate between metabolite location (cytosol versus mitochondria), while the mass spectrometry approaches

can only measure the total (pooled) amount of a metabolite; we have outlined those metabolites in orange. The full set of abbreviations and

reaction equations is given in S1 Text.

https://doi.org/10.1371/journal.pcbi.1010555.g001
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Pentose-phosphate pathway. The relationship between the PPP and insulin release is not

fully characterized, as it is relatively inactive in pancreatic β-cells [31]. However, the PPP con-

tributes to the generation of NADPH, which is believed to influence or modulate insulin secre-

tion [32]. Furthermore, PPP metabolites have been observed to increase in abundance

following glucose stimulation [33–35]. We have therefore included the pathway in the model,

with seven metabolites (6PG, E4P, PRPP, R5P, Ru5P, S7P, and X5P) involved in seven meta-

bolic reactions (6pgdh, g6pd, prpps, rpi, ta, tk1, and tk2).
Tricarboxylic acid cycle. TCA intermediates have been linked with GSIS, as a majority of

glucose is converted into pyruvate, which is then utilized in the TCA cycle. In particular, meta-

bolic coupling factors (MCFs) such as glutamate are known to be linked with and amplify

insulin secretion [36–39]. In addition, insulin secretion is likely dependent on cofactors such

as NAD or NADP, which are produced through the TCA cycle [40–42]. The TCA cycle in this

model is composed of 20 metabolites across two compartments. Thirteen are found in the

mitochondria (ACCoA, ALA, AKG, ASP, CIT, FUM, GLU, ICIT, MAL, OAA, PYR, SCOA,

and SUC) and seven are found in the cytosol (AKG, ASP, CIT, GLN, GLU, MAL, and OAA).

Twenty-five metabolic reactions carry out the import and interconversion of those metabolites

(acon, akgd, akgmal, asct2, aspglu, citmal, cly, cs, fum, gls, gluh, got1, got2, gpt, idh, malpi,
mdh1, mdh2, me1, mmalic, pc, pdh, pyrh, scoas, and sdh). The glutamine transport reaction

(asct2) is a metabolic source for the model, connecting the intracellular metabolites with the

extracellular condition.

Polyol pathway. The polyol pathway (also called the aldose reductase pathway) consists of

the production of sorbitol from glucose in the aldose reductase reaction, and the subsequent

conversion of sorbitol to fructose in the sorbitol dehydrogenase reaction [43]. Thus, the path-

way consists of two metabolites (SOR and FRU) and three reactions (aldr, sodh, fruT). The

polyol pathway is relatively inactive in most physiological conditions due to the aldose reduc-

tase reaction’s high Km value and low affinity for glucose [44]. However, this pathway acts as a

mechanism for the processing and elimination of glucose in hyperglycemic conditions, in

order to protect against glucose toxicity [45, 46]. The pathway is therefore of interest within

the context of β-cell stimulation with high glucose levels, though it has never been included in

existing models of β-cells. Additionally, there is substantial value in studying the polyol path-

way within the context of the entire metabolic network being modeled, as the PPP reduces

NADPH that is oxidized by the polyol pathway, leading to a potential metabolic cycle that may

impact insulin secretion [33].

Electron transport chain. In pancreatic β-cells, pyruvate is oxidized in the TCA cycle,

generating NADH and FADH. Those reducing equivalents are then transferred through a set

of electron carriers (the electron transport chain, or ETC), leading to the hyperpolarization of

the mitochondrial membrane. This hyperpolarization changes the cell’s ATP/ADP ratio and

directly influences the release of insulin. The pathway is therefore of particular interest for

understanding β-cell metabolism. The ETC in the kinetic model is composed of six metabolites

(NADH, NAD, Cyt_c3, Cyt_c2, ATP, and ADP), and four reactions (complex1, complex3, com-
plex4, complex5).

Additional model metabolites and reactions. Besides glycolysis, the PPP, TCA

cycle, polyol pathway and ETC, there are other known reactions and metabolites

involved in β-cell metabolism that we have included in the model. Namely, the gssgr reac-

tion interconverts GSSG and GSH, gpx converts GSH to GSSG, ox transports extracellular

oxygen (o2e) into the cell (o2i), dhases interconverts NAD and NADH, ak converts AMP

and ADP into and from 2 ATP molecules, and atpase and oxphos interconvert ADP and Pi

with ATP.
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2.2 Model equations and parameters

We provide a differential-equation based model of pancreatic beta cell metabolism; as such, it

calculates the simulated change in metabolite levels in time, and therefore predicts the dynam-

ics of intracellular metabolites and the activity of metabolic reactions driving those metabolite

changes. The reactions in the metabolic pathways included in the model are simulated with

enzymatic reaction rate expressions, and the majority of the model reaction rate laws and over-

all model structure are derived from Roy and Finley’s model of pancreatic ductal adenocarci-

noma[22]. β-cell-specific enzyme isoforms, such as glucokinase and the glucose transporter,

are taken from the published models of pancreatic β-cells from Jiang and Fridyland [20, 21].

Rate equations for the polyol pathway are taken from Cortassa et al., which simulates cardiac

cell metabolism [23]. Equations for the ETC were also taken from the model published by

Jiang. In total, the model contains 385 parameters, including 96 reaction velocities (Vmax val-

ues). We note that there are more reaction velocities than modeled reactions because some

reactions are reversible and thus have both a forward and reverse Vmax value. To make the

model specific to β-cell metabolism, we fit the Vmax values to published metabolomics data

obtained from the pancreatic β-cell line INS1 832/13, as the reaction velocities often can distin-

guish metabolism between distinct cell types.

We calculated the left null space of the generated model’s stoichiometric matrix (S2 Table)

and therefore determined the model’s conserved metabolite pools. The following pairs of

metabolites were found to be conserved moieties: NADP-NADPH, GSH-GSSG, o2e-o2i, and

mGDP-mGTP. Furthermore, assessing the model stoichiometric matrix shows that the model

is indeed mass balanced, and that all sinks and sources are accounted for.

2.3 Initial conditions

Where available, initial conditions were taken from published studies that quantified intracel-

lular metabolite concentrations in β-cells [21]. The initial values for the metabolites for which

there was no available data were set using Latin Hypercube Sampling [47]. We specified con-

centration ranges based on published measurements of metabolites in other cell types and

sampled 50 sets of initial conditions [48, 49]. The model was fit five times with each set of ini-

tial conditions, and we assessed the model agreement to data; the initial condition set that

allowed for the best match to data was used for the subsequent fitting. This process limited the

number of fitted model parameters to only the Vmax values selected with subsequent sensitivity

analyses (described in section 2.5), thereby avoiding overfitting.

2.4 Data extraction

There have been a range of published mass spectrometry-based experiments aimed at under-

standing the metabolic alterations that occur in INS1 832/13 pancreatic β-cells following stim-

ulation with extracellular glucose. We compiled those studies and extracted the metabolite

fold-changes using the internet-based webplotdigitizer tool [26]. The fold-change in insulin

secretion amount was similarly calculated when available.

In the study published by Spegel et al., β-cells were treated with 2.8 mM glucose for two

hours and then 16.7 mM glucose for 3, 6, 10, and 15 minutes[50]. Metabolite fold-change

amounts were calculated for the 16.7 mM glucose condition relative to the 2.8 mM glucose

condition for 14 metabolites: 2PG, 3PG, AKG, ALA, ASP, CIT, FUM, G3P, LAC, MAL, PEP,

PYR, R5P, and SUC. Insulin was also measured for the same experimental conditions. We

selected the 3- and 10-minute time points as training data for use in model fitting. The 6- and

15-minute time points were withheld from model parameter estimation in order to be used for

validation. Some of the measured metabolites are found in both the cytosol and mitochondria;
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however, they cannot be distinguished via metabolomic analysis. Therefore, we fit the mea-

sured fold-change of the total metabolite pool. We then determined the cytosolic and mito-

chondrial pools separately by accounting for the relative volumes of those components, with

the cytosol assumed to be three times larger than the mitochondria. Thus, we can algebraically

solve for the individual cytosolic and mitochondrial concentrations.

In the work published by Malmgren et al., β-cells were treated with 2.8 mM or 16.7 mM

glucose for 60 minutes [51]. Fold-changes were calculated for insulin and 14 metabolites:

AKG, ALA, ASP, CIT, FUM, G3P, G6P, GLC, GLU, ICIT, LAC, MAL, PYR, and SUC. All of

these measurements were used as training data.

Additionally, Spegel et al., in a 2015 paper, measured metabolite fold changes relative to the

0-minute time point, after treating with 16.7mM glucose [52]. Because those provide data rela-

tive to the initial conditions, we used the measurements to constrain the model and ensure it

reaches a steady state. Data for the following metabolites were used for model training: 2PG,

3PG, AKG, ALA, CIT, F6P, FUM, G6P, ICIT, LAC, MAL, PEP, R5P, and SUC.

Our training data was therefore a combination of the Spegel et al. (3- and 10-minute) data,

Malmgren (60-minute) et al data., and the Spegel et al. (6- and 15-minute) data relative to the

initial time point [50–52]. Altogether, there were a total of 70 individual data points in the

training set. The validation data was comprised of the 6- and 15-minute time points published

by Spegel and coauthors, comprising a total of 28 distinct data points. In addition to those

quantitative data points, data from eleven other published papers were used as qualitative vali-

dation of predicted fold-change direction for metabolites in the model upon treatment with

above-basal glucose levels [33–35, 50–59], shown in Fig A in S1 Supporting Information. All

experimental data used is provided in S2 Table.

2.5 Parameter estimation

In order to properly fit the kinetic model, we first performed an a priori parameter identifiability

analysis. Specifically, we varied each model reaction rate to determine which parameter pairs

may be mathematically correlated to each other and therefore structurally non-identifiable [60,

61]. We found 11 forward or reverse reaction velocities (Vf or Vr parameters) that were corre-

lated to one another, and therefore defined those reaction velocities using equilibrium con-

stants. That is, we set the reverse reaction velocity, VR, to be expressed in terms of the forward

reaction velocity and the equilibrium constant, K, so that Vr = Vf/K. Because of the nonlinear

and dynamic nature of the model, it is possible for any two model parameters to be correlated,

and therefore be structurally unidentifiable; however, for our model, the only parameters found

to be correlated to each other were Vf/Vr pairs for the same reaction. With this process, we

therefore had 85 Vmax parameters available for model fitting and subsequent analyses.

Next, we identified the parameters that should be fit to the training data. The extended Fou-

rier Amplitude Sensitivity Test (eFAST), a variance-based global sensitivity analysis method,

was performed by simulating the same in vitro experimental methods used to collect the meta-

bolomic data [62]. The eFAST method varies model inputs (the 85 Vmax parameters) two

orders of magnitude above and below their baseline values in order to understand the sensitiv-

ity of the model outputs (the metabolite fold-changes). We can therefore identify the most

influential model parameters to fit to experimental data, so that the model can accurately

match the data without overfitting. Based on the eFAST results, we identified 33 influential

model parameters by selecting the parameters that had sensitivity indices above 0.85. By only

fitting the 33 most impactful parameters to the 70 training data points, we could accurately

capture the observed dynamics and adequately constrain the parameter set, while avoiding

overfitting.
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Parameter estimation was then performed via particle swarm optimization (PSO) with the

Parameter Estimation Toolbox (PESTO) in MATLAB (Mathworks, Inc.), minimizing the

weighted sum of squared residuals (WSSR) [63, 64]. In order to fit the data, we computation-

ally simulated the experimental protocols for each dataset described in Section 2.4. PSO is a

stochastic global optimization tool that iteratively updates sets of randomly seeded particles

(parameter sets) to converge upon a single parameter set that minimizes the WSSR. The

WSSR error calculation is similar to the sum of squared residuals (SSR), but each data point is

weighted by its associated standard deviation and magnitude. Weighing by the standard devia-

tion ensures that the fitting algorithm prioritizes high-confidence data points, while weighing

the error function by the data point’s magnitude prevents prioritizing the high fold change

measurements at the expense of the small fold changes. In the PSO protocol, each parameter is

allowed to vary 100 times above and below its initial estimate, and each fitting run carries out

2,000 steps; this limits the computational cost while exploring the total parameter space. One

hundred fitting runs were performed with PSO, and the best parameter sets were selected (a

total of 8 best fits) based on the WSSR. These best fitted parameter values were used for all sub-

sequent analyses and figures. This fitting approach enabled us to fit the entire training dataset

(70 distinct data points, as mentioned in section 2.4) and derive consistent and high confi-

dence parameter sets. A common feature of systems biology models is variability in the esti-

mated parameter values due to the complexity of the model, with multiple parameter sets

being equally capable of describing the system and capturing the observed data. However, per-

forming the PSO multiple times from initial states having different initial concentrations aims

to ensure the parameter estimation has reached a global minimum for the error function.

In order to justify the assumption that the kinetic parameters deemed non-impactful by the

sensitivity analysis were not driving the fitted model’s response, we performed additional

model fits with the entire set of 85 parameters, and found the model performance did not

change substantially. However, we could not ensure parameter identifiability, and could not

obtain a consistent set of parameter values. Therefore, we performed model simulations using

the best fitted parameters from fitting the 32 parameters shown to be influential based on the

eFAST results. We use those best-fit parameter sets for all subsequent analyses.

The fitted model was therefore able to predict metabolite concentrations (in mM) and reac-

tion fluxes (in mM/min) for each modeled species and reaction, respectively. In particular, we

simulate the metabolite fold changes between high (16.7mM) and low (2.8mM) glucose condi-

tions (Figs 1 and 2), and metabolite levels and redaction fluxes upon stimulation with high

extracellular glucose alone (Figs 3 and 4).

2.6 Partial least squares regression

Using the trained kinetic model, we predicted the flux through each of the 65 metabolic reac-

tions over time in 1-minute intervals. We then found the average flux through each reaction

over the time period for which we had metabolomics data (3, 6, 10, 15, or 60 minutes). Thus,

we predicted a single time-averaged flux value for a particular length of glucose stimulation.

The predicted flux values are inputs to a regression analysis, and the corresponding fold-

change amounts for insulin secretion for INS1 832/13 cells stimulated with 16.7 mM glucose

relative to insulin secretion following 2.8 mM glucose from the published studies are outputs

of the regression analysis.

We performed partial least squares regression (PLSR), a multivariate dimensionality reduc-

tion technique that seeks to determine a mathematical correlation between a chosen input vec-

tor with an output measurement of interest [65]. PLSR produces the components, weighted

linear combinations of the inputs, that correlate with the output, and we used the SIMPLS
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algorithm to complete this analysis [66]. The input matrix was 5 rows by 65 columns, with the

columns representing the predicted average flux for each model reaction, and the rows repre-

senting the five time points of interest. The output matrix was 5 rows by 1 column, corre-

sponding to experimentally measured insulin secretion fold-change at the five time points. By

performing partial least squares regression, we specify the relationship between flow of mate-

rial through the metabolic network and insulin released by the β-cell. The 6- and 10-minute

Fig 2. Model fit to relative 16.7/2.8mM glucose experimental data. We trained the model to mass spectrometry data published by Spegel et al. and

Malmgren et al., for the 3-, 10-, and 60-minute time points (gray bars with black outline) for 17 distinct metabolites [51, 52]. Model predictions (blue

bars) match experimental measurements; the error bars represent the standard deviation of model predictions across the eight best-fit parameter sets.

The experimental data for the 6- and 15-minute time points (gray bars with red outline) were withheld as validation data to test the robustness of model

predictions. Predicted fold-changes for metabolites found in both the cytosol and mitochondria are summed together as a total metabolite pool, in order

to compare to the experimental data.

https://doi.org/10.1371/journal.pcbi.1010555.g002
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time points were withheld to be used as validation data, while the 3-, 15-, and 60-minute time

points were used to build the PLSR model. This process was performed using each of the eight

best-fit parameter sets. Thus, all predictions from PLSR analysis are showing the averaged

results across the eight PLSR models. We evaluated the PLSR model fitness with the R2 and

Q2Y values, which range from 0 to 1. The R2 value indicates model agreement to the training

data, termed “goodness of fit”, and the Q2Y value assesses the ability of the model to predict

data not used for training, i.e., “goodness of prediction” [67].

Fig 3. Model fit to experimental data relative to initial state. We trained the model to mass spectrometry data published by Spegel et al. for 14 metabolites (at

16.7mM glucose), relative to the initial 0-minute condition[52]. The experimental data (black triangles for measurement average, bars representing data standard

deviation) are at the 6- and 15-minute timepoints. The model simulations (blue dots for average prediction, blue bars showing standard deviation) demonstrate that

the model reaches a steady state condition, within 200 minutes for most metabolites. Predicted timecourses for all metabolites predicted by the model are shown in

Fig D in S1 Supporting Information.

https://doi.org/10.1371/journal.pcbi.1010555.g003
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We use two quantities calculated in the PLSR analysis to gain biological insight into how

intracellular metabolism influences insulin secretion. The PLSR analysis estimates the variable

importance of projection (VIP) score for each reaction flux. The VIP score quantifies the con-

tribution of each input value to the model predictions. Here, the VIP score identifies the meta-

bolic reactions that are most strongly correlated to insulin secretion. Generally, VIP scores

greater than one indicate influential inputs [68]. In addition, by assessing the PLSR model

weights, we determined the effect that altering flux through the metabolic network would have

on insulin secretion. For example, a negative weight indicates that increasing flux through that

reaction would decrease insulin secretion. The VIP score and weights are unitless quantities.

We also performed PLSR analysis to determine how intermediate time points influence

insulin secretion, to understand the time-dependent nature of the link between metabolism

Fig 4. Predicted steady-state reaction fluxes. We applied the model to predict the flux through each reaction

following stimulation with 16.7mM extracellular glucose. Results are presented as the flux through each model reaction

when the system has reached steady state, using Parameter Set 1 in S5 Table. Flux values are shown as a percentage of

the glucose transport reaction flux. We note that for clarity, some metabolites are shown as multiple nodes within a

subcompartment (for example, mitochondrial AKG is shown as two nodes, though they represent the same metabolic

species).

https://doi.org/10.1371/journal.pcbi.1010555.g004
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and insulin at a higher resolution. In order to accomplish this goal, we again used the meta-

bolic network’s fluxome predicted by the fitted kinetic model of metabolism as an input to a

PLSR model; but this time, at 1-minute intervals for a single time course. For example, the

kinetic model predicted the fluxes through each reaction for the first three minutes of simula-

tion and used this set of three predicted fluxes as inputs to a PLSR model. The fold-change in

the secreted insulin calculated from the experimental data was used as the PLSR output.

Because the PLSR approach requires multiple data points for both its input and output, we

assumed a linear increase in secreted insulin per minute, thus giving the same number of out-

puts (fold-change of insulin secretion calculated per minute from the experimental data) as

inputs (predicted reaction fluxes for each minute). We performed this analysis to determine

the time-dependent relationships between reaction fluxes and insulin secretion over 3, 6, 10,

and 15 minutes. As described above, we used the VIP scores and weights from the PLSR mod-

els to identify the most important reaction fluxes for each one-minute interval within each

time course.

2.7 Kinetic model perturbations

Variation of each model parameter. The kinetic network can be used to predict the

effects of metabolic perturbations on metabolite levels and the fluxes through the metabolic

reactions, thereby giving a prediction of the systems-level response of the cell. Using the fitted

kinetic model, we simulated metabolic perturbations, where we increased and decreased the

rate of each model reaction by a factor of two and assessed the impact of that perturbation on

all modeled metabolites, compared to the unperturbed baseline condition.

Implementation of pharmacological interventions. We selected three anti-diabetic

pharmacological interventions to simulate in the model. Two perturbations are based on exist-

ing agents: metformin, which is the most common drug taken by diabetic patients but whose

impact on β-cells is not fully understood, and agrimony, a medicinal plant believed to act as an

antioxidant in the β-cell. Lastly, we simulated the upregulation of the adenylate kinase (ak)

reaction, which reversibly catalyzes ATP and AMP from two ADP molecules, as that interven-

tion was predicted to be the most beneficial for increasing insulin secretion according to the

PLSR model.

Metformin primarily acts on the peripheral tissues and organs by reducing hepatic glucose

production and increasing skeletal muscle glucose uptake. Together, these effects reduce

hyperglycemia and effectively treat diabetes [69]. It is unclear how or if metformin affects pan-

creatic β-cells in vivo. Lamontagne et al. proposed that metformin drove “metabolic decelera-

tion”, wherein the INS1 β-cell experiences a decrease in glucose-induced insulin secretion,

thereby protecting the cells from hyper-responsiveness or hyperglycemic glucotoxicity and

lipotoxicity [70]. Others have shown that metformin protects against β-cell exhaustion by

reducing the body’s blood glucose levels [26, 71, 72]. To test this hypothesis, we decreased glu-

cose transport into the cell by reducing the Vmax value for the glut reaction by 80%. We then

calculated the effect on metabolites, metabolic fluxes, and insulin secretion, and compared

model predictions to reported metabolomics data when possible.

Agrimony (Agrimonia eupatoria) is a medicinal plant used around the world to treat diabe-

tes, especially in traditional Eastern medicine practices [26, 73]. It has been shown to affect

insulin secretory activity, both in patients and in a pancreatic β-cell line in vitro [74]. It is

believed that agrimony acts as an antioxidant in the β-cell [75]. It is well known that oxidative

stress, induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS), impairs

β-cell activity and is a contributing factor observed in diabetes progression [76–78]. The PPP

is believed to impact the oxidative stress response, as it is a one of the primary NADPH-
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generating pathways. The generation of NADPH in high-glucose conditions is shown to

reduce cell inflammation [26, 79]. Furthermore, an increase in PPP flux shifts the cell metabo-

lism away from ROS-generating pathways, limiting further stress on the cells [80]. To simulate

the action of agrimony, we perturbed the glucose-6-phosphate dehydrogenase (g6pd) reaction

with a five-fold increase of its Vmax value, to simulate overexpression, as g6pd is the primary

upstream controller of PPP activity [81, 82, 87].

Finally, based on results from PLSR modeling, we simulated the effects of perturbing the ak
reaction. We implemented a five-fold reduction in Vmax value and assessed the effect on the

metabolic network as a whole.

3. Results

We developed a kinetic model capable of simulating the dynamics of intracellular metabolism

of the pancreatic β-cell. The model includes key metabolites and reactions involved in glycoly-

sis, glutaminolysis, PPP, TCA cycle, and polyol pathways, with cytosolic and mitochondrial

compartments. The model consists of 58 metabolites and 65 metabolic reactions and was

trained to published mass spectrometry-based metabolomics data sets. The fitted model pre-

dictions were used to create a PLSR model to study the relationship between flux through the

metabolic network and secreted insulin. We then assessed the impact of various metabolic per-

turbations on model predictions.

3.1 Model fitting to training and validation metabolomics data

We developed the model structure to comprise pancreatic β-cell central carbon metabolism,

including isoforms and pathways unique to the β-cell. After performing a parameter identifia-

bility analysis to exclude the forward and reverse reaction velocities that were correlated to

each other, we performed a global sensitivity analysis using the eFAST method, identifying the

influential model parameters to fit to experimental data (Fig B in S1 Supporting Informa-

tion). Finally, we used published metabolomics data and performed PSO in order to find opti-

mal parameter values. We selected the eight best-fit parameter sets based on the error between

model predictions and experimental data. The estimated values for some parameters were con-

sistent, with 10 of the 32 parameters varying less than 10% across the eight best fits (Fig C in

S1 Supporting Information). Interestingly, the Vmax values for several reactions exhibit bimo-

dality across the eight fitted parameter sets, showing multiple regimes that are equally capable

of explaining the data.

The trained model was able to closely match the quantitative fold-change values measured

experimentally for 17 metabolites used for parameter estimation (Fig 2). Furthermore, the

model matched the fold-change data for time points that had been withheld as validation data,

pointing to the ability to successfully predict data not used for model training. This further

establishes the model’s ability to match experimental data. We also compared model predic-

tions to the qualitative direction of the change in metabolite levels upon stimulation with high

glucose, based on literature review. These observed changes are indicated in the coloring of the

nodes in Fig 1 and the squares in Fig A in S1 Supporting Information. Additionally, we per-

formed a statistical analysis on the model fits, comparing each model prediction with its corre-

sponding experimental data with a t-test. Only six of the 99 t-tests (3-minute CIT and

60-minute MAL for the high-glucose relative to low-glucose comparisons, and the 6- and

15-minute 2PG, 15-minute ALA, and 15-minute CIT for the metabolite comparisons relative

to their initial conditions) found a statistically significant difference between the predictions

and data. This analysis indicates that the model predictions match data well. The results from

this statistical analysis are given in the supplement as S3 Table.
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Besides the 17 unique metabolites used for model fitting, the model also predicts the fold-

changes of 31 distinct metabolites. Most metabolites (88%) qualitatively match the experimen-

tal fold-change direction, even metabolites that were not used in training.

The model is also capable of capturing the dynamics of biomarkers known to be important

in GSIS. For example, the models show a 6.2-fold increase in the NADPH/NADP ratio after

stimulation with high glucose for six minutes, as compared to an 8-fold increase reported by

Spegel 2013. This ratio is considered a metabolic coupling factor for insulin and is therefore an

important metric for confidence in the model [83–85]. This demonstrates that the model pre-

dictions are closely aligned with data not used for model training.

In addition to confirming that the model is capable of recreating observed metabolite levels

for multiple glucose stimulation levels, we also wanted to ensure that could capture a steady

state condition. We therefore simulated the model with 16.7mM extracellular glucose for 72

hours to demonstrate that the predicted metabolites do not steadily increase, but approach an

equilibrium condition. We provide the first 600 minutes in Fig 3 and show that the model

metabolites evolve towards a steady state while agreeing well with the experimental data

(shown in black).

We also applied the model to predict the flux distributions of the cell (Fig 4), corresponding

to the steady state conditions attained by the metabolites in Fig 3. Because the metabolite levels

are at steady state, the sum of fluxes into each node of the network equals the fluxes leaving the

node, and the total flux into the system will equal the sum of fluxes out of the network (Fig 4).

The model predicts fluxes in units of mM/min, and we present the flux values relative to glu-

cose import into the cell, thus assigning the glucose transport reaction flux a value of 100 and

allowing all other reaction fluxes to be seen as a percentage of that import flux. This gives

insight into how glucose is utilized in the metabolic network.

Though there is a paucity of experimental data with which to compare the flux predictions,

Cline et al., Shi et al., and Berman et al. have quantitatively measured the activity of various

metabolic reactions in INS1 cells [86–88]. Although we cannot make a close, direct compari-

son given differences in incubation and treatment of the cells, the model predicted fluxes show

a close correspondence with the experimentally measured reaction fluxes (Fig E in S1 Sup-

porting Information). Four out of the five predicted fluxes are within the error of the experi-

mental data, which were not used for model training. Therefore, with both predictions of

metabolite concentrations and reaction fluxes, the model can provide a systems-level under-

standing of the effect of glucose stimulation.

3.2 Partial least squares regression modeling

We developed a PLSR model correlating the reaction fluxes predicted by our calibrated model

to reported insulin secretion. For each of the eight best-fit parameter sets, we predicted the

flux through each reaction for the time period used in the experimental studies. We then per-

formed PLSR analysis with the predicted fluxes as inputs and the measured fold-change in

insulin secretion as outputs. Because each parameter set produced a distinct set of reaction

fluxes, we generated and analyzed eight separate PLSR models. We found that PLSR models

with three PLSR components best represented the data, capturing the majority of the variation

in the outputs (Fig 5A).

The PLSR models agreed well with the experimental data (Fig 5B), both for the data used in

training and data withheld for validation. The average R2 value across the models was 0.95,

and the Q2Y was 0.74. We note that the low Q2Y value is likely due to the low number of time

points used to develop the model, as the Q2Y performance metric assesses how the model

would perform if trained on a subset of the available data and asked to predict the withheld
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data (leave-one-out cross validation). For a PLSR model with a small number of rows in the

input matrix, leaving any data point out can substantially change the model’s predictive

power. Thus, the somewhat low Q2Y value is to be expected. Overall, this data-driven regres-

sion analysis approach reliably predicts the relationship between the flow of material through

the network and the insulin produced.

We used the PLSR models to estimate the VIP scores, identifying the most important reac-

tion fluxes that drive insulin secretion (Fig 5C). The reactions with VIP scores greater than

one are colored red, and the predictions are consistent across the eight models.

Interestingly, several reaction fluxes with a VIP score above that threshold are either

involved in glycolysis (pyk and pgam), the synthesis of energy (oxtransfer and ak) or the con-

version of TCA cycle metabolites (got2, fum, pdh, malpi, and acon). The PLSR model weights

for reactions with VIP scores above 1 (Fig 5D) provide information on whether a reaction is

positively or negatively correlated to insulin secretion, and the strength of that correlation. Ak,

got2, pgk, fum, and acon are negatively correlated in the model, suggesting that knocking down

the reaction will drive an increase in insulin secretion. The pyk, pdh, oxtransfer, acon, and

malpi reactions were positively correlated with released insulin.

We also developed PLSR models at 1-minute time intervals for each short time course indi-

vidually (3, 6, 10, and 15-minutes). We again assessed the importance of each metabolic reac-

tion on insulin produced per minute in a given time period. These results are shown in (Fig 6).

Though the reactions with high VIP scores (pyk, ak, got2, fum, oxtransfer, and acon) are

Fig 5. Partial least squares regression analysis. The PLSR model correlates the predicted flux through each reaction with measured insulin secretion amount

at each time point of interest. Results shown are the average prediction across the PLSR model from each of the eight best-fit parameter sets. (A) Three PLSR

components were used, as they collectively accounted for most of the variance. (B) Model predictions agreed with reported insulin amount, both for time

points used for PLSR model building (3, 10, and 60 minutes, blue circles), and for those held out as validation (6 and 15 minutes, orange circles). Results are

shown as fold-change in insulin secreted for 2.8mM glucose compared to 16.7mM. The PLSR models had an average R2 value of 0.95 and Q2Y value of 0.74.

(C) We assessed the VIP scores for each metabolic reaction flux, shown in increasing order. Reactions with VIP scores greater than one are shown with red

bars. (D) We analyzed the PLSR model weights associated with each reaction flux that were determined to be impactful. The weight shows how a change in flux

value will affect insulin secretion. A positive weight indicates that increasing the flux value will increase insulin secretion.

https://doi.org/10.1371/journal.pcbi.1010555.g005
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consistent between the total treatment time (Fig 5C) and the short time courses, the oxygen

transfer reaction emerges as important in the short term. Interestingly, though the same five

reactions are consistent in the short-term time, the VIP scores differ across the different time

points. Got2 grows increasingly more impactful over time, while fum is most influential during

the initial time points. Overall, the kinetic and PLSR models allow us to predict targets for

modulating intracellular metabolism and insulin secretion.

3.3 Effects of varying each model Vmax value

By combining the kinetic and PLSR models, we linked intracellular metabolism and insulin

secretion. Using the integrated modeling framework, we predict how perturbing metabolic

reactions affects insulin secretion and the whole metabolic network. We knocked down and

increased the Vmax value of each metabolic reaction by a factor of two and assessed the impact

on each metabolite and on insulin secretion. The predicted fold-changes in the metabolite lev-

els compared to the baseline model with no perturbation are shown in Fig 7, for all parameter

values that elicit a change in any prediction.

As expected, increasing a Vmax value led to the opposite effect as decreasing the value for

most reactions, but the amount by which those opposing perturbations affect cellular metabo-

lism is not equal for every reaction velocity. For example, increasing the pyruvate dehydroge-

nase (pdh) reaction causes substantial decreases in TCA cycle intermediates, but decreasing

the rate does not lead to a comparable change in metabolite amounts. Similar trends can be

seen with changing pyruvate carboxylase (pc), the cytosolic malic enzyme (cmalic), and

Fig 6. Short-term time course PLSR models. PLSR models were generated for each shorter time course of interest (3,

6, 10, and 15 minutes), correlating the average flux through each reaction with the insulin produced. The predicted

VIP scores are shown for each time course.

https://doi.org/10.1371/journal.pcbi.1010555.g006

PLOS COMPUTATIONAL BIOLOGY Computational modeling of pancreatic β-cell metabolism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010555 October 17, 2022 16 / 30

https://doi.org/10.1371/journal.pcbi.1010555.g006
https://doi.org/10.1371/journal.pcbi.1010555


glucose-6-phosphate dehydrogenase (g6pd), where the direction of the perturbation substan-

tially and differentially impacts the metabolite levels in one direction more than the other. Per-

turbing some metabolic reactions is only impactful in one direction; for example, increasing

flux through the glucose transport reaction will lead to an increase in S7P, but decreasing that

reaction will have no impact on the metabolite levels.

Considering all of the metabolites in the model, we predict that downstream glycolytic

metabolites (1,3-BPG, 2PG, 3PG, and PEP) are particularly susceptible to perturbations in the

rest of the network, irrespective of the direction of that perturbation. Similarly, mitochondrial

aspartate and glutamate are sensitive to changes in the network, likely due to their ubiquity in

the metabolic processes. In addition, perturbing the glut, pdh, pyk, and pc reactions elicit wide-

spread changes in metabolite levels, suggesting that the reactions are primary control points in

the network that could cause a drastic shift in metabolism if targeted. Interestingly, perturbing

the glucose transporter (glut) impacts the levels of certain TCA cycle metabolites (mitochon-

drial fumarate, malate, oxaloacetate, and aspartate; cytosolic oxaloacetate, malate, α-ketogluta-

rate, and citrate) whether the enzyme Vmax value is increased or decreased. This indicates that

the influx of glucose into the cell exert tight control over metabolic changes, as would be

expected.

Fig 7. Effects of metabolic perturbations. We decreased (left) and increased (right) each reaction Vmax value (y-axis) by a factor of two and assessed the

impact on all metabolites and insulin (x-axis). Metabolites and parameters that did not change or cause any changes, respectively, were excluded from the

figure for better readability. The color bar indicates the effect of the perturbation relative to the base model with no perturbation. Parameter values which were

found to be influential in the PLSR analysis are marked with a star.

https://doi.org/10.1371/journal.pcbi.1010555.g007
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The regression analysis gives complementary information to the kinetic modeling, as it

shows the metabolic reactions that are related to insulin. The VIP scores show which reaction

fluxes correlate to insulin secretion, while the weights show whether those fluxes are positively

or negatively correlated. We increased and decreased each metabolic reaction flux by a factor of

two, and assessed the resulting predicted change in insulin secretion. These results are shown in

the rightmost row of Fig 7. As indicated by the VIP scores and weights from the PLSR model

(Fig 5), increasing the pyk and pdh reaction fluxes are predicted to increase insulin secretion.

Increasing the ak or got2 reaction fluxes leads to a decrease in insulin produced. Interestingly,

reactions with lower VIP scores are also predicted to affect insulin secretion, including the glut,
g6pd, and pc, since adjusting the Vmax value for these reactions affects insulin secretion.

3.4 Effects of metformin on pancreatic β-cell metabolism

Metformin was initially discovered as an antimalarial agent, but has become the leading diabe-

tes drug in use because of its ability to lower blood glucose levels in the body [89]. Metformin

primarily acts on the peripheral tissues and organs, reducing hepatic glucose production and

increasing skeletal muscle glucose uptake. Though it is unclear how or if the drug affects pan-

creatic β-cells, one proposed hypothesis is that it reduces the cells’ uptake of glucose, thereby

acting as a protective mechanism to avoid overactivity and cellular exhaustion [26, 70, 72]. We

tested the effects of metformin with our integrated modeling framework by decreasing the

Vmax value of the glut reaction by 80%. We analyzed the impact on the predicted insulin

amount and the metabolic network (i.e., metabolites and reaction fluxes).

The PLSR model ranked the flux through the glucose transporter as a relatively uninfluen-

tial reaction, with an average VIP score of 0.3. Thus, it is not unexpected that decreasing the

Vmax of the glut reaction does not change the predicted insulin secretion. This is consistent

with the field’s consensus that the availability of glucose, and not its transport rate, is believed

to be the driving factor modulating insulin secretion. This is because the glucose transporter

has a high Km value, which causes its observed “glucose sensing” ability [1, 90].

We then assessed the impact of the simulated perturbation of the glut reaction on the kinetic

model (Fig 8). The predicted metabolite fold-change are given in S4 Table. As expected, we see

a decrease in intracellular glucose levels. Similarly, upstream glycolytic metabolites are predicted

to decrease, as do most PPP and TCA cycle intermediates. Flux through the reactions involving

those metabolite levels is also substantially decreased, compared to the unperturbed system.

Due to the simulated metformin perturbation, the fum, akgmal, and rpi reactions proceed in the

opposite direction compared to the base model. Interestingly, the levels of downstream glyco-

lytic metabolites (1,3-BPG, 3PG, 2PG, and PEP) are predicted to increase due to the simulated

perturbation. This indicates that metformin leads to an accumulation or pooling of those

metabolites. This accumulation is further confirmed by the prediction that flux through the gly-

colytic reactions involving these species (pgk, pgam, eno, and pyk) decreases.

The simulated perturbation of glucose transport also affected some nucleotides, as we see a

reduction in cellular ADP and AMP levels. However, ATP, NAD, NADH, NADP, and

NADPH levels are mostly unchanged. The predicted decrease in ADP and AMP levels is

driven by a decrease in the ak, ox, and dhases reactions, and an increase in the atpase reaction.

Thus, the model predicts that the levels of the high-energy metabolite are robust to perturba-

tions in glucose uptake.

3.5 Predicted effects of agrimony on pancreatic β-cell metabolism

Agrimonia eupatoria (also called church steeples, in the Rosaceae family) is a traditional

medicinal herb used to treat diabetes, as it has been shown to promote insulin secretion [74].
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A common proposed mechanism by which agrimony induces increased insulin release is

through antioxidant activities. It is well understood that diabetes and many other chronic ill-

nesses are mediated through chronic inflammation, often driven by reactive oxygen or nitro-

gen species, which are affected by antioxidants [91–94]. It has been shown that the PPP serves

to reduce inflammatory species, as the pathway drives the production of NADPH in the cell,

which exerts a protective and anti-inflammatory influence on the β-cell [40–42, 79]. To simu-

late the action of agrimony, we perturbed the glucose-6-phosphate dehydrogenase (g6pd) reac-

tion by increasing its flux, to simulate overexpression, as g6pd is the primary upstream

controller of PPP activity.

The PLSR model predicted relatively minor increases in the insulin secretion of the cell (Fig

9), reported by a low VIP score. Though the metabolites and metabolic fluxes in the PPP are

predicted to markedly increase compared to the baseline model condition, the perturbation

caused relatively few other changes in the kinetic metabolic network: the model predicts no

change in the metabolite levels or metabolic reaction fluxes in glycolysis, the TCA cycle, or the

polyol pathway (Fig 9 and S4 Table).

Fig 8. Effect of metformin treatment. We implemented metformin as an 80% knockdown of the glucose transport (glut2) reaction and assessed

the effect on the network, comparing metabolite levels, reaction fluxes, and insulin secretion to the unperturbed condition.

https://doi.org/10.1371/journal.pcbi.1010555.g008
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Additionally, the model predicts that increasing flux through the g6pd reaction does not

substantially affect the levels of energy precursors, ADP, ATP, NADP, NADH, and NAD.

NADPH is the only energy precursor predicted to increase in response to increasing flux

through the g6pd reaction. This indicates that effect of g6pd perturbation is highly specific.

Glutathione (GSH) levels in the cell are also predicted to be affected by the simulated targeting

of g6pd, as NADPH is used to produced GSH in the glutathione reductase (gssgr) reaction.

3.6 Predicted effects of perturbing the ak reaction

The VIP scores and weights calculated in the PLSR analysis indicate the most impactful reac-

tion fluxes involved in pancreatic β-cell metabolism and suggest the direction in which chang-

ing the associated Vmax values would shift insulin secretion. Of the reactions with VIP scores

greater than one, the ak reaction, which converts ATP and AMP into two molecules of ADP,

was predicted to be among the most impactful reactions correlated with insulin. The ak reac-

tion is the primary mechanism by which cells maintain adenine nucleotide homeostasis, and it

affects the AMP-activated protein kinase (AMPK) signaling cascade. The role of AMPK in

Fig 9. Effect of agrimony treatment. We implemented agrimony as a 5-fold increase in the g6pd reaction, and assessed the effect on the network,

comparing metabolite levels, reaction fluxes, and insulin secretion to the unperturbed condition.

https://doi.org/10.1371/journal.pcbi.1010555.g009
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insulin release is disputed, as it has been described both as a positive and a negative regulator

of insulin secretion [95]. However, most published work affirms a link between ak and the

ATP-mediated potassium channels, making the reaction of particular interest in β-cells. Thus,

we reduced the Vmax value for the ak reaction and assessed the effect on the entire metabolic

network.

In our PLSR model, the ak reaction flux is strongly negatively correlated to the secretion of

insulin, as it has a high VIP score and negative weight. Our integrated modeling approach pre-

dicts that a five-fold decrease in the Vmax value for the ak reaction leads to a 1.38-fold increase

in insulin secretion compared to the baseline model. However, decreasing its Vmax is not pre-

dicted to significantly affect metabolites in the kinetic network (Fig F in S1 Supporting Infor-

mation and S4 Table). This may identify ak as a candidate treatment target for diabetes, as it

could be used to increase insulin secretion, without disrupting the homeostasis of the β-cell.

4. Discussion

4.1 Utility of our predictive modeling framework

Computational modeling is a tool by which we can synthesize disparate information and data

to generate novel predictions. In particular, modeling allows us to take a systems-level view of

how individual parts of a metabolic network (i.e., reactions and metabolites) work together to

generate observed behavior. Here, we have developed a predictive kinetic model that is able to

capture the dynamics of metabolism in pancreatic β-cells. The model consists of glycolysis,

glutaminolysis, the PPP, the TCA cycle, polyol pathway, and electron transport chain, building

upon previously published modeling efforts. The model has been trained to and validated with

published qualitative and quantitative metabolomics data from the INS1 832/13 cell line col-

lected in vitro. The calibrated kinetic model predicts metabolite concentrations and reaction

fluxes. It is important to note that the computational model can differentiate between the levels

of metabolites that are found in both the cytosol and mitochondria, whereas the mass spec-

trometry pipeline pools them together and cannot easily discriminate between metabolites in

different cellular sub-compartments. This is a further benefit of the kinetic modeling approach,

as it can investigate the proportion of a metabolite pool in a particular compartment.

We paired the kinetic model with regression analysis. Integrating a kinetic model with a

PLSR model allows us to further analyze systems-level dynamics of the central carbon meta-

bolic network in β-cells and relate the predicted metabolite levels and reaction fluxes to a cellu-

lar-level response (insulin secretion). Though pairing kinetic modeling with data-driven

modeling is a somewhat underutilized approach, it can be used to extend the predictive capa-

bilities of kinetic modeling, thereby gaining novel insights.

The influential reactions predicted by combining kinetic and PLSR models agree with

experimental observations. Our approach predicted that reactions involved in energy synthesis

and TCA cycle activity strongly contribute to insulin secretion. Both of those cellular processes

have been previously implicated with insulin production [26, 96, 97]. The ak reaction was pre-

dicted to be among the most impactful metabolic reaction affecting insulin secretion and to

have a negative correlation with insulin release. It has previously been shown that ak is a nega-

tive regulator of insulin secretion; for example, knocking out ak substantially affected the stim-

ulatory activity of the KATP channels that drive insulin secretion [98–100]. TCA cycle reactions

(namely, got2, fum, and acon) also emerged as impactful. Both mitochondrial and cytosolic

TCA cycle signaling has been implicated with insulin secretion. Got2 has not been studied in

depth in this context, but, interestingly, that reaction is substantially reduced in the β-cells of

neonatal mice. This potentially suggests a link between got2 and insulin secretion, as neonatal

mice fail to show proper glucose responsiveness [101, 102]. Fumarase was predicted to be
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negatively related to insulin secretion; mice with fumarase-deficient β-cells developed diabetes,

suggesting that proper regulation of the β-cell GSIS system is dependent on proper function of

the fum reaction [11, 103]. Similarly, acon was correlated to insulin secretion. Though the

mechanisms are unclear, a possible explanation is that acon activity is influenced by nitric

oxide (NO) damage to the β-cell, which is also heavily involved in the insulin secretory activity

of β-cells [104]. We also predict the importance of the pyruvate kinase enzyme in glycolysis.

This enzyme has a key regulatory role in GSIS, as it is believed to contribute to the regulation

of the signal strength of insulin secretion and the ATP/ADP ratio in the cell. [105, 106].

A goal of our modeling work is to establish a quantitative framework that can be used to

identify novel mechanisms to treat type 2 diabetes, which involves β-cell dysfunction [107,

108]. As a step towards this goal, we perturbed each model reaction and explored in detail the

effect of pharmacologic interventions, both on metabolite levels and fluxes and on insulin

secretion. We thus used the model for hypothesis generation and testing. Additionally, our

modeling framework can identify the time-dependent nature of insulin secretion, as shown by

comparing the overall PLSR model (generated with all five time points) with the short-term

PLSR models generated. We predict that the oxygen transfer reaction is important only in the

short time course. Because pancreatic β-cells utilize mitochondrial metabolism, the cells dem-

onstrate a high oxygen consumption rate. It is notable that the metabolic reaction emerges as

impactful, as this highlights the time-dependent and dynamic nature of β-cell activity and sug-

gests it may be worthwhile to investigate the impact of perturbing the oxygen transport reac-

tions in vivo.

Excitingly, our model predictions of the effects of metabolic perturbations induced by phar-

macologic agents agree with literature evidence. Hasan et al. suppressed pyruvate carboxylase

(pc) reaction activity in INS1 cells and observed that lactate and pyruvate levels increased, and

that malate and citrate levels decreased; our kinetic model agrees with those experimental mea-

surements, as seen in Fig 6 [109]. Guay et al. showed that knockdown of the malic enzyme

caused a decrease in glucose oxidation (the steps converting glucose to pyruvate). Our model

also predicts a decrease in glycolytic intermediates (1,3BPG, 2PG, 3PG, and PEP) upon sup-

pression of malic enzyme [110]. We do find that though MacDonald et al. show the idh knock-

down changing NADPH/NADP ratio, our model does not predict a change in metabolite

levels when idh is decreased [111]. Overall, our model predictions are well supported by exper-

imental results, lending great confidence to the model.

Lamontagne et al. treated INS1 cells with metformin at varying extracellular glucose levels

[70]. They showed that metformin caused a decrease in GSIS at intermediate glucose condi-

tions, which supports the PLSR model’s prediction, as the glucose transporter has a negative,

albeit small, weight, indicating a negative correlation with insulin. Lamontagne and coworkers

also measured metabolite levels following metformin treatment, proposing that the treatment

increased cellular glutamate levels, did not affect the concentrations of metabolites such as

G3P, GSH, GSSG, NAD, or NADH, and attenuated the effect of high glucose levels on TCA

cycle metabolites. Each of those experimental measurements is also seen in our model predic-

tions, suggesting the implemented mechanism (reducing glucose transport) is a promising

hypothesis.

Our model unexpectedly predicted that altering the g6pd reaction (simulating agrimony

supplementation) led to an increase in reduced glutathione (GSH) levels in the cell. Glutathi-

one is among the most well-studied natural antioxidants, capable of preventing cell damage

incurred by reactive oxygen and nitrogen species [112–115]. This emergent and unanticipated

prediction from our model supports the potential utility of agrimony supplementation among

diabetes patients. It is also interesting that the model was able to provide confirmation to a

hypothesis regarding the mechanism of action of agrimony; namely, we predict that agrimony
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targets the g6pd reaction in the PPP. Increased flux through this reaction can cause increased

levels of antioxidants, which reduce cellular inflammation and enable the β-cell to properly

function [31, 116–119].

Increasing the rate of the ak reaction is predicted to decrease insulin secretion without sub-

stantially changing the metabolic network dynamics. This may be due to its involvement in the

AMP-activated protein kinase signaling pathway, which was not included in our modeling

effort but has been shown to influence insulin secretion. Targeting the ak reaction may be of

particular clinical interest, as it can increase insulin production and reduce the hyperglycemic

pressures experienced by patients without affecting the survival of the β-cell. An experimental

drug, bis(adenosine)-5’-pentaphosphate, which targets the ak reaction, has previously been

studied as a vasoconstrictor [26]. Our work suggests that it may be of use in diabetes, repur-

posed to increase insulin secretion. Future work can assess its viability as an anti-diabetic treat-

ment strategy.

4.2 Study Limitations

The model captures the dynamics of pancreatic β-cell metabolism and can be applied to study

clinically relevant interventions. However, we acknowledge some aspects of the computational

model that can be improved up on future work. The model does not account for heterogeneity

within a population of cells and does not consider the metabolic or paracrine interactions

between β-cell and the other islet cells, such as α- or δ-cells. As β-cells can exhibit a different

metabolism depending on interactions with other cells, this would be a relevant direction for

future model expansion. The model is built based upon prior modeling efforts from β-cells

and other cell types. We used experimental data from the INS1 832/13 cell line to make the

reaction velocities specific to the pancreatic β-cell; however, the form of the rate equations can

also be refined based on β-cell-specific data as they become available. We focused on central

carbon metabolism, but there are additional pathways that could be included. For example, the

degradation of free fatty acids is thought to impair insulin secretion in β-cell, and may be of

particular interest in diabetes; this is an avenue for future research. More broadly, future itera-

tions of this work may address these limitations.

5. Conclusions

We present a novel kinetic model that can effectively be used to study the dynamics of central

carbon metabolism in pancreatic β-cells. The model goes beyond existing models and consists

of key pathways and metabolites known to be important in GSIS. The model has been trained

and validated with published data from the INS1 cell line. The model simulates the effects of

metabolic perturbations, predicting the metabolite levels and flux distributions upon knock-

down or upregulation of specific enzymatic reactions. We pair the kinetic model with a data-

driven modeling approach, thereby linking intracellular metabolism to insulin secretion. The

model is a promising step towards effectively using in silico techniques to generate novel

insights into pancreatic β-cells. Thus, our work complements experimental studies and can be

used to identify novel treatment strategies for diabetes.
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