Skip to main content
. 2022 Jul 18;11:e76489. doi: 10.7554/eLife.76489

Table 3. Fitted experimental data of pairs of motoneuron (MN) properties and subsequent normalized final size-related relationships.

For information, the r2, p-value, and the equation A=kaBa are reported for each fitted global dataset. The normalized MN-size dependent relationships A=kcSMNc are mathematically derived from the transformation of the global datasets and from the power trendline fitting of the final datasets (N data points) as described in ‘Methods’. The minimum and maximum values of ka,kc,a, and c defining the 95% confidence interval of the regression are also reported in parenthesis for each global and final dataset. The r2 values reported in this table are consistent with the r2 values obtained when directly fitting the normalized experimental datasets with power regressions (see Appendix 1—table 1).

MN property A=kaBa(normalized global datasets) A=kcSMNc(final MN-size dependent datasets)
A Relationship ka a r2 p-value Reference studies kc c r2 p-value N points
ACV ACV=kaSMNa 4.0
(2.5; 6.4)
0.7
(0.6; 0.8)
0.58 < 10-5 Cullheim, 1978; Kernell and Zwaagstra, 1981; Burke et al., 1982 4.0
(2.5; 6.4)
0.7
(0.6; 0.8)
0.58 < 10-5 109
AHP AHP=kaSMNa 6.1 · 103
(1.2 · 103; 3.2 · 104)
−1.2
(−1.6; −0.8)
0.34 < 10-5 Zwaagstra and Kernell, 1980 2.5 · 104
(1.2 · 104; 5.0 · 104)
−1.5
(−1.7; −1.3)
0.41 < 10-5 492
AHP=kaACVa 1.5 · 104
(7.4 · 103; 2.9 · 104)
−1.4
(−1.5; −1.2)
0.41 < 10-5 Eccles et al., 1958a; Zwaagstra and Kernell, 1980; Gustafsson and Pinter, 1984b; Foehring et al., 1987
R R=kaSMNa 1.5 · 105
(2.7 · 104; 7.9 · 105)
−2.1
(−2.5; −1.7)
0.61 < 10-5 Kernell and Zwaagstra, 1981; Burke et al., 1982 9.6 · 105
(4.1 · 105; 2.3 · 106)
−2.4
(−2.6; −2.2)
0.37 < 10-5 745
R=kaACVa 6.3 · 105
(1.9 · 105; 2.1 · 106)
−2.3
(−2.6; −2.0)
0.38 < 10-5 Kernell, 1966; Burke, 1968; Barrett and Crill, 1974; Kernell and Zwaagstra, 1981; Fleshman et al., 1981; Gustafsson and Pinter, 1984b; Sasaki, 1991
R=kaAHPa 6.2 · 10−1
(4.1 · 10−1; 9.2 · 10−1)
1.1
(0.9; 1.2)
0.65 < 10-5 Gustafsson, 1979; Gustafsson and Pinter, 1984b; Foehring et al., 1987; Pinter and Vanden Noven, 1989; Sasaki, 1991
Ith Ith=kaRa 1.1 · 103
(0.8 · 103; 1.3 · 103)
−1.0
(−1.1; −0.9)
0.37 < 10-5 Kernell, 1966; Fleshman et al., 1981; Gustafsson and Pinter, 1984a; Zengel et al., 1985; Munson et al., 1986; Foehring et al., 1987; Krawitz et al., 2001 9.0 · 10−4
(4.7 · 10−4; 1.7 · 10−3)
2.5
(2.4; 2.7)
0.37 < 10-5 722
Ith=kaACVa 3.2 · 10−6
(1.3 · 10−7; 8.2 · 10−5)
3.7
(3.0; 4.4)
0.37 < 10-5 Kernell and Monster, 1981; Gustafsson and Pinter, 1984a
Ith=kaAHPa 2.5 · 104
(1.3 · 104; 4.8· 104)
−1.7
(−1.9; −1.6)
0.60 < 10-5 Gustafsson and Pinter, 1984a
C C=kaRa 2.4 · 102
(2.0 · 102; 3.9 · 102)
−0.4
(−0.4; −0.3)
0.57 < 10-5 Gustafsson and Pinter, 1984b 1.2
(0.7; 2.0)
1.0
(0.9; 1.2)
0.28 < 10-5 444
C=kaItha 2.9 · 101
(2.4 · 101; 3.5 · 101)
0.3
(0.2; 0.3)
0.51 < 10-5 Gustafsson and Pinter, 1984a
C=kaAHPa 2.8 · 102
(1.8 · 102; 4.4 · 102)
−0.4
(−0.5; −0.3)
0.24 < 10-5 Gustafsson and Pinter, 1984b
C=kaACVa 2.5
(0.7; 8.4)
0.8
(0.5; 1.0)
0.17 < 10-5 Gustafsson and Pinter, 1984b
τ τ=kaRa 8.7
(7.2; 10.6)
0.5
(0.4; 0.6)
0.52 < 10-5 Burke and ten Bruggencate, 1971; Barrett and Crill, 1974; Gustafsson, 1979; Gustafsson and Pinter, 1984b; Zengel et al., 1985; Pinter and Vanden Noven, 1989; Sasaki, 1991 2.6 · 104
(1.5 · 104; 4.5 · 104)
−1.5
(−1.6; −1.4)
0.46 < 10-5 649
τ=kaAHPa 2.2
(1.3; 3.5)
0.8
(0.7; 1.0)
0.63 < 10-5 Gustafsson and Pinter, 1984b
τ=kaItha 2.3 · 102
(1.9 · 102; 2.7 · 102)
−0.4
(−0.5; −0.3)
0.72 < 10-5 Gustafsson and Pinter, 1984a
τ=kaACVa 1.2 · 104
(2.2 · 103; 6.6 · 104)
−1.3
(−1.7; −0.9)
0.30 < 10-5 Gustafsson and Pinter, 1984b