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Evasion of cGAS and TRIM5 defines  
pandemic HIV

Lorena Zuliani-Alvarez    1,7, Morten L. Govasli1, Jane Rasaiyaah1, Chris Monit1,8, 
Stephen O. Perry1,9, Rebecca P. Sumner1, Simon McAlpine-Scott1, 
Claire Dickson    2, K. M. Rifat Faysal2, Laura Hilditch1,10, Richard J. Miles1, 
Frederic Bibollet-Ruche3,4, Beatrice H. Hahn    3,4, Till Boecking    2, 
Nikos Pinotsis    5, Leo C. James    6, David A. Jacques    2   and 
Greg J. Towers    1 

Of the 13 known independent zoonoses of simian immunodeficiency viruses 
to humans, only one, leading to human immunodeficiency virus (HIV) type 
1(M) has become pandemic, causing over 80 million human infections. To 
understand the specific features associated with pandemic human-to-human 
HIV spread, we compared replication of HIV-1(M) with non-pandemic HIV-
(O) and HIV-2 strains in myeloid cell models. We found that non-pandemic 
HIV lineages replicate less well than HIV-1(M) owing to activation of cGAS 
and TRIM5-mediated antiviral responses. We applied phylogenetic and 
X-ray crystallography structural analyses to identify differences between 
pandemic and non-pandemic HIV capsids. We found that genetic reversal 
of two specific amino acid adaptations in HIV-1(M) enables activation of 
TRIM5, cGAS and innate immune responses. We propose a model in which the 
parental lineage of pandemic HIV-1(M) evolved a capsid that prevents cGAS 
and TRIM5 triggering, thereby allowing silent replication in myeloid cells. We 
hypothesize that this capsid adaptation promotes human-to-human spread 
through avoidance of innate immune response activation.

HIV-1 is derived from zoonotic infections from chimpanzees and goril-
las1,2 and HIV-2 from sooty Mangabeys3. Most zoonoses do not lead to 
pandemic levels of human-to-human transmission, with pandemics 
being defined by the WHO (World Health Organization) according 
to both numbers of infections and global proliferation. Indeed, the 
numbers of people infected with non-pandemic HIV-1 are low. For 
example, non-pandemic HIV-1(P) has only been detected in 2 patients, 
HIV-1(N) in fewer than 20 patients and HIV-1(O) in fewer than 100,000 
patients, well below the 80,000,000 infections caused by pandemic 
HIV-1(M). Similarly, the two zoonoses from sooty mangabeys leading 

to HIV-2 A and B have caused fewer than 2,000,000 infections, with 
numbers in decline4,5. HIV-2 C-I have only been detected in single 
patients and HIV-2(F) in only 2 patients from the same geographical 
region6–9. Thus, pandemics are rare and the specific adaptations 
underlying HIV-1(M) pandemicity are poorly understood. Previous 
phylogenetic studies have suggested chance events10, while molec-
ular studies have identified HIV-1(M) Vpu as a uniquely effective 
human tetherin antagonist11,12, and non-POU domain-containing 
octamer-binding protein (NONO) as targeting and inhibiting HIV-2 
capsids but not HIV-1(M)13.
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infection efficiency differences: HIV-1(M) uniquely synthesizes close to 
one molecule of DNA per infectious unit in these cells (Extended Data 
Fig. 1h). Crucially, VSV-G-pseudotyped near-full-length HIV-1(M) clone 
LAI deleted for Envelope (pLAI∆Env) ∆Env39 (labelled LAI) and minimal 
HIV-1(M) R9-based GFP-encoding vector (p8.91 + CSGW40,41, labelled 
R9) gave similar low-level stimulation in MDM and THP-1 (Fig. 1e–h).

cGAS and TRIM5 detect non-pandemic HIV isolates
We hypothesized that innate immune activation by non-pandemic 
viruses reflected greater sensitivity to innate immune sensors. Indeed, 
RNAinterference (RNAi)-mediated depletion of well-characterized 
sensors cGAS and TRIM5 (Fig. 2a) reduced induction of cGAS- and 
TRIM5-specific genes by HIV-2 and HIV-1(O) in MDM. Specifically, induc-
tion of IFIT1, IFIT2 and CXCL10 by HIV-2 and HIV-1(O) was reduced by 
cGAS (Fig. 2b) but not TRIM5 depletion (Fig. 2c). Conversely, induction 
of IL-1β, PTGS2 and IL-8 were reduced by TRIM5 (Fig. 2e) but not cGAS 
depletion (Fig. 2d). We also note that PTGS2, IL-1β and IL-8 were also 
not induced by transfecting DNA, consistent with cGAS insensitivity 
(Fig. 1e,f). As before, pandemic HIV-1(M) induced gene expression 
relatively poorly (Fig. 2b–e).

Sensor-specific gene induction by HIV-2 and HIV-1(O) was con-
firmed in commercial (Invivogen) THP-1 knockout (KO) lines where 
cGAS KO abrogated IFIT1 and IFIT2 induction, but did not particularly 
impact induction of TRIM5-sensitive IL-8 and PTGS2 (Fig. 2f, dark blue 
bars). By contrast, small-interference (siRNA)-mediated depletion of 
TRIM5 in THP-1 (Extended Data Fig. 2a) reduced TRIM5-sensitive IL-8 
and PTGS2 induction, but had little effect on cGAS-sensitive IFIT1 and 
IFIT2 (Fig. 2f, grey bars). Importantly, depleting TRIM5 with siRNA in 
the cGAS KO line (Extended Data Fig. 2a) reduced all inflammatory 
gene expression (Fig. 2f, light blue bars). Mitochondrial anti-viral sig-
nalling protein (MAVS) KO had no impact on innate immune activa-
tion by HIV-2/HIV-1(O) (Extended Data Fig. 2b–e). These data suggest 
that cGAS and TRIM5 independently contribute to the inflammatory 
innate immune response to non-pandemic lentivirus infection in 
macrophages.

Nuclease TREX1 suppresses innate sensing of non- 
pandemic HIV
Depletion of cytoplasmic nuclease TREX1 has been shown to cause 
HIV-1(M) DNA to activate cGAS42,43. This suggests that cGAS detects DNA 
released from prematurely uncoating viral particles if not degraded 
by TREX1. We therefore tested whether TREX1 over-expression 
in THP-1 could degrade the cGAS-activating viral DNA from 
non-pandemic viruses and suppress sensing. In fact, 20-fold TREX1 
mRNA over-expression (Extended Data Fig. 3a) reduced ISG induc-
tion by both HIV-2 and HIV-1(O), consistent with their DNA activating 
innate immune responses (Extended Data Fig. 3b,c). Unexpectedly, 
TREX1 over-expression also reduced HIV-2, but not HIV-1(O) infectiv-
ity (Extended Data Fig. 3d,e), indicating that HIV-2 capsids cannot 
effectively shield viral DNA from high TREX1 levels. This suggests that 
TREX1-sensitive HIV-2 cores are infectious and that HIV-2 and HIV-1(O) 
differ in their uncoating strategies, perhaps regarding timing and loca-
tion, leading to different mechanisms of TREX1 sensitivity.

Genome-free HIV activates TRIM5 and an antiviral state
To assess TRIM5’s contribution to gene induction, we used 
VSV-G-pseudotyped viral-like particles (VLP) produced without 
genomes. As expected, genome-free VLP induced TRIM5-sensitive 
IL-8, IL-1β and PTGS2, but not cGAS-sensitive IFIT1/IFIT2 in THP-1 (Fig. 
3a). To test whether TRIM5 activation induced an antiviral state in THP-
1, we activated TRIM5 using increasing doses of genome-free VLP and 
then infected the same cells 24 h later. We observed dose-dependent 
activation of TRIM5-sensitive NF-kB reporter by HIV-2 and HIV-1(O), but 
very little activation by HIV-1(M) VLPs (Extended Data Fig. 4a). Impor-
tantly, responses to non-pandemic VLP inhibited a second infection by 

The HIV core, built of capsid protein, accommodates and regulates 
viral DNA synthesis14,15, hence we hypothesized that capsid adaptations 
might favour pandemicity by preventing exposure of viral DNA to the 
cytoplasmic innate immune sensor cGAS16–21. HIV capsid is known 
to function as a pathogen-associated molecular pattern (PAMP) and 
may also be differentially recognized by the restriction factor TRIM5 
(ref. 22). HIV-1(M) has been reported to be insensitive to human TRIM5 
because cyclophilin A (CypA) shields incoming HIV-1(M) cores23,24. 
However, simian TRIM5 variants can form a restrictive hexameric cage 
around HIV-1(M) cores, which inhibits viral uncoating and nuclear 
entry25–27. Coordination of TRIM5 trimers at cage vertices facilitates 
TRIM5-mediated K63 linked ubiquitin (Ub) chain synthesis and acti-
vation of AP-1 and NF-kB transcription factors22,28,29. cGAS and TRIM5 
therefore activate pro-inflammatory signalling, which suppresses 
viral replication16,22. We hypothesized that pandemic HIV-1(M) might 
be particularly effective in avoiding innate immune sensing because 
otherwise, early inflammatory responses should limit transmission30. 
We set out to test this hypothesis and report our findings here.

Results
Non-pandemic HIV isolates activate innate immunity
Pandemic HIV-1(M) isolates infect macrophages efficiently in vitro, in 
mouse models and in vivo31–34. Conversely, HIV-2 fails to replicate in 
macrophages and dendritic cells, partly because increased viral DNA 
synthesis due to Vpx-mediated degradation of SAMHD1 is sensed by 
cGAS, followed by innate immune activation17,35,36. We found that neither 
HIV-2 (has Vpx) nor HIV-1(O) (lacks Vpx) can replicate in primary human 
monocyte-derived macrophages (MDM) unless type-I interferon (IFN) 
signalling is suppressed using IFN receptor (IFNAR1) antibody (Ab) (Fig. 
1a–c). However, HIV-1(M) replicated well in MDM, and IFNAR1-Ab had no 
effect on replication (Fig. 1a)31. IFNAR1-Ab also increased single-round 
MDM infection by HIV-2 and HIV-1(O), but not HIV-1(M) (Extended Data 
Fig. 1a). All viruses replicated efficiently in permissive GHOST37 cells, 
demonstrating fitness (Extended Data Fig. 1b). Concordantly, infection 
of MDM with equal genome copies (measured by quantitative PCR 
with reverse transcription (RT-qPCR)) of vesicular stomatitis virus-G 
(VSV-G)-pseudotyped HIV-2 and HIV-1(O) GFP-encoding vectors, hereaf-
ter referred to as HIV-GFP, induced expression of interferon-stimulated 
genes (ISGs) (CCL5, IFIT1, MxA, CXCL10) and pro-inflammatory genes 
(IL-8, IL-1β, PTGS2 and SOD2), with IL-8 and CXCL10 secretion evidenced 
by ELISA (Fig. 1d–f). Despite similar infectivity, equal genome copies 
of HIV-1(M) induced less ISG and cytokine expression, consistent with 
interferon-independent replication in MDM (Fig. 1a,d–f). DNA transfec-
tion and lipopolysaccharide (LPS) treatment acted as positive controls 
for PAMP (Fig. 1e,f).

The striking difference in innate immune activation between pan-
demic and non-pandemic viruses was reproduced upon infection in the 
myeloid cell line model, undifferentiated THP-1 cells (Fig. 1g,h)38. Using 
VSV-G-pseudotyped GFP-encoding vectors and equalizing the amount 
of virus by genome copies (RT-qPCR), we found that HIV-2 and HIV-1(O) 
induced dose-dependent ISG and cytokine expression to higher lev-
els than HIV-1(M), even though HIV-1(M) infection levels were higher 
when using equivalent amounts of viral DNA (Fig. 1g,h). Additionally, 
THP-1 cells harbouring an ISG54 minimal promoter regulated by five 
IFN-stimulated response elements (IRF), or an NF-kB-sensitive reporter, 
were activated to higher levels by HIV-2 and HIV-1(O) compared with 
HIV-1(M) infection (Extended Data Fig. 1c,d). Importantly, measure-
ment of viral DNA synthesis after equalizing genome input revealed 
higher levels of infection but similar levels of reverse transcripts for 
HIV-1(M), also ruling out increased DNA synthesis by HIV-2/HIV-1(O) as 
the reason for increased innate activation (Extended Data Fig. 1e–g). 
Indeed, HIV-1(M) is more efficient in infecting THP-1 cells per reverse 
transcript (Extended Data Fig. 1e–g), suggesting that non-infectious 
HIV-2/HIV-1(O) DNA might activate innate immune responses. Plotting 
reverse transcriptase (RT) products per infected cell also revealed 
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Fig. 1 | HIV activation of innate immune responses in macrophages.  
a–c, Replication of HIV-1(M) (a), HIV-2 (b) or HIV-1(O) (c) isolates in human 
MDM in the presence of interferon α/β receptor (IFNα/β-R) or control antibody 
(CAb). Two-way ANOVA vs CAb, ROD10 P = 0.0001, pSTbx P = 0.0001, ps7312s 
P = 0,0001, RBF206 P = 0.033. d, Single-round infection of MDM with equal 
genome copies of VSV-G-pseudotyped HIV-1(M), HIV-2 and HIV-1(O)-GFP 
measured 48 h post infection. e, Secreted IL-8 and CXCL10 from infections in 
d measured by ELISA 48 h post infection. f, GAPDH-normalized mRNA levels in 
infections from d expressed as fold induction over untreated MDM 24 h post 

infection or after HT-DNA transfection (1 ug ml−1) or LPS stimulation  
(100 ng ml−1). g, Infection of THP-1 cells with equal genome copies of VSV-G-
pseudotyped HIV-1(M), HIV-2 and HIV-1(O)-GFP measured 48 h post infection.  
h, GAPDH-normalized mRNA levels from infections in g expressed as fold 
induction over untreated THP-1 cells 24 h post infection. Mean ± s.d., n = 3 donors 
(a–e) or independent experiments (f–h). Two-tailed unpaired t-test vs untreated 
MDM (d–f), paired t-test vs untreated THP-1 cells (g,h). *P < 0.05, **P < 0.01, 
***P < 0.001. NS, not significant.
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expressed as fold induction over uninfected (mock) samples 24 h post infection 
(mRNA) or 48 h post infection (cytokine) from cells in a. f, GAPDH-normalized 

mRNA levels, expressed as fold induction over uninfected samples, in non-
targeting CRISPR-treated cells (NT-KO) transfected with control siRNA (siCtrl) 
(NT-KO siCtrl), NT-KO siTRIM5, cGAS KO siCtrl or cGAS KO siTRIM5 THP-1 cells 
24 h post infection or after HT-DNA (1 ug ml−1) transfection. Mean ± s.d., n = 3 
independent experiments and donors. Two-tailed unpaired t-test vs untreated 
MDM (b–e), paired t-test vs THP-1 Ctrl vector (f). *P < 0.05, **P < 0.01.
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HIV-2 or HIV-1(O)-GFP (Fig. 3b). Consistent with the failure of HIV-1(M) 
to activate gene expression, HIV-1(M) VLPs did not induce an antiviral 
state (Fig. 3b). Surprisingly, HIV-1(M) was also insensitive to the effects 
of previous exposure to HIV-2 or HIV-1(O) VLPs (Fig. 3b). Thus, TRIM5 
activation induces the expression of antiviral genes, including secre-
tion of IL-1β (Extended Data Fig. 4b) that can restrict non-pandemic 
HIV. Concordantly, pre-treatment of THP-1 with IL-1β or IFN-β reduced 
infection of all viruses but with pandemic HIV-1(M) being notably less 
sensitive, even when target cells were pre-treated (Extended Data Fig. 
4c,d). Importantly, single-round infections with all viruses were much 
less sensitive to IL-1β and IFN treatment when added, for example, 
6 h post infection (Extended Data Fig. 4d), consistent with a model 
in which single-round infections induce cytokines too late to inhibit 
that first round of infection. This is also evidenced by modest rescue 
of single-round infection (GFP expression) of HIV-2 and HIV-1(O) when 
TRIM5 is depleted in macrophages (Extended Data Fig. 4e). We propose 
that sensor activation initiates responses that are more potent against 
later rounds of infection, evidenced by greater inhibition of infection 
when cells are pre-treated with cytokine (Extended Data Fig. 4d).

Lineage-associated adaptation of HIV capsid at position 50
A key role for capsid in determining interferon induction in mac-
rophages was identified by infection with HIV-1(M) chimeras bearing 
HIV-1(O) or HIV-2 capsid (CA), which could only replicate in MDM in 
the presence of IFNAR1-Ab (Fig. 4a), in common with wild type (WT) 
HIV-2/HIV-1(O)(Fig. 1a–c). Importantly, chimeric viruses replicated 
efficiently in GHOST cells, indicating fitness (Extended Data Fig. 5a). 
Previously reported X-ray structures of HIV-1(M) CA hexamers showed 
two distinct conformations with respect to a channel at the 6-fold 
symmetry axis. The beta hairpin structure (BHP) above the channel 
can assume ‘open’ (His12 forms a salt bridge with Asp51) or ‘closed 
positions’ (with a bridging water molecule between His12 and Asp51)
(Fig. 4b)14. Inside the channel, 6 positively charged arginines (R18) 
are hypothesized to mediate electrostatic nucleotide recruitment 
to fuel encapsidated DNA synthesis14,44. HIV-1(O) and HIV-2 conserve 
arginines at the 6-fold symmetry axis14 and similar to HIV-1(M), purified 
recombinant HIV-1(O) hexamer binds deoxy-cytidine tri-phosphate 
(dCTP) with nanomolar dissociation constant (KD) (Extended Data 
Fig. 5b). Conservation of encapsidated DNA synthesis was also sup-
ported by chimeric viral particles with varying proportions of WT and 
Arg-to-Gly mutant CA protein. Increasing mutant CA proportionally 
reduced viral infectivity and DNA synthesis (Extended Data Fig. 5c). 
Indeed, DNA and infection profiles of WT/mutant mixtures were similar 
between HIV-1(O), HIV-2 and HIV-1(ref. 14), supporting conservation of 
the electrostatic channel, nucleotide recruitment and encapsidated 
DNA synthesis mechanisms.

Although capsids are broadly conserved, we investigated 
the potential for functional differences between pandemic and 
non-pandemic capsids using structural and evolutionary approaches. 
Chromaclade colours maximum-likelihood phylogenetic trees accord-
ing to the amino acid present at each position in the alignment to 
highlight lineage-defining amino acids45. The coloured tree for CA 
position 50 (Fig. 4c) stood out because the amino acid at this position 
defines the pandemic lineage, with HIV-1(M) and its chimpanzee parent 
(SIVcpzPtt) uniquely harbouring glutamine (Q). SIV from red-capped 
mangabeys (SIVrcm) (the parent providing capsid to SIVcpzPtt46), 
SIVgor and HIV-1(O) all contain tyrosine (Y) at CA position 50, consist-
ent with tyrosine being the ancestral state and Y50Q occurring in 
chimpanzees (Fig. 4c). Tyrosine is highly conserved in SIVsmm and 
maintained in HIV-2 (see PSSM Supplementary Table 1), supporting the 
notion that it is ancestral. Importantly, Y50Q requires two nucleotide 
changes (UAY to CAR) consistent with adaptive change. Strikingly, the 
two non-pandemic HIV-1(P) isolates both encode CA50D6, whereas 
HIV-1(N) isolates variously encode CA50S, (n = 6), CA50A (n = 2) or 
CA50G (n = 1), again requiring two nucleotide substitutions from the 

ancestral Q50. These examples suggest different evolutionary path-
ways for CA50 adaptation in the different lineages.

Capsid X-ray structures reveal conformational adaptation
We solved the crystal structures of HIV-1(O) hexamers to 3 Å and found 
that unlike HIV-1(M), it exclusively adopted an ‘open’ channel conforma-
tion (Fig. 4e). Comparison of HIV-1(M) and HIV-1(O) hexamers explains 
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Fig. 4 | Pandemic-associated adaptation of HIV capsid at position 50. 
a, Replication of HIV-1(M) NL4.3 (BalEnv) bearing HIV-2 ROD10 (top) or (O) 
MVP5180 (bottom) capsid in MDM in the presence of IFNα/β-R or CAb. Data show 
mean + s.d. n = 3 donors. Two-way ANOVA vs CAb, HIV-1(HIV-2 CA) P = 0.02, HIV-
1(O CA) P = 0.002. b, HIV-1(M) CA hexamer highlighting β-hairpin (BHP) position 
in a closed (green) (PDB ID:5HGN) or open conformation (wheat) (PDB ID:5HGL). 
Lower panel details residues in hinge region that close BHP by coordinating 
water and increasing distance between His12 and Asp51. c, Maximum-likelihood 
phylogenetic tree of primate lentiviral capsid genes coloured by chromaclade to 
illustrate the residues equivalent to CA Q50 in HIV-1(M). d, SIVcpz CA hexamer 
(PDB ID:7T15) with the BHP position in a closed (green) conformation. Lower 
panel details residues in hinge region that close BHP by coordinating water and 
increasing distance between His12 and Asp51. e,f, HIV-1(O) (PDB ID: 7T12) and 
SIVmac (PDB ID:7T14) hexamers with open BHP (wheat) and key Gln at position 

50 substituted for Tyr (Y), preventing water coordination and channel closure. 
Lower panels show the BHP hinge region in detail. g, A modelled hexamer built 
from the HIV-2 N-terminal CA domain (PDB ID:2 × 82) is shown for comparison 
with HIV-1(M) and (O). The HIV-2 BHP (wheat) is open. Note that HIV-2 position 
49 is Tyr (Y). h, Crystal structure of HIV-1(M) Q50Y (PDB ID:7T13) highlighting 
BHP position in an open conformation (wheat). R18 is shown at the centre of 
the hexamers. Lower panels show the BHP hinge region in detail. i, WT and CA 
Q50Y capsid survival curves obtained from TIRF in vitro uncoating experiments. 
In the absence of IP6, HIV-1 Q50Y capsids are metastable and disassemble 
spontaneously with similar half-life to WT. Most capsids are stabilized in the 
presence of 100 μM IP6. Survival curves were generated from single-virion 
uncoating traces (N = 326 for WT, 326 for WT + 100 μM IP6, 326 for Q50Y, 326 
for Q50Y + 100 μM IP6) from one representative uncoating experiment (see 
Extended Data Fig. 5 for additional Q50Y data).
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the importance of position 50, which is conserved (Supplementary 
Table 1) and located in the BHP hinge region (compare Fig. 4b–e). In 
HIV-1(M), residue Q50 contributes to the tetrahedral hydrogen bonding 
network that promotes the ‘closed’ BHP position. This arrangement is 
also conserved in our parental SIVcpzPtt capsid structure, with SIVcp-
zPtt Q50 contributing to the ‘closed’ BHP position by coordinating 
a water molecule (Fig. 4d and Supplementary Table 1). However, in 
HIV-1(O), Y50 has been retained from the ancestral SIVgor, prevent-
ing water coordination and BHP closure (Fig. 4e). Almost all HIV-2 and 
SIVsmm CA sequences bear tyrosine at this position, consistent with 
conservation of this structural difference from pandemic HIV-1 (Fig. 4c  

and Supplementary Table 1). We were unable to crystallize HIV-2 CA 
hexamers. However, comparison of the HIV-1(O) hexamer hinge region 
with that of the published HIV-2 CA N-terminal domain structure (PDB 
ID 2 × 82)47 and a modelled HIV-2 hexamer illustrates the similarity 
between these non-pandemic capsids, and suggests an ‘open’ BHP posi-
tion for HIV-2 (Fig. 4e,g). SIV from macaques (SIVmac) was unknowingly 
transmitted during laboratory experiments from sooty mangabeys 
infected with SIV sooty mangabey (SIVsmm) to rhesus macaques and is 
closely related to its parental SIVsmm (Fig. 4c)48. We solved the SIVmac 
hexamer structure to 2.25 Å (Fig. 4f), demonstrating conservation of 
the ‘open’ BHP conformation and of the hinge region, including Y50, 
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Fig. 6 | Capsid mutations make pandemic HIV-1(M) sensitive to cGAS and 
TRIM5. a, Replication of HIV-1(M) NL4.3 (BalEnv) WT or HIV-1(M) NL4.3 (BalEnv) 
bearing CA Q50Y + 120R in MDM in the presence of IFNα/β-R or CAb. b, GAPDH-
normalized mRNA levels induced by HIV-1(M) CA Q50Y 120R, expressed as fold 
induction over uninfected samples in control siRNA-transfected (siCtrl) or cGAS 
siRNA-transfected (sicGAS) MDM 24 h post infection. c, GAPDH-normalized 
mRNA levels induced by HIV-1(M) CA Q50Y 120R expressed as fold induction 
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induced by HIV-1(M) CA Q50Y + 120R expressed as fold induction over uninfected 
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independent experiments or donors. Two-way ANOVA vs CAb (a), two-tailed 
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*P < 0.05, **P < 0.01.
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between HIV-1(O), HIV-2 and SIVmac. This further illustrates the confor-
mational similarity between hexamers bearing tyrosine at CA position 
50 despite HIV-1(O) and SIVsmm otherwise being highly divergent  
(Fig. 4e–g). To probe the role of CA50 in infectivity, we made HIV-1(M) 
CA Q50Y, reverting the glutamine to the ancestral tyrosine. Solving the 
mutant hexamer structure confirmed that HIV-1(M) CA Q50Y hexam-
ers adopted ‘open’ conformations, and the hinge region of HIV-1(M) 
Q50Y resembled HIV-1(O) and SIVmac (Fig. 4h). Indeed, overlay of the 
open WT HIV-1(M) hexamer structure (PDB ID: 5HGL) and HIV-1(M) CA 
Q50Y (PDB ID:7T13) demonstrated their similarity (Extended Data Fig. 
5d). Importantly, and unlike other capsid point mutants, for example, 
CA K25A which prevents IP6 recruitment into assembling virions49, 
HIV-1(M) Q50Y capsids were not intrinsically destabilized, showing WT 
disassembly kinetics in the absence of IP6 in single-molecule uncoat-
ing assays (Fig. 4i and Extended Data Fig. 5e)50. As expected, given the 
similar structure, addition of IP6 led to an increase in the HIV-1(M) 
Q50Y capsid half-life from minutes to hours for the majority of cap-
sids, confirming that IP6 binding was not perturbed. Nevertheless, 
in infection experiments, single-round infectivity of HIV-1(M) GFP CA 
Q50Y was reduced (Extended Data Fig. 5f) and this capsid mutant did 
not replicate in MDM.

Adaptation of HIV capsid at position 120
Given that HIV-1 CA Q50Y was defective, we returned to Chromaclade45 
seeking additional lineage-specific changes that occurred along with 
capsid Y50Q in SIVcpzPtt. This revealed a patch of differences around 
CA position 120, identifying a deletion of arginine CA 120 in HIV-1(M) 
and its SIVcpzPtt parent (Fig. 5a). Inspection of hexamer structures 
from non-pandemic viruses revealed that the Arg lost from SIVcpzPtt/
HIV-1(M) forms a salt bridge between helix 6 and the CypA binding 
loop in HIV-1(O) and HIV-2 CA helix 6 (Arg 120-Glu 98 in HIV-1(O), Arg 
118-Glu 96 in HIV-2) (Fig. 5b). This salt bridge is also conserved in the 
SIVmac hexamer (Arg 117-Glu 95), but not in the SIVcpzPtt structure 
(Fig. 5b). These observations suggest that, in addition to Y50Q, the 
SIVcpzPtt parent of pandemic HIV-1(M) lost a salt bridge on the CA 
surface through loss of an arginine. To examine its phenotypic effect, 
we reversed the deletion in HIV-1(M), restoring the arginine in mutant 
HIV-1(M) + R120. The X-ray structure of this HIV-1(M) CA + R120 hexamer 
mutant at 3.29 Å revealed that adding the arginine reinstated the salt 
bridge (Fig. 5b). An X-ray structure (PDB ID: 8D3B) of the double mutant 
HIV-1(M) Q50Y + R120 was poorly resolved at R120 but good resolution 
of the BHP and the hinge region around Y50 indicated that this mutant 
hexamer formed an open channel (Extended Data Fig. 6a,b). Critically 
combining both mutations restored infectivity of VSV-G-pseudotyped 
HIV-1(M) CA Q50Y + R120 in MDM (Fig. 5c).

Reversion of adaptation renders HIV-1(M) cGAS- and 
TRIM5-sensitive
To test whether pandemic lineage-associated mutations influenced host 
responses, we reversed the adaptations in HIV-1(M) and infected MDM. 
We found that HIV-1(M) CA Q50Y + R120 could only replicate in MDM 
in the presence of IFNAR1-Ab, consistent with enhanced sensing and 
innate immune activation (Fig. 6a). Concordantly, VSV-G-pseudotyped 
HIV-1(M) CA Q50Y + R120 induced cGAS and TRIM5-sensitive genes 
in MDM more strongly than WT HIV-1(M) (Extended Data Fig. 6a,b, 
compare with Fig. 1e,f). cGAS-sensitive gene induction by HIV-1(M) CA 
Q50Y + R120 was reduced by cGAS depletion in MDM (Fig. 6b) or cGAS 
KO in THP-1 (Fig. 6d). TRIM5-sensitive gene induction was suppressed by 
TRIM5 depletion in MDM and THP-1 (Fig. 6c,d). Importantly, combined 
cGAS KO and TRIM5 depletion in THP-1 suppressed all gene induction 
by HIV-1(M) CA Q50Y+ R120 (Fig. 6d). HIV-1(M) CA Q50Y+ R120 VLPs 
without genome induced TRIM5-sensitive, but not cGAS-sensitive, 
genes in THP-1 (Fig. 6e). MAVS depletion had no effect (Extended 
Data Fig. 7c,d). Similarly to non-pandemic HIV, over-expression of 
the nuclease TREX1 in THP-1 reduced the activation of the IRF-reporter 

by HIV-1(M) Q50Y 120R, consistent with viral DNA exposure triggering 
cGAS activation (Extended Data Fig. 7e,f). Note that HIV-1(M) Q50Y 
120R resembled HIV-1(O) rather that HIV-2 in that infectivity was not 
TREX1-sensitive. Finally, we found that HIV-1(M) CA Q50Y + R120 
behaved like non-pandemic viruses HIV-1(O) and HIV-2, becoming more 
sensitive to human TRIM5 restriction than WT HIV-1(M), as evidenced 
by rescue of infection by TRIM5 depletion in U87 cells (Extended Data 
Fig. 7e). Infection with TRIM5-sensitive MLV-N and insensitive MLV-B 
acted as controls51. Thus, an HIV-1(M) CA mutant bearing Q50Y + R120, 
representing non-pandemic HIV lineages, behaved like HIV-1(O) and 
HIV-2, activating innate immune gene expression in a TRIM5-, cGAS- and 
TREX1-sensitive way. These observations outline how key amino acid 
adaptations in the HIV-1(M) parent SIVcpzPtt led to structural changes 
in the capsid that reduce activation of, and restriction by, key lentiviral 
sensors, cGAS and TRIM5. We therefore propose that the SIVcpzPtt/
HIV-1(M) lineage has undergone complex adaptations that underlie 
its pandemic success and that this study provides mechanistic insight 
into how particular lineage-specific adaptations have paved the way 
to pandemicity.

Discussion
HIV capsid has a pivotal role in regulating viral DNA synthesis and 
shielding viral DNA from cytosolic sensors. Recent work suggests that 
infectious fluorescently labelled intact capsids of HIV-1(M) are trans-
ported across the cytoplasm and through nuclear pores, with uncoating 
occurring in the nucleus before integration15,52–55. On the basis of the 
evidence in this paper, we propose that HIV-1(M) structural adaptations 
in capsid influence sensitivity to antiviral pathways during transport to 
the nucleus. For example, alteration in capsid surface dynamics medi-
ated by loss of the Arg-Glu salt bridge may influence TRIM5 recruitment 
and therefore restriction and/or activation of TRIM5 signalling. Indeed, 
both IFN receptor blockade and TRIM5 depletion rescued infection 
of non-pandemic viruses in MDM (Extended Data Figs. 1 and 4e) and 
suppressed macrophage activation of inflammatory gene expression, 
suggesting important roles for both signalling and physical caging of 
incoming capsids by TRIM5, for antiviral activity56. We hypothesize 
that increased HIV-1(M) capsid dynamics may promote entirely encap-
sidated DNA synthesis by increasing core flexibility or allowing cap-
sids to ‘breathe’, with additional co-factor-mediated regulation of the 
timing and position of uncoating and genome release. Indeed, TREX1 
over-expression suppresses innate immune activation by both HIV-1(O) 
and HIV-2 and inhibits infectivity of HIV-2 because it degrades DNA from 
partially uncoated capsids, which are, to our surprise, infectious in the 
case of HIV-2 (Fig. 3). Further studies using molecular dynamic simula-
tion in which pandemic HIV-1(M) cores are compared to non-pandemic 
cores may help elucidate how capsid dynamics compare and how they 
link to co-factor interactions and capsid stability.

Our phylogenetic analyses suggest significant complexity beyond 
SIVcpzPtt adapting by mutating Q50Y and deleting R120 to become 
pandemic in humans. For example, SIVcpzPtt gave rise to both pan-
demic HIV-1(M), which retained Q50, and non-pandemic HIV-1(N), 
which only infected a handful of people but experienced strong selec-
tion at Q50 making Q50S, Q50A or Q50G, each requiring multiple 
nucleotide changes (Fig. 5). On the other hand, SIVsmm/SIVgor/HIV-2 
retained Y50 in chimpanzee-to-gorilla and gorilla-to-human HIV-1(O) 
zoonoses (Fig. 5). Furthermore, the SIVcpzPtt progenitor also gave rise 
to viruses retaining the ancestral tyrosine at CA50 (SIVgor, HIV-1(O)), 
suggesting an unsampled SIVcpzPtt lineage that retained this amino 
acid. Further evidence against a simple model is derived from our 
failure to increase HIV-2/HIV-1(O) replication in human MDM by mutat-
ing CA Y50Q, although we did not try combinations of mutations, 
for example, additionally deleting R120. While we cannot identify 
the selective pressures that selected capsid adaptations, we propose 
that complexity arises from the diversity of capsid function and the 
species-specific co-factor interactions that govern regulation of 
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DNA synthesis, uncoating and nuclear entry. Future studies applying 
chromaclade-guided mutagenesis may reveal how capsids work, linking 
dynamics to co-factor use, myeloid cell replication and pandemicity.

HIV-2 and HIV-1(O) replicate efficiently in activated primary human 
T cells in vitro35,57,58. Here we focused on primary human macrophages 
because primary T cells are not permissive to HIV unless activated, typi-
cally by cross-linking the T-cell receptor (TCR) to mimic antigen stimu-
lation. Thus, T-cell receptor-driven signalling and cytokine secretion 
dominate in vitro T-cell infection experiments, obviating virus-induced 
changes including cGAS/TRIM5 activation. Furthermore, macrophages 
effectively secrete type-I IFN that can inhibit lentiviral transmission30 
and is present during transmission-induced cytokine storms59. An 
important role for IFN in HIV transmission is also evidenced by the 
unique resistance of transmitted founder HIV-1 to type-I interferons60.

Together with our data, these previous observations emphasize 
the importance of innate immune evasion as a key determinant of 
transmission and therefore pandemic potential. We note that enhanced 
evasion of innate sensing occurred in viruses infecting central chimpan-
zees (Pan troglodytes troglodytes) before transmission in humans, sug-
gesting that SIVcpzPtt are more dangerous to humans than SIVcpzPts 
strains infecting eastern chimpanzees (Pan troglodytes schweinfurthii), 
which have never been detected in the human population. This in turn 
suggests that we may be able to predict zoonosis-competent viruses 
by examining their capacity to escape human innate immunity. We 
note that the first detected SARS-CoV-2 isolate antagonized human 
innate immunity effectively despite bat origins, whereas more recently 
evolved variants have increased innate immune evasion capabilities, 
again linking innate immune evasion to increased human-to-human 
transmission61.

We propose that a detailed understanding of the innate immune 
mechanisms that protect us from zoonosis, and a better understand-
ing of how pandemic viruses evolve to avoid these defences, will be 
crucial for future pandemic preparedness. In this respect, HIV is a very 
well-understood virus that offers excellent tools for further relevant 
discoveries in this field.

Methods
Cells and reagents
HEK293T and U87 cells were maintained in DMEM medium (Gibco) sup-
plemented with 10% fetal bovine serum (FBS, Labtech) and 100 U ml−1 
penicillin plus 100 μg ml−1 streptomycin (Pen/Strep; Gibco). THP-1-IFIT1 
cells that had been modified to express Gaussia luciferase under the 
control of the IFIT1 promoter were described previously62. THP-1 dual 
control and cGAS−/− cells were obtained from Invivogen. THP-1 IFIT1 
cells were maintained in RPMI medium (Gibco) supplemented with 
10% FBS and Pen/Strep. THP-1 dual cells were maintained in RPMI 
(Gibco) supplemented with 10% FBS, Pen/Strep, 25 mM HEPES (Sigma), 
10 µg ml−1 of blasticidin (Invivogen) and 100 μg ml−1 of Zeocin (Invi-
vogen). GHOST cells stably expressing CD4, CCR5, CXCR4 and the 
green fluorescent protein (GFP) reporter gene under the control of the 
HIV-2 long terminal repeat, were maintained in DMEM supplemented 
with 10% FBS, and antibiotics, G418 (500 μg ml−1) (Thermo Fisher), 
hygromycin (100 μg ml−1)(Invitrogen) and puromycin (1 μg ml−1) (Mil-
lipore). Lipopolysaccharide, IFNβ, IL-1β and poly I:C were obtained 
from Peprotech. Herring testes (HT) DNA was obtained from Sigma. For 
stimulation of cells by transfection, transfection mixes were prepared 
using lipofectamine 2000 (Invitrogen) in Optimem (Thermo Fisher). 
HT DNA and poly I:C concentration used are stated on each figure.

Isolation of primary MDM
Primary MDM were prepared from fresh blood from healthy volun-
teers. The study was approved by the joint University College London/
University College London Hospitals NHS Trust Human Research Eth-
ics Committee and written informed consent was obtained from all 
participants.

Peripheral blood mononuclear cells (PBMCs) were isolated by 
density-gradient centrifugation using Lymphoprep (Stemcell Technol-
ogies), washed three times (PBS) and plated to select for adherent cells. 
Non-adherent cells were washed away after 1.5 h and the remaining cells 
incubated in RPMI (Gibco) supplemented with 10% heat-inactivated 
pooled human serum (Sigma) and 100 ng ml−1 macrophage colony 
stimulating factor (R&D systems). For replication experiments with 
full-length viruses, the medium was then refreshed after 3 d (RPMI 
1640 with 10% human serum), removing any remaining non-adherent 
cells. After 6 d, media were replenished with RPMI containing 5% type 
AB human serum (Sigma-Aldrich). For single-round experiments with 
VSV-G-pseudotyped viruses, cells were washed (PBS) on day 3 of dif-
ferentiation and the medium changed to RPMI supplemented with 10% 
heat-inactivated FBS. MDM were then infected 3–4 d later. Replicate 
experiments were performed with cells derived from different donors.

Editing of cells by CRISPR/Cas9
Lentiviral particles to generate CRISPR/Cas9-edited cell lines were 
produced by transfecting 10 cm dishes of HEK293T cells with 1.5 μg 
of pLentiCRISPRv2 encoding gene-specific guide RNAs (Addgene 
plasmid 52961), 1 μg of p8.91 packaging plasmid40 and 1 μg of VSV-G 
glycoprotein-expressing plasmid pMDG (Genscript) using Fugene-6 
transfection reagent (Promega). Virus supernatants were collected at 
48 and 72 h post transfection, pooled and used to transduce THP-1 IFIT1 
cells by spinoculation (1,000 × g, 1 h, room temperature). Transduced 
cells were selected using puromycin (1 μg ml−1, Merck Millipore) and 
single clones isolated by limiting dilution in 96-well plates. Clones 
were screened for successful gene knock out by luciferase assay after 
targeted protein stimulation and immunoblotting.

gRNA sequences:
MAVS: CAGGGAACCGGGACACCCTC
Non-targeting control: ACGGAGGCTAAGCGTCGCAA

Virus plasmids
The NL4.3 (Ba-L Env), YU2 (ref. 31) and O-group molecular clones, 
RBF206 and BCF120, and HIV-2 molecular clones pJK7312S3 and pST63 
have all been described. HIV-2 ROD10 was obtained from the National 
Institute of Biological Standards and Controls64. The CA chimera molec-
ular clone was generated by overlap PCR, replacing CA residues 1–204 
of NL4.3 with the equivalent residues from MVP5180 or HIV-2 ROD10. 
VSV-G-pseudotyped GFP-encoding vectors include HIV-1 M LAI ΔEnv.
GFP (LAI strain39) with the Nef coding region replaced by GFP, HIV-1(M) 
R9 packaging vector (p8.91) and minimum genome-expressing GFP 
(CSGW)41. HIV-2 ROD GFP has been described65. HIV-1(O) packaging 
plasmid to make HIV-1(O) GFP was generated by replacing Gag-Pro 
residues between Not1–Bcl1 in p8.91 with the equivalent residues from 
MVP5180 (ref. 66). Q50Y and 120R mutations were generated by site 
directed mutagenesis of p8.91 using PfuTurbo (Agilent Technolo-
gies). For TREX1 over-expression, we used MLV-based gammaretroviral 
expression vector EXN67, where TREX1 coding sequence was cloned 
from a plasmid kindly provided by Nan Yan between BamHI and XhoI 
sites. For TRIM5 depletion with short hairpin (shRNA), we expressed 
shRNA using SIREN-RetroQ (Clontech) gammaretroviral vector con-
taining shRNA sequence targeting human TRIM5 (ref. 26) or scramble 
Ctrl29 as described.

Production of virus in HEK293T cells
Replication competent HIV were produced by transfection of 
HEK293T cells in T150 flasks using Fugene-6 transfection reagent 
(Promega). Briefly, just-subconfluent T150 flasks were transfected 
with 8.75 μg of vector and 30 µl Fugene-6 in 500 µl Optimem (Thermo 
Fisher). Virus supernatants were collected at 48, 72 and 96 h post 
transfection. Virus suspensions were filtered, subjected to ultracen-
trifugation through a 20% sucrose buffer and resuspended in RPMI 
1640 with 5% human serum for subsequent replication experiments 
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in MDM. For VSV-G-pseudotyped GFP-expressing virus, each T150 
flask was transfected with 2.5 μg of VSV-G glycoprotein-expressing 
plasmid pMDG (Genscript) and 6.25 μg of pLAIΔEnv GFP or 2.5 μg 
packaging plasmid (p8.91, MVP or HIV-2-pack) and 3.75 μg of 
GFP-encoding genome plasmid (CSGW or HIV-2 GFP) using 30 µl 
Fugene-6 in 500 µl Optimem. In the case of VLP without genome, 
the cells in T150 flasks were transfected only with 2.5 μg of VSV-G 
glycoprotein-expressing plasmid pMDG and 5 μg packaging plasmid 
(p8.91, MVP or HIV-2). Virus supernatants were collected at 48 and 72 h 
post transfection, pooled, DNase treated (2 h at 37 °C, DNaseI, Sigma) 
and subjected to ultracentrifugation over a 20% sucrose cushion. 
Viral particles were finally resuspended in RPMI supplemented with 
10% FBS. Lentiviral particles to generate TREX-expressing vector or 
TRIM5 shRNA vector were produced by transfecting 10 cm dishes 
of HEK293T cells with 1.5 μg TREX EXN vector or TRIM5-targeting 
SIREN-RetroQ, 1 μg of packaging plasmid CMVintron, and 1 μg of 
VSV-G glycoprotein-expressing plasmid pMDG using Fugene-6 trans-
fection reagent. Virus supernatants were collected at 48 and 72 h post 
transfection, pooled and stored at −80 °C.

Virus quantification and RT products
Full-length HIV clones were quantified by RT enzyme-linked immu-
nosorbent assay (ELISA) (Roche). Reverse transcriptase activity of 
virus preparations was quantified by qPCR using a SYBR Green-based 
product-enhanced RT (SG-PERT) assay as previously described68. 
For viral genome copy measurements, RNA was extracted from 2 μl 
sucrose-purified virus using the RNeasy mini kit (QIAGEN). The RNA 
was then treated with TURBO DNase (Thermo Fisher) and subjected 
to reverse transcription using Superscript III reverse transcriptase and 
random hexamers (Invitrogen). Genome copies were then measured 
by Taqman qPCR using primers against GFP69 (see below).

For RT product measurements, DNA was extracted from 5 × 105 
infected cells using the DNeasy blood and tissue kit (QIAGEN). DNA 
concentration was quantified using a Nanodrop for normalization. RT 
products were quantified by Taqman qPCR using TaqMan gene expres-
sion master mix (Thermo Fisher) and primers and probe specific to GFP. 
A dilution series of plasmid encoding GFP was measured in parallel 
to generate a standard curve to calculate the number of GFP copies.

Primers:
GFP fwd: 5′- CAACAGCCACAACGTCTATATCAT -3′
GFP rev: 5′- ATGTTGTGGCGGATCTTGAAG -3′
GFP probe: 5′- FAM-CCGACAAGCAGAAGAACGGCATCAA-TAMRA -3′

Infection assays
To measure viral replication, MDM were infected with 100 pg RT of 
full-length viruses, measured by RT ELISA (Roche) per well (multiplicity 
of infection (MOI) = 0.2) in 48-well plates and subsequently fixed and 
stained using mixed CA antibodies EVA365 and EVA366 (National Insti-
tute of Biological Standards AIDS Reagents) at 1/50, with goat anti-mouse 
immunoglobulin (Ig) antibody conjugated to β-galactosidase (926-
32210, Southern Biotechnology Associates) at 1/15,000, and counted31. 
Anti-IFN-α/β receptor (PBL Interferon Source) or control IgG2A antibody 
(R&D systems) were added at 1 μg ml−1 for 2 h before infection and sup-
plemented every 4 d. Single-round infection by VSV-G-pseudotyped 
viruses was performed in 48-well plates using equal viral doses (1 × 109 
genome copies). Viral infection was measured 48 h later by enumeration 
of GFP-positive cells by flow cytometry. For RNA extraction and subse-
quent qPCR analysis, cells were infected in 24-well plates.

GHOST cells were infected with full-length viruses as previously 
described31, measured by RT ELISA per well in 48-well plates. Cells were 
fixed at the indicated times post infection and GFP+ cells measured by 
flow cytometry.

Monocytic THP-1 cells were infected at a density of 2 × 105 cells 
per ml in 48-well plates in the presence of polybrene (8 μg ml−1, 
Sigma). Infection levels were assessed at 48 h post infection through 

enumeration of GFP-positive cells by flow cytometry. Input dose of 
virus was normalized either by RT activity (measured by SG-PERT) 
or genome copies (measured by qPCR) as indicated. THP-1 cells were 
treated with similar doses of VLP normalized by SG-PERT as indicated. 
After 24 h, cells were infected with equal amounts of genome copies 
(2 × 108) and infection levels were measured 48 h post infection through 
enumeration of GFP-positive cells by flow cytometry.

THP-1 cells stably expressing TREX were generated by transduc-
tion with the MLV-based gammaretroviral expression vector EXN and 
maintained under selection with G418 (500 μg ml−1).

IFNβ (100 ng ml−1) or IL-1β (10 ng ml−1) were added at different time 
points to THP-1 cells, which were then infected at an MOI of 0.3. Infec-
tion levels were measured after 48 h by flow cytometry.

Luciferase and secreted alkaline phosphatase reporter assays
Gaussia/Lucia luciferase activity was measured by transferring 10 μl 
supernatant to a white 96-well assay plate, injecting 50 μl per well 
of coelenterazine substrate (Nanolight Technologies, 2 μg ml−1) and 
analysing luminescence on a FLUOstar OPTIMA luminometer (Pro-
mega). Data were normalized to a mock-treated control to generate 
a fold induction. Secreted alkaline phosphatase was measured using 
QUANTI-Blue (Invivogen), using 20 µl of cell supernatant.

Quantitative RT-PCR
RNA was extracted from MDM or THP-1 cells using RNAeasy (QIA-
GEN). RNA (500 ng) was used to synthesize complementary DNA using 
Superscript III reverse transcriptase (Invitrogen). cDNA was diluted 
1:5 in water and 2 μl was used as a template for real-time PCR using 
SYBR Green PCR master mix (Applied Biosystems) and QuantiStudio 
5 real-time PCR machine (Applied Biosystems). Expression of each 
gene was normalized to an internal control (GAPDH) and values were 
then normalized to mock-treated control cells to yield a fold induc-
tion. Primers:

GAPDH: Fwd 5′-GGGAAACTGTGGCGTGAT-3′, Rev 5′-GGAGGAG 
TGGGTGTCGCTGTT-3′

CXCL10: Fwd 5′-TGGCATTCAAGGAGTACCTC-3′, Rev 5′-TTGTAGC 
AATGATCTCAACACG-3′

IFIT2: Fwd 5′-CAGCTGAGAATTGCACTGCAA-3′, Rev 5′-CGTAGGC 
TGCTCTCCAAGGA-3′

MxA: Fwd 5′-ATCCTGGGATTTTGGGGCTT-3′, Rev 5′-CCGCTTG 
TCGCTGGTGTCG-3′

CCL5: Fwd: 5′-CCCAGCAGTCGTCTTTGTCA-3′, Rev 5′- TCCCGAAC 
CCATTTCTTCTCT-3′

IFIT1: Fwd: 5′- CCTCCTTGGGTTCGTCTACA-3′, Rev 5′-GGCTGATAT 
CTGGGTGCCTA-3′

IL-8: Fwd: 5′-ATGACTTCCAAGCTGGCCGTGGCT-3′, Rev 5′-TCT 
CAGCCCTCT TCA A A A ACT TCTC-3′ PTGS2:  Fwd: 5′-CTGGC 
GCTCAGCCATACAG-3′, Rev 5′-CGCACTTATACTGGTCAAATCCC-3′

IL-1β: Fwd: 5′-ATGATGGCTTATTACAGTGGCAA-3′, Rev 5′-GTCG 
GAGATTCGTAGCTGGA-3′

SOD2: Fwd: 5′-GGAAGCCATCAAACGTGACTT-3′, Rev 5′-CCCGT 
TCCTTATTGAAACCAAGC-3′

cGAS: Fwd 5′-GGGAGCCCTGCTGTAACACTTCTTAT-3′ Rev,  
5′-TTTGCATGCTTGGGTACAAGGT-3′

TREX: Fwd 5′-CGCATGGGCGTCAATGTTTT-3′ Rev, 5′-GCAGT 
GATGCTATCCACACAGAA-3′

TRIM5 expression levels were measured using TaqMan gene 
expression assay detecting TRIM5 (FAM dye-labelled, TaqMan probe 
Hs01552559_m1), or the housekeeping gene OAZ1 (FAM dye-labelled, 
primer-limited, TaqMan probe Hs00427923_m1).

ELISA
Cell supernatants were collected for ELISA at 48 h post infection/stimu-
lation and stored at −20 °C. CXCL10 and IL-8 protein were measured 
using Duoset ELISA reagents (R&D Biosystems).
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cGAS and TRIM5 depletion by RNAi
MDM (1 × 105) differentiated in macrophage colony stimulating 
factor for 4 d were transfected with 25 pmol of siRNA SMART pool 
against cGAS (L-015607-02-0005), TRIM5 (L-007100-00-0005) or 
non-targeting control (D-001810-10-05) (Dharmacon) using lipo-
fectamine RNAiMAX transfection reagent (Invitrogen). Medium was 
replaced after 18 h with RPMI 1640 supplemented with 10% FCS and 
cells cultured for an additional 3 d before infection. THP-1 dual cells 
(5 × 105 ml−1) were transfected with 35 pmol of siRNA SMART pool 
against cGAS, TRIM5 or non-targeting control (Dharmacon) using 
lipofectamine RNAiMAX (Invitrogen). Medium was replaced after 18 h 
with RPMI 1640 supplemented with 10% FCS and cells were plated in 
48-well plates and infected as indicated. To deplete TRIM5 in U87 cells, 
pSIREN-RetroQ expressing shRNA TRIM5 was transduced at an MOI ∼1 
and shRNA-expressing cells selected with 10 μg ml−1 puromycin. TRIM5 
and cGAS expression were quantified by qPCR normalized to OAZ1 and 
GAPDH, respectively, by the delta delta threshold cycle (ΔΔCt) method.

Immunoblotting
Cells were lysed in 50 mM Tris buffer (pH 8), 150 mM NaCl, 1 mM EDTA, 
10% (v/v) glycerol, 1% (v/v) Triton X-100, 0.05% (v/v) NP40 supple-
mented with protease inhibitors (Roche), clarified by centrifugation 
(14,000 × g for 10 min), and the supernatants boiled (5 min in 6X Lae-
mmli buffer (50 mM Tris-HCl (pH 6.8), 2% (w/v) SDS, 10% (v/v) glycerol, 
0.1% (w/v) bromophenol blue, 100 mM β-mercaptoethanol)) before 
separation on 12% polyacrylamide gel. Proteins were transferred to 
Hybond ECL membrane (Amersham Biosciences) using a semi-dry 
transfer (Biorad). Primary antibodies goat anti-MAVS Ab (Cell Signal-
ing, 3993, 1:1,000 dilution) and goat anti-tubulin Ab (Abcam, ab6046, 
1:20,000 dilution) were detected with IRDye 800CW goat anti-rabbit 
IgG (H + L) (LI-COR, 926-32211, 1:20,000) and membranes imaged with 
an Odyssey CLX infrared imager (LI-COR Biosciences) using Image 
Studio V5.2.

Single-molecule analysis
Single-particle traces of AF488-CypA-labelled capsids inside permeabi-
lized virions immobilized on a coverslip were recorded by total internal 
reflection (TIRF) microscopy and analysed by step fitting to determine 
distributions of capsid lifetimes for WT and mutant HIV50.

Phylogenetics
A dataset of representative HIV and SIV sequences from the CA region 
of gag were downloaded from the Los Alamos HIV-1 sequence data-
base and aligned manually. The phylogeny was estimated from the 
nucleotide sequences using RAxML v8 (ref. 70) with substitution model 
GTR+ Gamma and rooted consistent with phylogenies that include 
non-primate lentivirus outgroup taxa71. ChromaClade v1.1 was used to 
annotate taxon labels with residues found at capsid protein sites45. Note 
that chromaclade does not use statistical tests to assess viral evolution. 
Rather, it provides a simple way to visualize lineage-specific amino acid 
variation in a qualitative and intuitive way. In this study, our focus on 
positions CA50 and 120 was also influenced by the hexamer structures, 
which revealed that these positions have a role in the structural differ-
ences observed between viral capsid hexamers.

Protein production and purification
HIV-1(M) CA R120. Protein was expressed and purified as previ-
ously described for HIV-1(M) CA WT72. In brief, HIV-1(M) CA R120 was 
expressed in E. coli C41 OverExpress C41(DE3) (Lucigen) in 1 l 2YT media 
supplemented with 100 μg ml−1 ampicillin at 37 °C and 250 r.p.m. until 
optical density at 600 nm reached 0.5, followed by the addition of 
0.4 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) to induce expres-
sion overnight at 14 °C. Cells were lysed in 50 mM Tris-HCl, 40 mM 
NaCl and 20 mM β-mercaptoethanol (pH 4.5) using a cell disruptor, 
followed by removal of the insoluble fraction (30,000 × g for 20 min). 

Capsid protein was precipitated with 20% (w/v) ammonium sulfate and 
pelleted (30,000 × g for 20 min). Pellets were resuspended in refolding 
buffer (100 mM citric acid, 20 mM TRIS (pH 4.5)), followed by extensive 
dialysis against the same buffer and then 25 mM Tris-HCl (pH 8). The 
capsid was further purified with anion exchange chromatography 
(AEC) using a 5 ml Hi-TRAP Q column (Cytiva). AEC purification was 
performed using buffer A (25 mM Tris-HCl (pH 8)) and buffer B (25 mM 
Tris-HCl, 1 M NaCl (pH 8)). Lastly, size exclusion chromatography (SEC) 
was performed using a Superdex 16/600 75 pg column with 25 mM 
Tris-HCl and 40 mM NaCl (pH 8). The protein was further concen-
trated to 3.0 mg ml−1 in the size exclusion chromatography buffer for 
crystallization.

HIV-1(O), HIV-1(M) CA Q50Y, SIVmac, SIVcpzPtt. Hexameric CA 
proteins, stabilized by engineered inter-subunit disulfide bonds, were 
produced by assembly of recombinant CA containing four amino 
acid substitutions73: HIV-1(O-group) (A14C, E45C, W185A, M186A); 
HIV-1(M-group) (A14C, E45C, Q50Y, W184A, M185A); SIVmac (P13C, 
E44C, W182A, M183A); and SIVcpz (P14C, E45C, W184A, M185A). 
Expression was performed in E. coli (C41) by mid-log induction with 
1 mM IPTG14 overnight at 14 °C. Collected cells were lysed in 50 mM 
Tris (pH 8.0), 150 mM NaCl and 20 mM β-mercaptoethanol by sonica-
tion. Clarified lysates were treated with 20% (w/v) ammonium sulfate 
and the precipitate resuspended in 100 mM citric acid (pH 4.5) and 
20 mM β-mercaptoethanol, and dialysed against the same to remove 
the ammonium sulfate. Redissolved protein was subjected to assem-
bly by three dialysis steps: (1) 1 M NaCl, 50 mM Tris (pH 8.0), 20 mM 
β-mercaptoethanol; (2) 1 M NaCl, 50 mM Tris (pH 8.0); and (3) 20 mM 
Tris (pH 8.0), 40 mM NaCl. Purified hexamers were isolated by size 
exclusion chromatography using a 16/600 Superdex 200 Prep Grade 
column on an ÄKTA Pure with 20 mM Tris and 40 mM NaCl.

Crystallization, structure solution and analysis
HIV-1(M) CA R120. Crystals were grown using the hanging-drop 
vapour-diffusion technique at 20 °C by mixing 1 μl protein with 1 or 
2 ul precipitant containing 9.5–11% (w/v) PEG3350, 250–350 mM NaI 
and 100 mM sodium cacodylate (pH 6.5) as previously described74. 
Collected crystals were immersed in precipitant mixture with 20% 
(v/v) glycerol and cryo-cooled in liquid nitrogen. Diffraction data were 
collected from a single crystal at the PETRA III P13 beamline (EMBL 
Hamburg/DESY P13, Germany). The dataset was indexed, processed 
and scaled using XDS vJan31,2020 (ref. 75). The HIV-1(M) CA R120 crystal 
belonged to the P6 space group with a solvent content of 48.5% corre-
sponding to one molecule per asymmetric unit. The structure was deter-
mined by molecular replacement using Phenix Phaser v2.8.3 (ref. 76)  
and a previously determined HIV-1(M) CA structure (PDB ID:4XFX) as 
search model. Model building was performed using COOT v0.8.9.2 
(ref. 77). Refinement was performed using REFMAC v5.8. Overview 
of refinement procedures was within REFMAC5: utilizing data from 
different sources78 using a TLS/maximum-likelihood protocol. The 
model converged to a final Rwork/Rfree of 0.242/0.277 at a resolution 
of 2.30 Å. The HIV-1(M) CA R120 model covers the HIV-1(M) CA amino 
acid sequence 1–222 and contains in addition 2 iodine, 4 chlorine ions 
and 14 water molecules. Figures were rendered using PyMOL (version 
2.5.0.a0, Schrodinger).

HIV-1(O), HIV-1(M) CA Q50Y, HIV-1(M) CA Q50Y/R120, SIV-
mac, SIVcpz. HIV-1(O-group) hexamer crystals were grown using 
hanging-drop vapour-diffusion with 2 μl protein (40 mg ml−1) +2 μl 
crystallant (10% (w/v) PEG 6000, 100 mM HEPES (pH 7.0), 100 mM 
glycine) suspended over 500 μl undiluted crystallant. Crystals were 
cryoprotected with the gradual addition of glucose (solid) to 40% 
(w/v). HIV-1(M-group, Q50Y) hexamer crystals were grown using 
hanging-drop vapour-diffusion with 2 μl protein (13 mg ml−1) +2 μl crys-
tallant (19% (v/v) PEG 550MME, 100 mM Tris (pH 8.0), 150 mM KSCN, 

http://www.nature.com/naturemicrobiology
https://doi.org/10.2210/pdb4XFX/pdb


Nature Microbiology | Volume 7 | November 2022 | 1762–1776  1774

Article https://doi.org/10.1038/s41564-022-01247-0

10 mM ATP, 3% (v/v) 3,5-hexanediol) suspended over 500 μl undiluted 
crystallant and cryoprotected in 20% (v/v) 2-methyl-2,4-pentanediol 
(MPD). HIV-1(M-group, Q50Y/R120) hexamer crystals were grouped 
using sitting-drop vapour-diffusion with 1 μl protein (12 mg ml−1) +1 μl 
crystallant (20% PEG 550MME, 0.1 M Tris (pH 8.0), 0.15 M KSCN, 10 mM 
ATP, 3% ethanol) suspended over 80 μl crystallant and cryoprotected in 
20% (v/v) MPD. SIVmac hexamer crystals were grown using sitting-drop 
vapour-diffusion with 200 nl protein (12 mg ml−1) +200 nl crystallant 
(10% (w/v) PEG 6000, 5% (w/v) MPD, 100 mM HEPES (pH 7.5)) suspended 
over 80 μl crystallant and cryoprotected in 20% (v/v) MPD. SIVcpz hex-
amer crystals were grown using sitting-drop vapour-diffusion using 
200 nl protein (12 mg ml−1) +200 nl crystallant (4.5% PEG 550MME, 
0.15 M KSCN, 0.1 M Tris (pH 9.0), 4% 2,5-hexanediol) suspended over 
80 μl crystallant and cryoprotected in 20% (v/v) MPD. Diffraction 
data were collected at 100 K on Diamond Light Source beamlines I02 
(HIV-1(O), HIV-1(M), Q50Y) and I04-1 (SIVmac, SIVcpz) or in-house 
(M-group Q50Y/R120) on a Rigaku FR-E Superbright rotating anode 
source equipped with an MAR345 image plate detector. Data were 
reduced using IMOSFLM v7.4 (ref. 79) or XDS v0.6.5.2 (ref. 75), and scaled 
and merged using AIMLESS v0.7.4 (ref. 80). Structures were solved by 
molecular replacement using PHASER v2.8.3 (ref. 81) and search model 
based on the original cross-linked HIV-1(M) hexamer, PDB:3H47 (ref. 73). 
Structures were refined using REFMAC5 v5.8 (ref. 82) or phenix.refine 
v1.17.1.3660 (ref. 83). Between rounds of refinement, models were manu-
ally checked and corrected against the corresponding electron-density 
maps in COOT84. The quality of the model was regularly checked for 
steric clashes, incorrect stereochemistry and rotamer outliers using 
MOLPROBITY v4.02b-467Xtriage85.

Position-specific scoring matrices (PSSMs)
Sequence alignments for the capsids of HIV-1(M), HIV-1(O), HIV-2, SIVcp-
zPtt_and SIVcpzPts_ were either obtained as pre-made alignments from 
the LANL HIV Database, or directly from NCBI Virus followed by multiple 
sequence alignment using Clustal Omega. All alignments were manually 
adjusted, and sequences with larger insertions, deletions and/or poor 
sequence coverage were excluded. PSSMs (Supplementary Table 1) 
were generated using an R-script provided by Julian Villabona Arenas.

Statistical analysis
We have included the number of replicates (equal to the number of 
different donors), statistical tests and significance criteria in figure 
legends and in the main text. Statistical analysis was performed in 
GraphPad Prism. The following P values were considered significant: 
***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05. Data collection and refinement sta-
tistics of the protein structures solved in this paper can be found in 
Supplementary Table 2.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The PDB numbers for the new structures solved in this paper are: 
HIV-1(M) R120: 7QDF; HIV-1(O) Hexamer: 7T12; HIV-1(M) Q50Y Hex-
amer: 7T13; SIVmac Hexamer: 7T14; SIVcpz: 7T15; HIV-1(M) Q50Y 120R 
Hexamer: 8D3B. The rest of the data that support the findings of this 
study can be found in the supplementary information as source data 
or are available from the corresponding authors upon request. Source 
data are provided with this paper.
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Extended Data Fig. 1. | a. Infection of MDM with HIV, measured at 48 h by 
counting Gag positive cells, in the presence of anti-interferon α/β receptor 
(IFNα/β-R), or control, antibody (cAb). b. Replication of HIV-1(M), HIV-2 or 
HIV-1(O) isolates in permissive GHOST cells measuring induced GFP expression 
by flow. Representative experiment of 2 independent replicates. c, d. Activation 
of (c) IRF-luciferase reporter or (d) NF-kB secreted alkaline phosphatase reporter 
48 h after infection by equal genome copies of VSV-G-pseudotyped HIV-1(M), 

HIV-2 or HIV-1(O) -GFP. e, f. Measurement of VSV-G pseudotyped HIV-1(M), HIV-
1(O) and HIV-2 DNA synthesis (GFP primers) during a 20 h time course in THP-1 
cells. g. Infection measured at 48 hours in wells parallel to (e) by flow. h. Viral DNA 
(GFP) copy number at 20 h post-infection per infected cell using data from (e-f). 
Mean + /− SD, N = 3 donors (MDM) or independent experiments (THP-1 c,d). N = 4 
independent experiments ThP1 e-h.
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Extended Data Fig. 2 | a. GAPDH-normalised TRIM5 mRNA levels, measured 
after transfection of THP-1 treated with non-targeting CRISPR (NT-KO) 
or cGAS CRISPR (cGAS-KO) and transfected with TRIM5 targeting siRNA 
(siTRIM5) or non-targeting control siRNA (siCtrl). N = 3 independent 
experiments. b. Anti-MAVS or tubulin western blot of non-targeting KO cells (NT-
KO) or MAVS KO cells. c. % infection of HIV-1(M), HIV-2 and HIV-1(O) in NT-KO or 

MAVS KO cells. d. IFIT1 reporter activation after viral infection normalised against 
mock infected. e. GAPDH-normalised mRNA levels expressed as fold induction 
over mock-treated non-targeting KO control (NT-KO) or MAVS KO THP-1 cells 
24 h post-infection or after poly I:C transfection (500 ng/mL). Mean + /− SD, n = 2 
independent experiments.
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Extended Data Fig. 3 | a. A representative example of GAPDH-normalised 
TREX1 mRNA levels measured after transduction of THP-1 cells with empty 
(Ctrl) MLV vector or TREX1 expression vector. b, c. GAPDH-normalised ISG 
mRNA levels, expressed as fold induction over uninfected, in control vector (Ctrl) 

or TREX1-expressing THP-1 cells with HIV-2 and HIV-1(M) or HIV-1(O) with d, e. 
infection levels in parallel wells measured 48 hpi. Mean + /− SD, n = 3 independent 
experiments. b,d two-tailed paired t-test vs THP-1 Ctrl vector. *p < 0.05.
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Extended Data Fig. 4 | a. NF-kB - secreted alkaline phosphatase reporter 24 
or 72 hours after treatment with increasing doses of viral-like particles (VLP, 
made with packaging plasmid and VSV-G but no genome). N = 2 independent 
experiments. b. Quantification of IL-1β in supernatants from MDM mock infected 
or infected with HIV-1(M), HIV-2 or HIV-1(O). N = 4 donors. c. IRF-reporter 
activation after interferon β (IFNβ) or IL-1β treatment of THP-1 cells. N = 4 

independent experiments. d. % of infection in THP-1 cells after addition of IFNβ or 
IL-1β at different time points. Dotted line indicates the % of infection of untreated 
cells. N = 3 independent experiments e. Infection levels in MDM depleted of 
TRIM5 with equal genome copies of VSV-G pseudotyped HIV-1(M), HIV-2 or HIV-
1(O) –GFP measured 48 h post-infection. N = 2 donors. Data shows mean + SD.
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Extended Data Fig. 5 | a. Replication of HIV-1(M) NL4.3 (Bal Env) bearing 
HIV-2 ROD10 or HIV-1(O) MVP5180 Capsid in permissive GHOST cells (flow 
cytometry for induced GFP expression) representative of 2 independent 
experiments. b. Binding of fluorescently labeled nucleotides to HIV-1(M) or 
HIV-1(O) recombinant CA hexamers in the presence or absence of DTT to reduce 
monomer cross links. c. Titres of HIV-1(M), HIV-2 or HIV-1(O) -GFP made by mixing 
WT and CA R18G bearing packing constructs (left axis, white circles) and DNA 
synthesis measured at 6 hours post infection (right axis, black circles). d. Amino 

acids in BHP hinge region influencing BHP position with overlay of HIV-1(O) 
(PDB ID:7T12) and open HIV-1(M) (PDB ID:5HGL) hexamers. e. Capsid survival 
curves for CA mutant Q50Y generated from pooled data from two (no IP6) or 
three (100 μM IP6) independent experiments showing IP-mediated capsid 
stabilisation. f. Single round infection of MDM with equal genome copies of VSV-
G-pseudotyped HIV-1(M) (R9) CA Q50Y –GFP measured 48 h post-infection by 
flow. Mean + /− SD, n = 3 independent experiments and 3 donors for MDM.
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Extended Data Fig. 6 | a. Exterior view of the CA Q50Y/R120 hexamer (PDB ID: 8D3B) showing that the beta-hairpin (wheat) adopts an open conformation. b. 
Close-up view of the hinge region showing the H12-D51 salt-bridge necessary for the open conformation. The structure is indistinguishable from the Q50Y mutant in 
this region.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | a, b. Secreted CXCL10 (A) IL8 (B) (ELISA) 48hpi and 
GAPDH-normalised mRNA levels in MDM (fold induction over uninfected 
24hpi). c. % Infection of HIV-1(M) CA Q50Y 120 R in non-targeting CRISPR (NT-
KO) or MAVS CRISPR knock out (MAVS-KO) cells. d. GAPDH-normalised mRNA 
levels, (fold induction over uninfected), in non-targeting CRISPR control (NT-KO) 
or MAVS KO THP-1 cells 24hpi. e. IRF-luciferase reporter 48 h after infection by 
equal genome copies of VSV-G-pseudotyped HIV-1(M) WT or Q50Y 120R mutant 

in ThP1 cells Ctrl or overexpressing TREX. f. Infection measured at 48 hours 
corresponding to (e) by flow. Mean + /− SD, n = 3 independent experiments or 
donors. g. VSV-G pseudotype titration curves in U87 cells expressing non-
targeting control shRNA (shCtrl) or TRIM5 targeting shRNA (shTRIM5). Mean + /− 
SD n = 2 independent experiments. a, b two-tailed unpaired t-test vs untreated 
MDM. *p < 0.05, **p < 0.01. e, f paired t-test vs THP-1 Ctrl vector. ***p < 0.001.
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